Vol 9, No 8

Interaction between granulation and small-scale magnetic flux observed by Hinode

Jun Zhang, Shu-Hong Yang, Chun-Lan Jin

Abstract

Abstract With the polarimetric observations obtained by the Spectro-Polarimeter on board Hinode, we study the relationship between granular development and magnetic field evolution in the quiet Sun. Six typical cases are displayed to exhibit interaction between granules and magnetic elements, and we have obtained the following results. (1) A granule develops centrosymmetrically when no magnetic flux emerges within the granular cell. (2) A granule develops and splits noncentrosymmetrically while flux emerges at an outer part of the granular cell. (3) Magnetic flux emergence in a cluster of mixed polarities is detected at the position of a granule as soon as the granule breaks up. (4) A dipole emerges accompanied by the development of a granule, and the two elements of the dipole are rooted in the adjacent intergranular lanes and face each other across the granule. Advected by the horizontal granular motion, the positive element of the dipole then cancels with the pre-existing negative flux. (5) Flux cancellation also takes place between a positive element, which is advected by granular flow, and its surrounding negative flux. (6) While magnetic flux cancellation takes place in a granular cell, the granule shrinks and then disappears. (7) Horizontal magnetic fields are enhanced at the places where dipoles emerge and where opposite polarities cancel each other, but only the horizontal fields between the dipolar elements point in an orderly way from the positive elements to the negative ones. Our results reveal that granules and small-scale magnetic fluxes influence each other. Granular flow advects magnetic flux, and magnetic flux evolution suppresses granular development. There exist extremely large Doppler blue-shifts at the site of one canceling magnetic element. This phenomenon may be caused by the upward flow produced by magnetic reconnection below the photosphere.

Keywords

Keywords Sun: granulation—Sun: magnetic fields—Sun: photosphere—techniques: polarimetric

Full Text
DOI
Refbacks

  • There are currently no refbacks.