Vol 18, No 4

Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

Yun-Fang Cai, Zhi Xu, Yu-Chao Chen, Jun Xu, Zheng-Gang Li, Yu Fu, Kai-Fan Ji

Abstract

Abstract In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3′′ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

Keywords

Keywords instrumentation: spectrographs — Sun: sunspots — techniques: imaging spectroscopy — techniques: image processing

Full Text
Refbacks

  • There are currently no refbacks.