Vol 16, No 3 (2016) / Ren

On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements

Juan-Juan Ren, Xiao-Wei Liu, Mao-Sheng Xiang, Yang Huang, Saskia Hekker, Chun Wang, Hai-Bo Yuan, Alberto Rebassa-Mansergas, Bing-Qiu Chen, Ning-Chen Sun, Hua-Wei Zhang, Zhi-Ying Huo, Wei Zhang, Yong Zhang, Yong-Hui Hou, Yue-Fei Wang


Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples — the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of ~0.2 dex. Except for a few cases, asteroseismic surface gravities of Huber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.


methods: data analysis — stars: fundamental parameters — stars: spectroscopic — stars: general — stars: oscillations

Full Text:


DOI: https://doi.org/10.1088/1674–4527/16/3/045


  • There are currently no refbacks.