Special issue for RAA 20th Anniversary

Magnetic flux ropes in the solar corona: structure and evolution toward eruption

Rui Liu


Abstract Magnetic flux ropes are characterized by coherently twisted magnetic field lines, which are ubiquitous in magnetized plasmas. As the core structure of various eruptive phenomena in the solar atmosphere, flux ropes hold the key to understanding the physical mechanisms of solar eruptions, which impact the heliosphere and planetary atmospheres. The strongest disturbances in the Earth’s space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth’s magnetosphere, leading to adverse, sometimes catastrophic, space-weather effects. However, it remains elusive as to how a flux rope forms and evolves toward eruption, and how it is structured and embedded in the ambient field. The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer’s perspective, with an emphasis on their structures and nascent evolution toward solar eruptions, as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation. This paper highlights an initiation mechanism for coronal mass ejections (CMEs) in which plasmoids in current sheets coalesce into a ‘seed’ flux rope whose subsequent evolution into a CME is consistent with the standard model, thereby bridging the gap between microscale and macroscale dynamics.


Keywords magnetic fields — magnetic reconnection — Sun: magnetic fields — Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: flares — Sun: filaments, prominences

Full Text

  • There are currently no refbacks.