Vol 14, No 6

Evolution of isolated G-band bright points: size, intensity and velocity

Yun-Fei Yang, Jia-Ben Lin, Song Feng, Kai-Fan Ji, Hui Deng, Feng Wang

Abstract

Abstract We study the evolution pattern of isolated G-band bright points (GBPs) in terms of their size, intensity and velocity. Using a high resolution image sequence taken with the Hinode/Solar Optical Telescope (SOT), we detect GBPs in each image by the Laplacian and Morphological Dilation algorithm, and track their evolutions by a 26-adjacent method in a three-dimensional space-time cube. For quantifying the evolution, we propose a quantification method based on lifetime normalization which aligns the different lifetimes to common stages. The quantification results show that, on average, the diameter of isolated GBPs changes from 166 to 173 km, then down to 165 km; the maximum intensity contrast changes from 1.012 to 1.027, then down to 1.011; however, the velocity changes from 1.709 to 1.593 km s−1, then up to 1.703 km s−1. The results indicate that the evolution follows a pattern such that the GBP is small, faint and fast-moving at the birth stage, becomes big, bright and slow-moving at the middle stage, then gets small, faint and fast-moving at the decay stage until disappearance. Although the differences are very small, a two-sample t-test is used to demonstrate there are significant differences in means between the distributions of the different stages. Furthermore, we quantify the relationship between the lifetimes of GBPs and their properties. It is found that there are positive correlations between the lifetimes and their sizes and intensities with correlation coefficients of 0.83 and 0.65, respectively; however, there is a negative correlation between the lifetimes and velocities with a correlation coefficient of –0.49. In summary, the longer the GBP persists, the bigger, brighter and slower it will be.

Keywords

Keywords techniques: image processing — Sun: photosphere — methods: data analysis — methods: statistical

Full Text
DOI
Refbacks

  • There are currently no refbacks.