Vol 16, No 8

Asteroseismology of the DBV star CBS 114

Yan-Hui Chen


Abstract Asteroseismology is a unique and powerful tool to investigate the internal structure of stars. CBS 114 is the sixth known pulsating DBV star. It was observed by Handler, Metcalfe, & Wood at the South African Astronomical Observatory over three weeks in 2001. Then, it was observed by Metcalfe et al. for seven nights (2004 Feb. 19–25) on the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory and seven nights (2004 Feb. 21–27) on the 2.1 m telescope at the McDonald Observatory. Totally two triplets, four doublets, and five singlets were identified. The frequency splitting values are very different, from 5.2 μHz to 11.9 μHz, which may reflect differential rotations. We evolve grids of white dwarf models by MESA. Cores, added with He/C envelopes, of those white dwarf models are inserted into WDEC to evolve grids of DBV star models. With those DBV star models, we calculate eigenperiods. Those calculated periods are used to fit observed periods. A best-fitting model is selected. The parameters are Teff = 25 000 K, M∗ = 0.740 M⊙ and log(MHe/M∗) = −4.5. With the relatively large stellar mass, the effective temperature is close to the previous spectroscopic result. In addition, kinetic energy distributions are calculated for the best-fitting model. We find that the observed modes with large frequency splitting values are fitted by the calculated modes with a large amount of kinetic energy distributed in the C/O core. After preliminary analysis, we suggest that the C/O core may rotate at least two times faster than the helium layer for CBS 114.


Keywords stars: oscillations (including pulsations) — stars: individual (CBS 114) — white dwarfs

Full Text

  • There are currently no refbacks.