Vol 8, No 1

Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS

Dan Wang, Yan-Xia Zhang, Chao Liu, Yong-Heng Zhao


Abstract We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.



Full Text

  • There are currently no refbacks.