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Abstract By employing the previous Voronoi approach and replacing its nearest neighbor approx-
imation with Drizzle in iterative signal extraction, we develop a fast iterativeDrizzle algorithm,
named�Drizzle, to reconstruct the underlying band-limited image from undersampled dithered frames.
Compared with the existingiDrizzle, the new algorithm improves rate of convergence and accelerates
the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and
iterations),�Drizzle can make a better quality reconstruction thaniDrizzle, due to the newly discov-
ered High Sampling caused Decelerating Convergence (HSDC)effect in the iterative signal extraction
process.�Drizzle demonstrates its powerful ability to perform image deconvolution from undersampled
dithers.
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satellites: detection — gravitational lensing

1 INTRODUCTION

All imaging processes involve a limitation related to res-
olution of the equipment. In practice, the number of de-
tectors is limited, thus the sampling is limited. Since spa-
tial frequencies in an astronomical image are strongly
limited by the optics of the telescope, the band is limited.
For economical or other considerations, e.g. to cover a
wide �eld in each exposure, the detector sampling some-
times cannot reach the Nyquist (or critical) sampling of
the optics in a telescope. Therefore the detector often col-
lects a set of undersampled data. In fact, an undersampled
detector inevitably blurs the details in its sampling inter-
val. This blurring effect is so-calledaliasing. When the
sampling process is executed by a CCD (or CMOS ) pixel
matrix (via a digitizer), the effect ofaliasingis expressed
aspixelation.

In order to restore details lost inpixelationor alias-
ing, researchers have proposed increasing the sampling
rate by increasing the number of exposures of the same
�eld (but with different shifts, i.e. dithered frames). Thus
the remaining question is how to reconstruct the signal
from dithered frames. Many methods have been devel-
oped such asinterlaceandshift-and-add, which can ob-

tain a high resolution result and reduce the pixelation to
some extent, but these results are still far from excellent
anti-aliasing. By taking advantage ofinterlaceandshift-
and-add, Fruchter & Hook (2002) improve on the pre-
vious shift-and-add, namedDrizzle. However, like the
method mentioned before,Drizzledoes not enhance the
anti-aliasing function though it has a better performance
than previous works in reducing noise and increasing
accuracy. In fact,Drizzle generates a �ux averaged im-
age on a high resolution grid, thus producing a blurred,
contrast reduced appearance. Based on a non-parametric
method calledkernel regression, which takes both the
relative spatial and radiometric distances of nearby pixels
into account, Takeda et al. (2006) developed an improved
method namedsuper-Drizzle, which can reconstruct a
high quality image compared withDrizzle. super-Drizzle
has good performance in de-convolving the pixelation
to some extent. However,super-Drizzleis more likely
to be applied for image denoising and interpolation. It
sensitively depends on the number of dithered frames
and parameter selection. Thus it is dif�cult forsuper-
Drizzle to obtain a higher contrast image thanDrizzle
when the dithers are not enough. By replacing the value
of nearest neighbor with that ofDrizzle in an iterative
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Voronoi approximation [initially developed by Werther
(1999), Gröchenig & Strohmer (2001)] and introduc-
ing the oversampling - low pass �ltering - interpolat-
ing process to the image co-adding procedure, Fruchter
(2011) upgraded the previous Voronoi approximation to
yield iDrizzle. iDrizzle was developed largely for creat-
ing accurate images of objects with unresolved or nearly-
unresolved components. With the help of iterative signal
extraction and low pass �ltering in the frequency domain,
iDrizzledeconvolves the pixelation of undersampled fea-
tures (with high signal-to-noise ratio, SNR) much bet-
ter thansuper-Drizzleon small scales. However,iDrizzle
has an oversampling, �ltering and interpolation process,
which dramatically increases the amount of computation.

In this paper, compared with the previousiDrizzle
method, we improve on the effectiveness and computa-
tional speed, by introducing a program called fastiDriz-
zleor �Drizzle. �Drizzle can accelerate the computation
and improve image quality. After describing the�Driz-
zlealgorithm and analyzing the theoretical aspects of its
mechanism in Section 2, in Section 3 we illustrate the re-
sults to make a visual (Sect. 3.1) and a quantitative com-
parison (Sect. 3.2). We present the computational com-
plexity analysis in Section 4 to show how the new al-
gorithm can accelerate the computation. The algorithm's
dependency on the number of dithered frames and iter-
ations is shown in Section 5. Finally, the discussion and
conclusion are provided in the last section (Sect. 6).

2 THE FIDRIZZLE ALGORITHM

Drizzle is superior in computational speed. However, its
intrinsic �lter (pixelation) removes high frequency infor-
mation on small scales.iDrizzle can reconstruct details
on small scales to some extent at the cost of a very large
amount of computation and a huge volume for the output
�le. In order to maintain the advantages of bothDrizzle
and iDrizzle and reduce their weaknesses, we develop
�Drizzle to improve image co-adding technology. The al-
gorithm is described in the following steps:

Step 1: Apply Drizzle to theK dithered images of
a �eld, f I 1; I 2; I 3:::I K g, onto a high resolution grid one
needs1, e.g. critical sampling grid in the below examples
of this work, to produce the imageD1, which is the �rst
approximation to the true image. The1 in the subscript
of D indicates that this is the �rst iteration.

Step 2:Map the �rst approximation image,D1, back
to the frames of the original individual images by a series

1 In general, the sampling should not go beyond the Nyquist sam-
pling (critical sampling), which is different from the indispensable
oversampled grid iniDrizzle.

of mimic observations2, which produces a set of approx-
imations to the original images,Am

1 .
Step 3: Subtract the mimic observations from the

corresponding original images to produce a series of
residual imagesI m

1 = I m � Am
1 .

Step 4:Return to the �rst step and now applyDrizzle
to the set of residual imagesf I 1

1 ; I 2
1 ; I 3

1 :::I K
1 g to produce

the imageD2 which is the difference between the true
image and the previous approximation.

Step 5:Continue as before with one modi�cation, at
Step 3, in theN th iteration,AN =

P N
j =1 A j , until the

residuals are dominated by noise.
After the iterations are complete, one can regard the

�nal approximation as the best �tting image to the true
one. Comparing with the previousoversampling - low
pass �ltering - interpolatingprocess in the steps ofiDriz-
zle, we basically (i) remove the low pass �ltering pro-
cess; (ii) directly co-add the observation frames to an
(at most) critically sampled grid instead of an oversam-
pled one; (iii) therefore, the �nalsinc interpolation is not
necessary. The improvement accelerates the computation
signi�cantly. Compared with the Voronoi approximation,
we just replace the nearest neighbor approximation with
theDrizzleresult at each iteration.

In order to �gure out the difference betweeniDriz-
zle and�Drizzle in theory, we will compare their result
under the same resolution grid, e.g. critical sampling. It
means that�Drizzle directly samples the original image
to critical output, whileiDrizzle undergoes anoversam-
pling - low pass �ltering - interpolatingprocess to ob-
tain the same resolution. LetT be a signal in two dimen-
sional space. After being undersampled by equipment,
e.g. a telescope, one gets an imageI with a dither shift
ds (relative to the output target grid, including position
and angle shift),

I = T
O

G ; (1)

whereG represents all the combined effects from the
true signalT to the equipment, such as seeing, PSF, pix-
elation, CCD distortion, etc. Symbol

N
represents the

convolution operator. Now we resampleI to an over-
samplingD OS

1 and a critical samplingD CS
1 , and in the

meantime take the dither shiftds into account.

D OS
1 = I

O
POS ;

D CS
1 = I

O
PCS ; (2)

where POS or PCS is the resampling matrix which
includes a pixelation effect. Also,PCS can be ob-
tained byPCS = POS N

sinc(POS ! PCS), where

2 Mimicking the dither; all exposure conditions are identical to
those of the original dithered observations.
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sinc(POS ! PCS) is lossless interpolation of the signal
from oversampling to critical. ThereforeD CS

1 is equal to
D OS

1
N

sinc(POS ! PCS). HereD OS
1 or D CS

1 is the
very result ofDrizzle. Following the iterative reconstruc-
tion steps, we mimic the real observation by down sam-
pling the target gridD OS

1 andD CS
1 to theI grid, thus get-

ting the �rst approximationsAOS
1 andACS

1 to the original
imageI respectively. Then the difference (or residual im-
age) from the original observationI can be expressed as:

I OS
1 = I � AOS

1 ;

I CS
1 = I � ACS

1 : (3)

SinceAOS
1 has higher sampling thanACS

1 , correspond-
ingly the residual imageI OS

1 possesses less power than
I CS

1 , especially at the low frequency end. In an extreme
case, if one oversamples the original imageI to an in-
�nitely high resolution grid,D OS

1 will keep an intactI ,
leading toAOS

1 = I , and thusI OS
1 = 0. After the �rst

iteration, we have the second approximations to the true
image,D OS

2 andD CS
2 :

D OS
2 = D OS

1 + I OS
1

O
POS ; (4)

D CS
2 = D CS

1 + I CS
1

O
PCS : (5)

Following the last step ofiDrizzle, one may (sinc) in-
terpolate the oversampled approximation to the critical
sample grid with

D OS
2

O
sinc(POS ! PCS)

= D OS
1

O
sinc(POS ! PCS)

+ I OS
1

O
POS

O
sinc(POS ! PCS)

= D CS
1 + I OS

1

O
PCS : (6)

Comparing Equation (6) to Equation (5), we �nd that
for the same coarser (here critical) sampling case, itera-
tive reconstruction on critical sampling gains more power
(and hence more details) than that on oversampling,
which means for the same number of iterations the rate
of convergence for iterations is decelerated by the high
sampling (here oversampling) case. We call this effect
the High Sampling caused Decelerating Convergence
(HSDC)3 in the iterative signal extraction process. A
simple simulation that serves as proof is provided in
Appendix A of this paper. In fact, oversampling leaves
more (original) pixelation effect in the �nal result than
critical sampling. Therefore,�Drizzle works more effec-
tively in pixelation deconvolution thaniDrizzle, even if

3 It is easy to prove the HSDC effect in other dimensions for any
number (� 1) of iterations and dithered observations.

we ignore the inserted �ltering in the frequency domain
in iDrizzle. In the next section, we provide more exam-
ples to test the HSDC effect and check the validity of the
�Drizzle algorithm.

3 THE RESULTS

We show visual and quantitative comparisons of all
the three above mentioned image co-adding methods,
Drizzle, iDrizzle and�Drizzle, in the following subsec-
tions. According to sampling theory, if one wants to dou-
ble the spatial resolution of the digital signal which is
originally extracted from an analog signal, he (or she)
should double the sampling frequency directly or dou-
ble the number of observations (in different positions)
but keep the sampling frequency unchanged, i.e. dou-
ble the number of dithers (which is also the sense of
dither). Therefore, in order to totally restore the signal
from a set of 1

2 � 1
2 undersampled observations, one

should have at least four dithered frames to construct a
critically-determined (or over-determined, which needs
more dithers) system. Since this work mainly compares
the co-adding methods on the critical sampling, in the
following analysis, the systems are all over-determined
for the critical sampling, but under-determined for the
over-sampling, e.g.iDrizzle. We have checked a similar
result when the system is over-determined for both criti-
cal and over sampling. Theoretically, an over-determined
system can signi�cantly reduce degeneracy from the
effect of the random dithers (not well-placed dithered
frames). In order to mimic a series of dithered frames, the
true image is dithered to several undersampled frames by
introducing random shifts, rotations and CCD geometric
distortions of 0.1%.

3.1 A Visual Comparison

We use the well-known picture of Lena (with size512�
512pixel, assuming this resolution meets the Nyquist
(critical) sampling, i.e. the sampling frequency is at
least twice the highest spatial frequency, which can be
resolved by a telescope) to check the performance of
the three co-adding methods. In Figure 1, the true im-
age (left panel) is binned to �ve dithered frames with
a 1

2 � 1
2 lower resolution (right panel, undersampled)

than critical. Considering rotation and position shift, the
dithered frames have a pixel size of at most512=

p
2 �

512=
p

2 (the critical sampling pixel size, i.e.256=
p

2 �
256=

p
2 ' 181� 181 original pixels), in which every

pixel in the frame will not go beyond the region of the
true image. In the dithered frame one can identify the ef-
fect of aliasing in regions with rich details, pixelation at
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Fig. 1 An image of Lena at different resolutions. One of the dithered images (right panel, which is usually regarded as the original
input in image co-adding) has12 � 1

2 lower resolution than the true image (left panel). The effect of aliasing signi�cantly smooths
details on small scales. Details in2 � 2 true image pixels (corresponding to one original pixel) areaveraged out to a single value.

Fig. 2 Reconstructions from three different methods. The upper left image is the true one. The upper right panel is fromDrizzle,
the lower left fromiDrizzle and the lower right from�Drizzle. Both iDrizzle and�Drizzle are applied in �ve iterations. The three
reconstructions have a2 � 2 higher resolution than the original and thus have the same resolution as the true one.

Fig. 3 Residuals between the reconstructions and the true case (upper left panel). Upper right is forDrizzle, lower left for iDrizzle
and lower right for�Drizzle.
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the edge of the hat, blurred stripes in the body of the hat,
and eyes and lips dimming. Such a mosaic-like image
also exhibits loss of contrast and gray levels. In short, the
effect of aliasing makes the image blurred and pixelized.

Figure 2 shows three reconstructions from the identi-
cal set of the (�ve) dithered frames: the upper left image
is the true one, the upper right one is reconstructed by
Drizzle, the lower left one is from thesinc interpolation
of the oversampled4 iDrizzle result and the lower right
one is produced by this work, i.e.�Drizzle. Following the
strategy described in Appendix B, we choose a proper
mask function withr f = 230 for the �ltering steps in
iDrizzle5. In the lower panels, bothiDrizzle and�Driz-
zle are applied in �ve iterations. Obviously, theDrizzle
result (the upper right) is better than the dithered image
as shown in the right panel of Figure 1. However, com-
pared with the result fromiDrizzle, Drizzle is not able
to restore details at the level of a few pixels. There is an
inherent �lter (an averaging effect introduced by pixela-
tion) convolved by theDrizzlemechanism, which results
in high frequency information missing. That is the reason
why the upper right image looks smoothed and blurred.
Due to repeated signal extraction from the residual im-
age, bothiDrizzle and�Drizzle co-add images much bet-
ter thanDrizzle does. Although the two lower images
have a similar appearance, after a careful eyeball check,
the right one looks sharper with higher contrast than the
left. In addition,�Drizzle generates more stripes6 in the
body of the hat, as well as sharper contrast in the hair
and eyelashes, and thus yields better image quality than
iDrizzle.

Obvious differences are shown in the residual im-
ages (Fig. 3). In Figure 3, the upper left one is the same
as in Figure 2, but the rest are differences between the
reconstructions (generated by the three algorithms) and
the true one. Three residual images are scaled to the same
scope, then have the same color bar scale. For the portrait
of Lena in the shadowed area, the more recognizable the
�gure is, the more signal it loses in image reconstruction.
Evidently, theDrizzle algorithm loses lots of informa-
tion, then shows a signi�cant portrait in the residual im-
age.iDrizzle misses a few details in high frequency. As a
result, it leaves some features in regions with rich detail,
e.g. hair, eyelashes and stripes in the hat. However, the
residual from�Drizzle is almost unrecognizable, which
turns out to be the best �tting to the true case among the

4 The sampling of the oversampled image is2� 2 times the Nyquist
sampling.

5 Note that there are a total of 256 pixels from the FFT image center
to its edge. Therefore,r f = 230 is close to the Nyquist frequency.

6 Strictly, this is due to the improvement in contrast level.

three results. If zooming in the lower panels and focusing
on the sharp transition edges, one can �ndiDrizzle intro-
duces a ringing artifact, which appears asghosts near
transients.

Furthermore, we try to �gure out how the visual
difference affects their power in the frequency domain.
Here we introduce a reduced power spectrum (RPS, re-
duced to one dimension) to analyze the power left in the
above three residual images. In order to avoid the regions
in which pixels are not totally covered by all dithered
frames, we select an all-covered area which is generally
1=4 times the true case, i.e. a pixel size of256 � 256
(critical sampling pixel) and has the same center as the
critical sample. We de�ne the RPS as the radial power
distribution in the fast Fourier transform (FFT) image of
the all-covered area. Therefore, in the frequency direc-
tion the RPS has 128 pixels. In Figure 4, the black line
stands for RPS of the true case. Other colors are the RPS
(lower is better) of the three residuals between the true
case and three reconstructions: green forDrizzle, blue
for iDrizzle and red for�Drizzle. Here one can �nd that
most high frequency power is left in the three residu-
als. As expected,Drizzle is the worst one. Due to the
oversampling mechanism and low-pass �ltering,iDriz-
zleperforms a little better than�Drizzle at the high fre-
quency end. However,iDrizzle loses much more power
in low and medium frequencies than�Drizzle because of
the HSDC. This is the reason why Lena reconstructed by
�Drizzle has a high contrast level in Figure 2 and why the
residual fromiDrizzle in Figure 3 is still recognizable.

3.2 The Quantitative Comparison

In weak gravitational lensing astronomy, people usually
calculate the lensing effect by measuring the shapes of
background galaxies and comparing them with a ran-
domly oriented sample of galaxies. Its �nal result sen-
sitively depends on the accuracy of shape measurement,
which means a high �delity image co-adding method can
signi�cantly improve the SNR of a weak lensing sig-
nal, thus enhancing the accuracy and reliability of the re-
sult. We extract a spiral galaxy image with a resolution
of 512 � 512 from the Hubble Space Telescope(HST)
observationHST jc1g03010 drc.fits at R:A: =
195:01238deg andDec = 28:023106deg as the true pic-
ture to test. Then the true image is dithered to 10 frames
(down sampled to1

3 � 1
3 lower resolution) by apply-

ing random shifts, rotations and CCD geometric distor-
tions to mimic the undersampled dithered observations.
Note that hereiDrizzle has an oversampled grid with
resolution4 � 4 times the critical case. During the re-
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Fig. 4 The RPS for residuals between reconstructions and the true image. The RPS forDrizzle is in green,iDrizzle in blue and
�Drizzle in red, while the black line is the RPS of the true image (NOT the residual).

Fig. 5 Another image reconstruction test, usingHSTdata (with image center atR:A: = 195:01238deg andDec = 28:023106deg).
The layout of panels is similar to Fig. 2.

construction, six iterations are executed in bothiDriz-
zle and�Drizzle. We plot the three kinds of reconstruc-
tions in Figure 5 with the same layout as in Figure 2.
The color stands for the �ux received by the pixels that
were part of the observing equipment and is already
scaled to the same scope. Also we show the residual plot
in Figure 6 with the same representation and layout as
in Figure 3. Similar to the result in Section 3.1, both
iDrizzle and �Drizzle recover better image quality than
Drizzle. However, the visual difference betweeniDriz-
zleand�Drizzle is not signi�cant. So, we investigate the
�ux at the pixels that satisfyX = Y in the four panels of
Figure 5.

In Figure 8, the �ux pro�le, which is normalized to
the �ux of the central pixel of the true image, is plotted
in the upper panel: the true one is in black,Drizzle in
green,iDrizzle in blue and�Drizzle in red. The lower
panel shows the �ux pro�le of theX = Y pixels in
the residuals displayed in Figure 6. Here the size of
3 � 3 critically sampled pixels equals that of one orig-
inal pixel. Evidently,�Drizzle provides the best �tting
result to the true case, especially at the center. Figure 7
shows a similar result as that in Figure 4:�Drizzle is
the best one in low and medium frequencies, but also
leaves a few high frequency noises in the reconstruction.
However, for shear measurement of weak gravitational
lensing, low frequency information plays an important



L. Wang & G. L. Li: How to Co-add Images 100–7

Fig. 6 Residual maps for theHSTimage reconstructions. The layout of panels is the same as inFig. 3.
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Fig. 7 The residual RPS for theHSTimage reconstructions. The color representation of lines is the same as that in Fig. 4.

role. Following Hirata & Seljak (2003), the ellipticity of
an object is de�ned as

e+ = ( M xx � M yy )=(M xx + M yy ) ;

e� = 2 M xy =(M xx + M yy ) ; (7)

whereM ij represents the moments (see Hirata & Seljak
(2003) for details). The spin-2 tensore = ( e+ ; e� ) is
the so-called ellipticity tensor. In order to avoid the prob-
lem of divergence, a circular Gaussian weighting func-
tion with a weight radius ofrw is convolved into the
four images in Figure 5 before the measurement. We then
plot the ellipticity tensore of the source as a function of

weight radiusrw and show them in Figures 9 and 10.
The color de�nition of line types is the same as that in
Figures 8 and 4. Since only39:3% of the weight is lo-
cated in an area with radiusrw , but 86:5% is in 2 � rw ,
here we use2 � rw as the variable, which means if one
faces a uniformly illuminated source, the �ux from pixels
in � 2rw contributes86:5% of the total to the measure-
ment.

From low to high frequency,Drizzle has no advan-
tage compared withiDrizzle or �Drizzle. This re�ects
how important pixelation deconvolution is in the image
co-adding process. In the ellipticity measurement, power
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Fig. 8 The �ux and residual pro�le of the three reconstructions at theX = Y pixels. Lines have the same color de�nition as in
Fig. 4. Note that the length of three pixels here correspondsto one original pixel.

-0.25

-0.15

-0.05

 0.05

e
+

true
Drizzle
iDrizzle

fiDrizzle

-0.02

-0.01

 0

 0.01

 3  6  9  12  15  18

re
si

du
al

2rw / pixel

Fig. 9 Measuring the ellipticity componente+ as a function of weight radiusr w . The error bars are estimated from the noise in the
image. Line types are the same as those in Fig. 8.

at low frequency determines the signal, while noise at
high frequency mainly affects the scatter of the �nal re-
sult. In Figure 9,�Drizzle behaves better thaniDrizzle
from small scales to large, and has the lowest system-
atic error among the three reconstructions at large scales.
Note that gravitational lensing is very sensitive to sys-
tematic error. It turns out that the HSDC effect is the main
reason that preventsiDrizzle from obtaining enough low
frequency power and reducing the systematic bias in re-
construction. However, there is little difference between
iDrizzle and �Drizzle in the e� component of elliptic-
ity in Figure 10. In this case, we �nd the disadvantage of

�Drizzle at high frequency does not badly affect the shear
measurement because most of the high frequency noise
is averaged out so as to be negligible at large scales.

4 THE COMPUTATIONAL COMPLEXITY

There is no doubt thatDrizzle runs much faster than the
other two algorithms because it does not need more iter-
ations. The computation of each mimic observation [or
blot program in Fruchter & Hook (2002)] is similar to
that of Drizzle. Then�Drizzle costs2N times the com-
putational complexity ofDrizzle, which depends on the
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Fig. 11 Residuals from�Drizzle for different numbers of dithers. The upper left panel is forone dither, the upper right panel for
two dithers, four frames are in lower left panel and �ve frames are in the lower right.

number of iterationsN . In Figure 2, the true image has a
size of512� 512pixel, thus each original frame (observa-
tion) has a pixel size7 of 256=

p
2� 256=

p
2 ' 181� 181.

Note that the workload ofDrizzle depends not only on
the number of total original pixels,5 � 181� 181, but
also on the resolution of the output grid (for this ex-

7 This size ensures that rotated and shifted dithered images (or �eld
of view) cannot severely exceed the region of the true image.

ample, the critical sampling is2 � 2 times higher than
the original grid). So,Drizzle costs at leastT(n) =
5 � 181 � 181 � 2900 ' 470 000 000computations8,
and thus has a computational complexityO(2000n2) (set
n = 512). After �ve iterations,�Drizzle has a total com-

8 Here we convert the surface integral into a line integral viathe
Green formula. After a series of polygon clipping operations and line
integral computations, it costs� 2900 �oating-point calculations in
each original pixel.
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putational complexityO(20 000n2), due to bothDrizzle
and the mimic observation process in each iteration. As
for iDrizzle, there are three expenditures in amount of
calculation:

– First, iDrizzle requires an oversampled output grid
which has a2� 2 (in this example) times higher res-
olution than the critical sampling. Then it results in a
4 times higher number of computations than�Driz-
zle, i.e. a complexityO(80 000n2).

– Second, the workload of oversampled image FFT,
smoothing and inverse FFT are, at least,T (n) =
5� 2� 10242� 2� log2(1024) ' 210 000 000, i.e. the
total computational complexity isO(80n2log2n).

– Third, the �nal sinc interpolation contributes an
O(64n2) computation complexity9.

Compared with�Drizzle, iDrizzle is mainly delayed
by the oversampling strategy. The CPU time consumed
by the �ltering process is about a few percent of the total
when the size of an oversampled image is about1024�
1024. Combining the results above, we �nd thatiDrizzle
is not only decelerated in the rate of convergence (the
HSDC effect) but also delayed in computational speed
for the same reason� the oversampling strategy.

5 DEPENDENCY ON THE NUMBER OF
DITHERED FRAMES AND ITERATIONS

In this section, we discuss how�Drizzle or iDrizzle de-
pends on the number of dithered framesK and iterations
N . We run�Drizzle to reconstruct the picture of Lena
for one, two, four and �ve frames. Each reconstruction is
performed in �ve iterations.N = 5 is a tradeoff between
signal extraction and artifact reduction, such as the ring-
ing artifact near sharp transitions, which is introduced
by low pass �ltering but is enhanced by successive it-
erations. The residual (the difference between the�Driz-
zle reconstructions and the true image) plot is shown in
Figure 11; the upper left panel is for one dither, the up-
per right panel is for two dithers, four frames are in the
lower left panel and �ve frames are in the lower right.
Obviously, the residuals are signi�cantly reduced when
we increase the number of co-added frames. Moreover, a
strong argument can also be found in the RPS plot of the
residuals in Figure 12. In order to compare�Drizzle (in
solid lines) with previous work, we also plot the results of
iDrizzle (in dotted lines, with the same �lter as Figure 2)
in the RPS �gure. Note that the color representation is to-
tally different from the above �gures: reconstructions for
one, two, four and �ve frames are in purple, red, blue and

9 We use 16 points at each interpolation.

black respectively. Figure 12 shows that the quality of re-
construction strongly depends on the number of dithers
whenK is small. While the degree of this dependence
decreases asK increases, one can also �nd that com-
pared with�Drizzle the advantage ofiDrizzleon the high
frequency end is diminished as the number of dithersK
increases.

Now we �x the number of dithersK to be 5 and
change the number of iterationsN = 0 ; 1; 3; 5 for both
�Drizzle andiDrizzle. Here we only show the�Drizzle
reconstructed picture of Lena in Figure 13; the upper left
panel is for zero iterations, namely theDrizzleresult, the
upper right panel is for one iteration, three iterations are
executed in the lower left panel and �ve iterations are
in the lower right. The ef�ciency of signal extraction is
very high at the beginning several iterations, which re-
sults in the portrait of Lena vanishing quickly. Suf�cient
evidence is shown in Figure 14. Reconstructions for zero,
one, three and �ve iterations are in purple, red, blue and
black respectively (solid lines). As before, we also illus-
trate the results fromiDrizzle with corresponding itera-
tions and colors, but in dotted lines. Note that for the case
of zero iterations withiDrizzle, we perform the �ltering
process after the �rstDrizzle step is complete, with no
more signal extraction steps. From Figure 14, due to the
HSDC effect we �nd that�Drizzle converges more effec-
tively thaniDrizzle in low and medium frequencies. The
low frequency difference between solid and dotted (same
color) lines becomes large as the number of iterationsN
increases.

6 DISCUSSION AND CONCLUSIONS

Theoversampling - low pass �ltering - interpolatingpro-
cess is a standard industry practice for improving the
SNR in analog to digital (A/D) signal transition and ex-
traction. Naturally, this process is adopted by the previ-
ous work related toiDrizzle. Of course, there is no prob-
lem if one initially wants an oversampled reconstruction
or the process does not involve iterative signal extrac-
tion from the residuals. However, theoversampling - low
pass �ltering - interpolatingprocess and iterative signal
extraction coexist iniDrizzle, which inevitably encoun-
ters the HSDC effect. As a result, compared with�Driz-
zle's direct sampling to the critical case,iDrizzlenot only
costs more computational resources but also converges
ineffectively which leads to an inadequate reconstruc-
tion for low frequency signals and, eventually, affects the
systematic errors in weak lensing shear measurement as
described in Section 3.2. Brie�y, in this work we reach
some goals:
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Fig. 12 The residual RPS ofiDrizzle and�Drizzle for different numbers of dithers. The reconstructions for one, two, four and �ve
frames are in purple, red, blue and black respectively.�Drizzle is shown in solid lines, whileiDrizzle is in dotted lines.
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Fig. 13 Residuals from�Drizzle for different numbers of iterations. The upper left panel isfor zero iterations, the upper right panel
is for one iteration, three iterations are executed in the lower left panel and �ve iterations are in the lower right.

– We discover the HSDC effect in the iterative signal
extraction process and mathematically prove its ex-
istence.

– For the same number of iterations,�Drizzle con-
verges more effectively thaniDrizzle, especially at
low and medium frequencies, thus obtaining a better
quality reconstruction.

– Instead of oversampling the frames to a high reso-
lution grid (iDrizzle), �Drizzle directly samples the
dithers to the critical resolution and omits the �lter-
ing and interpolation procedures, which �nally saves
more computational resources.

As mentioned before,iDrizzle can generate accurate im-
ages of objects with unresolved or nearly-unresolved
components.�Drizzle inherits this function as well if one
co-adds the dithers in an oversampled grid at the very
beginning. However, any features less than the scale of
the maximum angular resolution of the optics are unbe-
lievable, which are smoothed by the �lter iniDrizzle, but
retained in�Drizzle. Nevertheless, it does not affect the
photometry in bothiDrizzle and�Drizzle. In that sense,
we do not include a comparison of unresolved features in
the paper.
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Fig. 14 The residual RPS ofiDrizzle (dotted lines) and�Drizzle (solid lines) for different numbers of iterations. Reconstructions
for zero, one, three and �ve iterations are in purple, red, blue and black respectively.
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Fig. 15 Reconstructions of one dithered frame (upper right) in �ve iterations for oversampling (lower left) and critical sampling
(lower right) cases. The upper left is the true image.
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Fig. 16 Residuals between the reconstructions (in Fig. 15) and the true image for oversampling (left) and critical sampling (right)
cases.
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Fig. 17 The residual RPS pro�le for different iterations in oversampling and critical sampling cases. One iteration oversampling is
in green and critical sampling is in red. The result of five iterations for oversampling is in blue and critical sampling is in black.
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Fig. 18 The residual RPS pro�le foriDrizzle with different �ltering parameters:r f = 130 is in red, r f = 150 in purple and
r f = 200 in blue. The black line is for�Drizzle.

It is worth mentioning that compared withiDrizzle,
�Drizzle displays its lack of reconstruction accuracy at
the high frequency end. In our upcoming work, on one
hand we improve�Drizzle to enable it to restore a part
of details at the high frequency, and on the other hand,
we develop a totally new image co-adding method called
Tessellated Simple Surface Fitting (TSSF), which can ef-
fectively balance pixelation deconvolution and noise re-
duction.

In the future, many new telescopes will start
astronomical observation, e.g. NASA's Wide Field
Infrared Survey Telescope (WFIRST), the European
Space Agency (ESA)'s Euclid, the National Science
Foundation (NSF) funded Large Synoptic Survey
Telescope (LSST) and the Chinese Space Station opti-
cal Telescope (CSST). Huge amounts of imaging data
will be generated by those telescopes. How to effectively
and ef�ciently process these data will be an urgent re-
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quirement. We believe that the�Drizzle algorithm has
some advantages and can make some contributions in
astronomical image processing as long as undersampled
dithers exist.
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Appendix A: A SIMPLE EXAMPLE FOR
TESTING THE HSDC EFFECT

Here we use one of the original images in Figure 1. The
result is shown in Figure 15. The upper-left panel is the
true image. After a dither observation one gets a1

2 � 1
2

lower resolution image as the upper-right one (for con-
venience of comparison, here zoomed in2 � 2). The
lower-left panel is a reconstruction on a2 � 2 higher
resolution grid (oversampling) than the critical sampling
and �nally interpolated back to the critical sampling after
a 5-iteration process, namelyPCS N P 5

j =1 D OS
j . The

lower-right panel shows the critical sampling reconstruc-
tion, i.e.

P 5
j =1 D CS

j . Obviously, the original dithered
frame (upper-right) has the worst quality among the four
panels. Aliasing and blurring dominate the edge of high
contrast and the stripes in the hat. If observing carefully
one can �nd the lower-right image has higher gray reso-
lution than the lower-left one (due to the HSDC effect).
However, the lower-left image has a few advantages over
the lower-right one in the high frequency end (see also
Figs. 16 and 17).

The difference between the over (or critical) sam-
pling reconstruction and the true image is shown in
Figure 16, left for the oversampling residual, right for
the critical sampling. The difference is very signi�cant
in visual appearance.

A similar result can be found in the frequency do-
main, shown in Figure 17. The de�nition of Figure 17
has been made in Section 3.1. Signi�cantly, critical sam-
pling is much more advantageous at the low frequency
end, however, there is a little worse performance at the
high frequency end than the oversampling mode. This
example also conveys such a message that even if some-
body has only one dithered image, he (or she) can get
more details through the iterative reconstruction process
only if the frame's position information can be taken into
account.

Appendix B: CHOOSE A PROPER FILTER FOR
IDRIZZLE

A gentle taper in Fourier space can suppress the ring-
ing effect. However, it also suppresses the low frequency
which is necessary in image reconstruction. Following
Fruchter (2011), a similar �lter, which has a sharp cut-
off near the Nyquist frequency, is adopted in this paper
to balance the ringing suppression and the low passband
requirement. Here a circular mask (in Fourier space) that
falls from 90% to 10% transmission over a width of 0.1
times Nyquist frequency is used. Figure 18 is an example
for how to choose a proper �lter for theHSTimage re-
construction case in Section 3.2. Here we keep the trans-
mission intact, but tune the characteristic radius of the
circular �lter r f (a distance from the center of the FFT
image to the in�exion of the transmission). Finally, a rel-
atively good case withr f = 150 is selected. In order to
ensure its validity, we also check it by visual and quanti-
tative comparison with other cases, e.g.r f = 130 or 200.
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