Vol 22, No 1

Probing the Large-scale Structure of the Universe Through Gravitational Wave Observations

Xiaoyun Shao, Zhoujian Cao, Xilong Fan, Shichao Wu

Abstract

Abstract The improvements in the sensitivity of the gravitational wave (GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes (BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors; hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.

Keywords

Keywords gravitational waves – (cosmology:) large-scale structure of universe – black hole physics

Full Text
Refbacks

  • There are currently no refbacks.