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Abstract By employing the previous Voronoi approach and replacisgngarest neighbor approx-
imation with Drizzle in iterative signal extraction, we develop a fast iteratbazzle algorithm,
named Drizzle, to reconstruct the underlying band-limited image fromensdmpled dithered frames.
Compared with the existinidprizzle, the new algorithm improves rate of convergence and aateter
the computational speed. Moreover, under the same conslifi®.g. the same number of dithers and
iterations), Drizzle can make a better quality reconstruction thanzzle, due to the newly discov-
ered High Sampling caused Decelerating Convergence (H8B€EDt in the iterative signal extraction
process.Drizzle demonstrates its powerful ability to perform image decdumion from undersampled
dithers.

Key words: techniques: image processing — methods: observationabfs: sStnaging — planets and
satellites: detection — gravitational lensing

1 INTRODUCTION tain a high resolution result and reduce the pixelation to
some extent, but these results are still far from excellent
All imaging processes involve a limitation related to res-anti-aliasing By taking advantage dfterlaceandshift-
olution of the equipment. In practice, the number of de-and-add Fruchter & Hook (2002) improve on the pre-
tectors is limited, thus the sampling is limited. Since spawvious shift-and-add namedDrizzle. However, like the
tial frequencies in an astronomical image are stronglynethod mentioned befor®rizzle does not enhance the
limited by the optics of the telescope, the band is limited anti-aliasing function though it has a better performance
For economical or other considerations, e.g. to cover ghan previous works in reducing noise and increasing
wide eld in each exposure, the detector sampling someaccuracy. In factDrizzle generates a ux averaged im-
times cannot reach the Nyquist (or critical) sampling ofage on a high resolution grid, thus producing a blurred,
the optics in atelescope. Therefore the detector often cokontrast reduced appearance. Based on a non-parametric
lects a set of undersampled data. In fact, an undersampledethod calledkernel regressionwhich takes both the
detector inevitably blurs the details in its sampling inter relative spatial and radiometric distances of nearby pixel
val. This blurring effect is so-calledliasing When the into account, Takeda et al. (2006) developed an improved
sampling process is executed by a CCD (or CMOS)) pixeimethod nameduper-Drizzle which can reconstruct a
matrix (via a digitizer), the effect adliasingis expressed high quality image compared wifbrizzle super-Drizzle
aspixelation has good performance in de-convolving the pixelation
In order to restore details lost frixelationor alias- {0 some extent. Howevesuper-Drizzleis more likely
ing, researchers have proposed increasing the samplirt§ e applied for image denoising and interpolation. It
rate by increasing the number of exposures of the samensitively depends on the number of dithered frames
eld (but with different shifts, i.e. dithered frames). Tau @nd parameter selection. Thus it is dif cult fsuper-
the remaining question is how to reconstruct the signaPrizzle to obtain a higher contrast image thamizzle
from dithered frames. Many methods have been develvhen the dithers are not enough. By replacing the value
oped such agiterlaceandshift-and-addwhich can ob- of nearest neighbor with that @rizzle in an iterative
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Voronoi approximation [initially developed by Werther of mimic observatior’ which produces a set of approx-
(1999), Grochenig & Strohmer (2001)] and introduc-imations to the original images," .
ing the oversampling - low pass ltering - interpolat- Step 3: Subtract the mimic observations from the
ing process to the image co-adding procedure, Fruchterorresponding original images to produce a series of
(2011) upgraded the previous Voronoi approximation toresidual images” = I™  AY.
yield iDrizzle. iDrizzle was developed largely for creat- Step 4:Return to the rst step and now appBrizzle
ing accurate images of objects with unresolved or nearlyto the set of residual imagési; | 2;13::1 X gto produce
unresolved components. With the help of iterative signathe imageD, which is the difference between the true
extraction and low pass ltering in the frequency domain,image and the previous approximation.
iDrizzle deconvolves the pixelation of undersampled fea-  Step 5:Continue as before witl?_,one modi cation, at
tures (with high signal-to-noise ratio, SNR) much bet-Step 3 in the N th iteration,Ay = szl Aj, until the
ter thansuper-Drizzleon small scales. HoweveBrizzle  residuals are dominated by noise.
has an oversampling, Itering and interpolation process, After the iterations are complete, one can regard the
which dramatically increases the amount of computation.nal approximation as the best tting image to the true
In this paper, compared with the previoiRrizzle  one. Comparing with the previoussersampling - low
method, we improve on the effectiveness and computaeass ltering - interpolatingprocess in the steps riz-
tional speed, by introducing a program called i&stz-  zle, we basically (i) remove the low pass lItering pro-
zleor Drizzle. Drizzle can accelerate the computation cess; (ii) directly co-add the observation frames to an
and improve image quality. After describing tHeriz- (at most) critically sampled grid instead of an oversam-
zlealgorithm and analyzing the theoretical aspects of itgled one; (iii) therefore, the nadincinterpolation is not
mechanism in Section 2, in Section 3 we illustrate the renecessary. The improvement accelerates the computation
sults to make a visual (Sect. 3.1) and a quantitative consigni cantly. Compared with the Voronoi approximation,
parison (Sect. 3.2). We present the computational comwe just replace the nearest neighbor approximation with
plexity analysis in Section 4 to show how the new al-theDrizzleresult at each iteration.
gorithm can accelerate the computation. The algorithm's  In order to gure out the difference betweeéDriz-
dependency on the number of dithered frames and itezle and Drizzle in theory, we will compare their result
ations is shown in Section 5. Finally, the discussion andinder the same resolution grid, e.g. critical sampling. It
conclusion are provided in the last section (Sect. 6).  means thatDrizzle directly samples the original image
to critical output, whileiDrizzle undergoes anversam-
pling - low pass ltering - interpolatingprocess to ob-
tain the same resolution. L&tbe a signal in two dimen-

Drizzleis superior in computational speed. However, itsSional space. After being undersampled by equipment,
intrinsic lter (pixelation) removes high frequency infor €.9. a telescope, one gets an imageith a dither shift
mation on small scalesDrizzle can reconstruct details ds (relative to the output target grid, including position
on small scales to some extent at the cost of a very largénd angle shift), o

amount of computation and a huge volume for the output =T G; 1)

le. In order to maintain the advantages of bdlhizzle  \here G represents all the combined effects from the
and iDrizzle and reduce their weaknesses, we develop, e signall to the equipment, suchgs seeing, PSF, pix-
Drizzle to improve image co-adding technology. The al-g|ation, CCD distortion, etc. Symbol represents the
gorithmis descrlbedlln the followmg.steps: . convolution operator. Now we resampleto an over-
Step 1: Apply Drizzleto theK  dithered images of samplingD9S and a critical sampling €S, and in the

a eld, f1%;1%13:::1 ¥ g, onto a high resolution grid one meantime take the dither shifts into account.
needs, e.g. critical sampling grid in the below examples

of this work, to produce the imad®1, which is the rst DP% =1
approximation to the true image. Then the subscript DSS = | o pCs . )
of D indicates that this is the rstiteration.

Step 2:Map the rst approximationimagd) 1, back where P°S or P®S is the resampling matrix which
to the frames of the original individual images by a seriedncludes a pixelation ﬁffect. AlsoP S can be ob-
tained byP®S = POS " sing(POS | PCS), where

2 THE FIDRIZZLE ALGORITHM

POS.

1 In general, the sampling should not go beyond the Nyquist sam
pling (critical sampling), which is different from the irgfiensable 2 Mimicking the dither; all exposure conditions are idenitita
oversampled grid ifDrizzle. those of the original dithered observations.
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sinc(P°S 1 P©S) s lossless interpolation of the signal we ignore the inserted Itering in the frequency domain
from ﬂversampling to critical. Therefo®$S is equalto  in iDrizzle. In the next section, we provide more exam-
DPS " sing(PS | PCS). HereD$S or D§S is the  ples to test the HSDC effect and check the validity of the
very result ofDrizzle Following the iterative reconstruc- Drizzle algorithm.

tion steps, we mimic the real observation by down sam-

pling the target grid 5 andD S to thel grid, thusget- 3 THE RESULTS

ting the rst approximation& S andA$S to the original

imagel respectively. Then the difference (or residual im-We show visual and quantitative comparisons of all

age) from the original observatidncan be expressed as: the three above mentioned image co-adding methods,
Drizzle, iDrizzle and Drizzle, in the following subsec-

IPS =1 A?PS; tions. According to sampling theory, if one wants to dou-

IS=1 AfS: (3)  ble the spatial resolution of the digital signal which is

) ) _ originally extracted from an analog signal, he (or she)
_S'”CEA?S has higher sampling thah$®, correspond-  ghouid double the sampling frequency directly or dou-
ingly the residual imager’® possesses less power thanpje the number of observations (in different positions)
| €S, especially at the low frequency end. In an extreme, ¢ keep the sampling frequency unchanged, i.e. dou-
case, if one oversamples the original imdgeo an in- pe the number of dithers (which is also the sense of
nitely high resolution grid,D P will keep an intact , dither). Therefore, in order to totally restore the signal

i 0s — 0s —
leading toA7™ = I, and thud > = 0. After the rst 5 5 get of% % undersampled observations, one

iteration, we have the second approximations to the frugyq 4 have at least four dithered frames to construct a
image,DF* andD3*: critically-determined (or over-determined, which needs
DYS = DS + |08 O pos . @) more dithers) system. Since this v_v_ork mainly_ compares
the co-adding methods on the critical sampling, in the

e} following analysis, the systems are all over-determined

DS =D+ 155 pes: (5) for the critical sampling, but under-determined for the

over-sampling, e.gDrizzle. We have checked a similar

result when the system is over-determined for both criti-
cal and over sampling. Theoretically, an over-determined
system can signi cantly reduce degeneracy from the

Following the last step oiDrizzle, one may $inc) in-
terpolate the oversampled approximation to the critica
sample grid with

Dgso sinc(P®S 1 PCS) effect of the random dithers (not well-placed dithered
s _ os cs frames). In order to mimic a series of dithered frames, the
=Dg sinc(P~>1 P™%) true image is dithered to several undersampled frames by
+108 o pOs sing(POS 1 PCS) introducing random shifts, rotations and CCD geometric
0] distortions of 0.1%.
=Df*+ 1% PSS! (6)

Comparing Equation (6) to Equation (5), we nd that 3.1 AVisual Comparison

for the same coarser (here critical) sampling case, iterape yse the well-known picture of Lena (with siz&2
tive reconstruction on critical sampling gains more powers] opixel, assuming this resolution meets the Nyquist
(and hence more details) than that on oversamplinggritical) sampling, i.e. the sampling frequency is at
which means for the same number of iterations the ratgast twice the highest spatial frequency, which can be
of convergence for iterations is decelerated by the highesolved by a telescope) to check the performance of
sampling (here oversampling) case. We call this effecihe three co-adding methods. In Figure 1, the true im-
the High Sampling caused Decelerating Convergenceyge (left panel) is binned to ve dithered frames with
(HSDC}Y in the iterative signal extraction process. Aa% % lower resolution (right panel, undersampled)
simple simulation that serves as proof is provided inthan critical. Considering rotation and position shife th
Appendix A of this paper. In fact, oversampling Ieavesditheflged frames have a pixel size of at mb$e=_ 2
more (original) pixelation effect in the nal result than 51o-" 3 (the critical sampling pixel size, i.@56= 2
critical sampling. ThereforeDrizzle works more effec- 256" %' 181 181 original pixels), in which every
tively in pixelation deconvolution thaibrizzle, even if pixel in the frame will not go beyond the region of the
3 Itis easy to prove the HSDC effect in other dimensions for anytrue image' In the dithered frame one can identify the ef-
number (1) of iterations and dithered observations. fect of aliasing in regions with rich details, pixelation at
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Fig. 1 An image of Lena at different resolutions. One of the ditdeneages (ight panel which is usually regarded as the original
input in image co-adding) ha} % lower resolution than the true imadeft pane). The effect of aliasing signi cantly smooths
details on small scales. Details2n 2 true image pixels (corresponding to one original pixel)areraged out to a single value.

Fig.2 Reconstructions from three different methods. The upgdeinage is the true one. The upper right panel is fronizzle,
the lower left fromiDrizzle and the lower right fromDrizzle. BothiDrizzle and Drizzle are applied in ve iterations. The three
reconstructions havea 2 higher resolution than the original and thus have the sas@uton as the true one.

Fig. 3 Residuals between the reconstructions and the true opper(left panél Upper right is forDrizzle lower left foriDrizzle
and lower right for Drizzle.
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the edge of the hat, blurred stripes in the body of the hathree results. If zooming in the lower panels and focusing
and eyes and lips dimming. Such a mosaic-like imagen the sharp transition edges, one can ibdizzle intro-
also exhibits loss of contrast and gray levels. In short, theluces a ringing artifact, which appearsg®osts near
effect of aliasing makes the image blurred and pixelizedtransients.

Figure 2 shows three reconstructions from the identi-  Furthermore, we try to gure out how the visual
cal set of the (ve) dithered frames: the upper left imagedifference affects their power in the frequency domain.
is the true one, the upper right one is reconstructed byere we introduce a reduced power spectrum (RPS, re-
Drizzle the lower left one is from theinc interpolation  duced to one dimension) to analyze the power left in the
of the oversampletiiDrizzle result and the lower right above three residual images. In order to avoid the regions
one is produced by this work, i.®rizzle. Followingthe  in which pixels are not totally covered by all dithered
strategy described in Appendix B, we choose a propeframes, we select an all-covered area which is generally
mask function withry = 230 for the ltering steps in  1=4 times the true case, i.e. a pixel size256 256
iDrizzle®. In the lower panels, botiDrizzle and Driz-  (critical sampling pixel) and has the same center as the
zle are applied in ve iterations. Obviously, therizzle  critical sample. We de ne the RPS as the radial power
result (the upper right) is better than the dithered imagejistribution in the fast Fourier transform (FFT) image of
as shown in the right panel of Figure 1. However, com-the all-covered area. Therefore, in the frequency direc-
pared with the result froniDrizzle, Drizzle is not able  tion the RPS has 128 pixels. In Figure 4, the black line
to restore details at the level of a few pixels. There is arstands for RPS of the true case. Other colors are the RPS
inherent Iter (an averaging effect introduced by pixela- (lower is better) of the three residuals between the true
tion) convolved by th@®rizzlemechanism, which results case and three reconstructions: greenDoizzle, blue
in high frequency information missing. That is the reasorfor iDrizzle and red for Drizzle. Here one can nd that
why the upper right image looks smoothed and blurredmost high frequency power is left in the three residu-
Due to repeated signal extraction from the residual imals. As expectedDrizzle is the worst one. Due to the
age, botfiDrizzle and Drizzle co-add images much bet- oversampling mechanism and low-pass lterinByiz-
ter thanDrizzle does. Although the two lower images zle performs a little better thaDrizzle at the high fre-
have a similar appearance, after a careful eyeball checlguency end. HoweveiDrizzle loses much more power
the right one looks sharper with higher contrast than then low and medium frequencies thabrizzle because of
left. In addition, Drizzle generates more strife® the  the HSDC. This is the reason why Lena reconstructed by
body of the hat, as well as sharper contrast in the haifDrizzle has a high contrast level in Figure 2 and why the
and eyelashes, and thus yields better image quality thasidual fromiDrizzle in Figure 3 is still recognizable.
iDrizzle.

Obvious differences are shown in the residual im-3 5 The Quantitative Comparison
ages (Fig. 3). In Figure 3, the upper left one is the same

as in Figure 2, but the rest are differences between thg weak gravitational lensing astronomy, people usually
reconstructions (generated by the three algorithms) anghculate the lensing effect by measuring the shapes of
the true one. Three residual images are scaled to the sarBgckground galaxies and comparing them with a ran-
scope, then have the same color bar scale. For the portrz@jbmw oriented sample of galaxies. Its nal result sen-
of Lena in the shadowed area, the more recognizable thgtively depends on the accuracy of shape measurement,
gure is, the more signal it loses in image reconstruction.yhich means a high delity image co-adding method can
Evidently, theDrizzle algorithm loses lots of informa- signi cantly improve the SNR of a weak lensing sig-
tion, then shows a signi cant portrait in the residual im- na|, thus enhancing the accuracy and reliability of the re-
age iDrizzle misses a few details in high frequency. As agyt. We extract a spiral galaxy image with a resolution
result, it leaves some features in regions with rich detailgf 512 512 from the Hubble Space TelescogkiST)
e.g. hair, eyelashes and stripes in the hat. However, ”’@oservatiorHST.jclgOBOlO _dre.fits at R:A: =
residual from Drizzle is almost unrecognizable, which 19501238deg andDec = 28:023106deg as the true pic-
turns out to be the best tting to the true case among thqyre to test. Then the true image is dithered to 10 frames
(down sampled to} 1 lower resolution) by apply-

¢ T|h6 sampling of the oversampled imag@is2times the Nyquist  jng random shifts, rotations and CCD geometric distor-
sampling. . . . .

5 Note that there are a total of 256 pixels from the FFT imagéeren tions to mimic the undersampled dithered Obse,rvat!ons'
to its edge. Therefore; = 230 is close to the Nyquist frequency. Note that hereDrizzle has an oversampled grid with

6 Strictly, this is due to the improvement in contrast level. resolution4 4 times the critical case. During the re-
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Fig.4 The RPS for residuals between reconstructions and therrage. The RPS fdDrizzleis in green,Drizzle in blue and
Drizzle in red, while the black line is the RPS of the true image (NO& rissidual).

Fig.5 Another image reconstruction test, usii§ Tdata (with image center &:A: = 195:01238deg andDec = 28:023106deg).
The layout of panels is similar to Fig. 2.

construction, six iterations are executed in bidhniz- In Figure 8, the ux pro le, which is normalized to
zleand Drizzle. We plot the three kinds of reconstruc- the ux of the central pixel of the true image, is plotted
tions in Figure 5 with the same layout as in Figure 2.in the upper panel: the true one is in blagkjzzle in
The color stands for the ux received by the pixels thatgreen,iDrizzle in blue and Drizzle in red. The lower
were part of the observing equipment and is alreadyanel shows the ux prole of theX = Y pixels in
scaled to the same scope. Also we show the residual plthe residuals displayed in Figure 6. Here the size of
in Figure 6 with the same representation and layout a8 3 critically sampled pixels equals that of one orig-
in Figure 3. Similar to the result in Section 3.1, bothinal pixel. Evidently, Drizzle provides the best tting
iDrizzle and Drizzle recover better image quality than result to the true case, especially at the center. Figure 7
Drizzle However, the visual difference betwe#driz-  shows a similar result as that in Figure Drizzle is
zleand Drizzle is not signi cant. So, we investigate the the best one in low and medium frequencies, but also
ux at the pixels that satisfiX = Y in the four panels of leaves a few high frequency noises in the reconstruction.
Figure 5. However, for shear measurement of weak gravitational
lensing, low frequency information plays an important
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Fig. 6 Residual maps for thelSTimage reconstructions. The layout of panels is the sameFRigir3.
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frequency

Fig. 7 The residual RPS for thdSTimage reconstructions. The color representation of lindse same as that in Fig. 4.

role. Following Hirata & Seljak (2003), the ellipticity of weight radiusr,, and show them in Figures 9 and 10.
an object is de ned as The color de nition of line types is the same as that in
_ . Figures 8 and 4. Since onBP:3% of the weight is lo-

(Mxc Myy)=S(Max + Myy) 3 cated in an area with radiug,, but86:5%isin2 ry,

€ = 2Myy HMu + Myy); () here we us® r,, as the variable, which means if one
whereMj; represents the moments (see Hirata & Seljafaces a uniformly illuminated source, the ux from pixels
(2003) for details). The spin-2 tenser= (e, ;e ) is in  2ry,, contributes86:5% of the total to the measure-
the so-called ellipticity tensor. In order to avoid the prob ment.
lem of divergence, a circular Gaussian weighting func-  From low to high frequencyDrizzle has no advan-
tion with a weight radius of,, is convolved into the tage compared wittiDrizzle or Drizzle. This re ects
fourimages in Figure 5 before the measurement. We thehow important pixelation deconvolution is in the image
plot the ellipticity tensoe of the source as a function of co-adding process. In the ellipticity measurement, power

ey
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true
Drizzle
iDrizzle
fiDrizzle

flux

flux residual

X(or Y) / pixel

Fig.8 The ux and residual pro le of the three reconstructionsla X = Y pixels. Lines have the same color de nition as in
Fig. 4. Note that the length of three pixels here correspomdse original pixel.
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-0.02 | | | | ! !
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Fig. 9 Measuring the ellipticity componeet as a function of weight radius, . The error bars are estimated from the noise in the
image. Line types are the same as those in Fig. 8.

at low frequency determines the signal, while noise atDrizzle at high frequency does not badly affect the shear
high frequency mainly affects the scatter of the nal re- measurement because most of the high frequency noise
sult. In Figure 9, Drizzle behaves better thaiDrizzle is averaged out so as to be negligible at large scales.
from small scales to large, and has the lowest system-

atic error among the three reconstructions at large scalei. THE COMPUTATIONAL COMPLEXITY

Note that gravitational lensing is very sensitive to sys-

tematic error. Itturns out that the HSDC effect is the mainthere is no doubt thadrizzle runs much faster than the
reason that preveniBrizzle from obtaining enough low  giher two algorithms because it does not need more iter-
frequency power and reducing the systematic bias in reéstions. The computation of each mimic observation [or
construction. However, there is little difference betweenyqt program in Fruchter & Hook (2002)] is similar to
iDrizzle and Drizzle in thee component of elliptic-  hat of Drizzle Then Drizzle costs2N times the com-

ity in Figure 10. In this case, we nd the disadvantage Ofputational complexity oDrizzle, which depends on the
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Fig. 10 Similar to the pro le in Fig. 9 but for another ellipticity coponente .

309 B7er08 650108 430708 220%08 T16v06 226708 436108 656708 876+08 11

Fig. 11 Residuals fromDrizzle for different numbers of dithers. The upper left panel isdae dither, the upper right panel for
two dithers, four frames are in lower left panel and ve fraae in the lower right.

number of iteration®\ . In Figure 2, the true image has a ample, the critical sampling i2 2 times higher than
size 0f512 512pixel, thus eﬁgh origiqjal_frame (observa- the original grid). So,Drizzle costs at least (n) =
tion) has a pixel siZeof 256= 2 256= 2' 181 181 5 181 181 2900' 470000 00Ccomputationd
Note that the workload obrizzle depends not only on and thus has a computational complexi2000n?) (set
the number of total original pixel§ 181 181 but n =512). After ve iterations, Drizzle has a total com-
also on the resolution of the output grid (for this ex-

8 Here we convert the surface integral into a line integral thia
Green formula. After a series of polygon clipping operagi@md line

7 This size ensures that rotated and shifted dithered images|d integral computations, it costs 2900 oating-point calculations in
of view) cannot severely exceed the region of the true image. each original pixel.
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putational complexityD(20 00n?), due to botrDrizzle  black respectively. Figure 12 shows that the quality of re-
and the mimic observation process in each iteration. Agsonstruction strongly depends on the number of dithers
for iDrizzle, there are three expenditures in amount ofwhenK is small. While the degree of this dependence
calculation: decreases aK increases, one can also nd that com-
pared with Drizzle the advantage aDrizzle on the high

— First, iDrizzle requires an oversampled output grid frequency end is diminished as the number of dithers
whichhas @ 2 (in this example) times higher res- ;,-reases.

olution than the critical sampling. Then it results in a Now we X the number of ditherk to be 5 and

4| tlmes hlgherInumbe;g:)g(()):r;putanons thamiz- change the number of iteratiohs = 0; 1; 3; 5 for both
Zse |.e.da ct:)mp ex;l?og ¢ )- led i FET Drizzle andiDrizzle. Here we only show theDrizzle
B econh_, the vgo_r oa oFlé)_}/ersampT %mag? reconstructed picture of Lena in Figure 13; the upper left
thz)otl(l)g%anz :nverigm , ;rleo, Oa(;OE(})O (_ﬂ) H panel is for zero iterations, namely tBeizzleresult, the
| ) 0?2( I) ity ©(80n?l O.e.the upper right panel is for one iteration, three iterations are
?rt]gdcorﬁputatllong comp eX||ty- (80n O%Zn)' executed in the lower left panel and ve iterations are
- ! ér4,2t e nal sinc mterp(l) aﬂ;” contributes an ., the jower right. The ef ciency of signal extraction is
(64n%) computation complexi very high at the beginning several iterations, which re-
Compared withDrizzle, iDrizzle is mainly delayed sults in the portrait of Lena vanishing quickly. Suf cient
by the oversampling strategy. The CPU time consume@&Vidence is shown in Figure 14. Reconstructions for zero,
by the Itering process is about a few percent of the total®€: three and ve iterations are in purple, red, blue and
when the size of an oversampled image is aH®24 black respectively (solid lines). As before, we also illus-

1024 Combining the results above, we nd tharizzle trate the results fronDrizzle with corresponding itera-
is not only decelerated in the rate of convergence (thgons and colors, but in dotted lines. Note that for the case

HSDC effect) but also delayed in computational speed)f zero iterations With'D_rizzIe, we _perform the Ite_ring
for the same reason the oversampling strategy. process after the rsDrizzle step is complete, with no
more signal extraction steps. From Figure 14, due to the

5 DEPENDENCY ON THE NUMBER OF HSDC effectwe nd thatDrizzle converges more effec-

DITHERED FRAMES AND ITERATIONS tively thaniDrizzle in low and medium frequencies. The
low frequency difference between solid and dotted (same
In this section, we discuss ho®rizzle or iDrizzle de-  color) lines becomes large as the number of iterathéns
pends on the number of dithered frankesnd iterations  increases.
N. We run Drizzle to reconstruct the picture of Lena
for one, two, four and ve frames. Each reconstruction is
performedin ve iterationsN =5 is a tradeoff between 6 DISCUSSION AND CONCLUSIONS

signal extraction and artifact reduction, such as the ring- . . . .
. . . R Theoversampling - low pass Itering - interpolatingro-
ing artifact near sharp transitions, which is introduced

. . ~."cess is a standard industry practice for improving the
by low pass ltering but is enhanced by successive it- y P P 9

erations. The residual (the difference between béz- SNR in analog to digital (A/D) signal transition and ex-

. . : . traction. Naturally, this process is adopted by the previ-
zlereconstructions and the true image) plot is shown in R .

. . : ous work related téDrizzle. Of course, there is no prob-
Figure 11; the upper left panel is for one dither, the up-

. . . _ lem if one initially wants an oversampled reconstruction
per right panel is for two dithers, four frames are in the

. . or the process does not involve iterative signal extrac-
lower left panel and ve frames are in the lower right.

. . o tion from the residuals. However, tlheersampling - low
Obviously, the residuals are signi cantly reduced when . . . . . .

. pass ltering - interpolatingprocess and iterative signal
we increase the number of co-added frames. Moreover, a

. extraction coexist inDrizzle, which inevitably encoun-
strong argument can also be found in the RPS plot of th?ers the HSDC effect. As a result. compared widhiz-
residuals in Figure 12. In order to compabrizzle (in ) ' b

- . _ zleés direct sampling to the critical cas®rizzle not only
solid lines) with previous work, we also plot the results of .
o ) : . . costs more computational resources but also converges
iDrizzle (in dotted lines, with the same Iter as Figure 2)

: >~ "7 ineffectively which leads to an inadequate reconstruc-
inthe RPS gure. Note that the color representation is to- y d

. : tion for low frequency signals and, eventually, affects the
tally different from the above gures: reconstructions for q ysig y

_ dsystematic errors in weak lensing shear measurement as
one, two, four and ve frames are in purple, red, blue an . . . . S
described in Section 3.2. Brie y, in this work we reach

9 We use 16 points at each interpolation. some goals:
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Fig. 12 The residual RPS dDrizzle and Drizzle for different numbers of dithers. The reconstructions foe awo, four and ve
frames are in purple, red, blue and black respectivBlyzzle is shown in solid lines, whiléDrizzle is in dotted lines.
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Fig. 13 Residuals fromDrizzle for different numbers of iterations. The upper left pandbiszero iterations, the upper right panel
is for one iteration, three iterations are executed in theldeft panel and ve iterations are in the lower right.

— We discover the HSDC effect in the iterative signalAs mentioned beforeDrizzle can generate accurate im-
extraction process and mathematically prove its exages of objects with unresolved or nearly-unresolved
istence. componentsDrizzle inherits this function as well if one

— For the same number of iteration§rizzle con- co-adds the dithers in an oversampled grid at the very
verges more effectively thaiDrizzle, especially at beginning. However, any features less than the scale of
low and medium frequencies, thus obtaining a bettethe maximum angular resolution of the optics are unbe-
quality reconstruction. lievable, which are smoothed by the Iter iBrizzle, but

— Instead of oversampling the frames to a high resoretained in Drizzle. Nevertheless, it does not affect the
lution grid (iDrizzle), Drizzle directly samples the photometry in bothiDrizzle and Drizzle. In that sense,
dithers to the critical resolution and omits the lter- we do notinclude a comparison of unresolved features in
ing and interpolation procedures, which nally savesthe paper.
more computational resources.
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Fig. 14 The residual RPS abrizzle (dotted line$ and Drizzle (solid lineg for different numbers of iterations. Reconstructions
for zero, one, three and ve iterations are in purple, redetdnd black respectively.

2908 790er08 116009 1530100 100009  227e09 2640100 301e00  336ex09  375er09 412

Fig. 15 Reconstructions of one dithered framger righ) in ve iterations for oversamplingl¢wer lef) and critical sampling
(lower right) cases. The upper left is the true image.
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Fig. 16 Residuals between the reconstructions (in Fig. 15) andrtieeitnage for oversamplindeft) and critical samplingr{ght)
cases.
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Fig. 17 The residual RPS pro le for different iterations in overgalimg and critical sampling cases. One iteration oversargps
in green and critical sampling is in red. The result of fivarétions for oversampling is in blue and critical samplisigni black.
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Fig. 18 The residual RPS pro le foiDrizzle with different ltering parametersr; = 130 is in red,r = 150 in purple and
r{ = 200 in blue. The black line is foDrizzle.

It is worth mentioning that compared witDrizzle, In the future, many new telescopes will start
Drizzle displays its lack of reconstruction accuracy atastronomical observation, e.g. NASAs Wide Field
the high frequency end. In our upcoming work, on onelnfrared Survey Telescope (WFIRST), the European
hand we improveDrizzle to enable it to restore a part Space Agency (ESA)'s Euclid, the National Science
of details at the high frequency, and on the other handr-oundation (NSF) funded Large Synoptic Survey
we develop a totally new image co-adding method calledlelescope (LSST) and the Chinese Space Station opti-
Tessellated Simple Surface Fitting (TSSF), which can efeal Telescope (CSST). Huge amounts of imaging data
fectively balance pixelation deconvolution and noise re-will be generated by those telescopes. How to effectively
duction. and ef ciently process these data will be an urgent re-
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quirement. We believe that th®rizzle algorithm has A similar result can be found in the frequency do-
some advantages and can make some contributions main, shown in Figure 17. The de nition of Figure 17
astronomical image processing as long as undersampldgs been made in Section 3.1. Signi cantly, critical sam-
dithers exist. pling is much more advantageous at the low frequency
end, however, there is a little worse performance at the
AcknowledgementsWe thank the anonymous referee pigh frequency end than the oversampling mode. This
for very helpful comments that greatly improved the pre-gxample also conveys such a message that even if some-
sentation of this paper. This work is supported by theyody has only one dithered image, he (or she) can get
National Basic Research Program of China (973 promgre details through the iterative reconstruction process

gram, Nos. 2015CB857000 and 2013CB834900), theynly if the frame's position information can be taken into
Foundation for Distinguished Young Scholars of Jiangstyccount.
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Structure' of the CAS (No. XDB09010000) and the IDRIZZLE
National Natural Science Foundation of China (Nos.
11333008, 11233005, 11273061 and 11673065). A gentle taper in Fourier space can suppress the ring-

ing effect. However, it also suppresses the low frequency
which is necessary in image reconstruction. Following
Fruchter (2011), a similar lIter, which has a sharp cut-
off near the Nyquist frequency, is adopted in this paper
to balance the ringing suppression and the low passband
Here we use one of the original images in Figure 1. Théequirement. Here a circular mask (in Fourier space) that
result is shown in Figure 15. The upper-left panel is thefalls from 90% to 10% transmission over a width of 0.1
true image. After a dither observation one gets a +  times Nyquist frequency is used. Figure 18 is an example

lower resolution image as the upper-right one (for confor how to choose a proper lIter for thelSTimage re-
venience of comparison, here zoomed2in 2). The construction case in Section 3.2. Here we keep the trans-
lower-left panel is a reconstruction on2a 2 higher ~ mission intact, but tune the characteristic radius of the
resolution grid (oversampling) than the critical samplingcircular Iter r¢ (a distance from the center of the FFT
and nally interpolated back to the,grifical sampling after image to the in exion of the transmission). Finally, a rel-
a 5-iteration process, nameR/°S 15=1 D].OS_ The atively good case with; = 150 is selected. In order to
lower-righs panel shows the critical sampling reconstrucensure its validity, we also check it by visual and quanti-
tion, i.e. 15=1 chs_ Obviously, the original dithered tative comparison with other cases, &g= 130 or 200
frame (upper-right) has the worst quality among the four

panels. Aliasing and blurring dominate the edge of highReferences
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Appendix A: A SIMPLE EXAMPLE FOR
TESTING THE HSDC EFFECT



