Vol 10, No 5 (2010) / Zhang

Why are halo coronal mass ejections faster?

Qing-Min Zhang, Yang Guo, Peng-Fei Chen, Ming-De Ding, Cheng Fang

Abstract

Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20 000 artificial limb CMEs that have an average velocity of ~523 km-1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light intensity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922 km-1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.


Keywords


Sun: coronal mass ejections (CMEs) — Sun: activity — methods: numerical— solar-terrestrial relations

Full Text:

PDF

Refbacks

  • There are currently no refbacks.