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Abstract

The radio telescope possesses high sensitivity and strong signal collection capabilities. While receiving celestial
radiation signals, it also captures Radio Frequency Interferences (RFIs) introduced by human activities. RFI, as
signals originating from sources other than the astronomical targets, significantly impacts the quality of
astronomical data. This paper presents an RFI fast mitigation algorithm based on block Least Mean Square (LMS)
algorithm. It enhances the traditional adaptive LMS filter by grouping L adjacent time-sampled points into one
block and applying the same filter coefficients for filtering within each block. This transformation reduces
multiplication calculations and enhances algorithm efficiency by leveraging the time-domain convolution theorem.
The algorithm is tested using baseband data from the Parkes 64 m radio telescope’s pulsar observations and
simulated data. The results confirm the algorithm’s effectiveness, as the pulsar profile after RFI mitigation closely
matches the original pulsar profile.
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1. Introduction

With increasing radio activity and heightened radio telescope
sensitivity, interference from other radio signal sources
becomes more likely. Previous researchers have proposed
many effective methods to mitigate Radio Frequency Inter-
ferences (RFIs). Zhang et al. (2013) proposed establishing a
radio-quiet zone for FAST to mitigate the impact of human-
made RFI on radio telescopes. Offringa et al. (2010) and Yang
et al. (2020) respectively used the SumThreshold method and
deep learning algorithms to label RFI in time-frequency
domain images. Wang et al. (2021) established a satellite RFI
database for the radio telescope’s pointing direction using a
reference antenna installed on FAST. With improved telescope
sensitivity and the growing number of artificial satellites,
passive methods like ground-based radio-quiet zones and
marking or avoiding RFI are no longer adequate to meet
observation demands. Therefore, more scholars have begun
exploring more proactive interference mitigation methods,
among which adaptive filters are a mature and reliable
approach (Morello et al. 2021).

Adaptive RFI suppressors used in the field of astronomy
originate from adaptive noise cancellers. In 1965, Kelly at Bell
Laboratories was the first to suggest using adaptive filters for
phone echo cancellation. Later in 1967, this work was
organized and published by Sondhi (1967). Over the years,
scholars have attempted to introduce adaptive filtering

algorithms into RFI mitigation in radio telescopes. Kesteven
et al. (2005) attempted to use adaptive filters to mitigate RFI in
pulsar data. Szadkowski (2020) tested the mitigation effect on
communication signals using forward prediction error (FPE)
filters and Least Mean Square (LMS) filters on a cosmic-ray
detector. Finger et al. (2018) attempted real-time RFI
mitigation for the FAST using adaptive filters.
In practical applications, the convergence time of adaptive

filters is influenced by factors such as circuit frequency,
algorithm complexity, and filter order. In previous work,
Szadkowski (2021) achieved a convergence time of approxi-
mately 500 μs, while Finger et al. (2018) achieved a
convergence time (at 1/e) of approximately 27 μs. Reducing
the number of multiplication calculations can effectively reduce
hardware resource consumption and save computational time.
To address issues such as high resource consumption,

computational complexity, and asynchronous phases of two
interfering signals in the adaptive RFI mitigation process, this
paper presents an RFI fast mitigation algorithm based on block
adaptive LMS filters.

2. Design of the RFI Fast Mitigation Algorithm

Let the interference signal emitted by the interference source
be represented as v¢. The unknown channels between the
interference source and the radio telescope, as well as the
reference antenna, are represented as wast and wref. If the RFI
measured by the reference antenna is v2, the interference signal
measured by the radio telescope is vw

w 2
ast

ref
. Using the unknown
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channel wunknown to represent w

w
ast

ref
, the noise cancellation

problem is transformed into a system identification problem.
This transformation indicates that the high correlation between
the interference signals in the reference antenna and the radio
telescope arises from their common source. The minor
distinctions arise because the signals have traversed different
channels, and distinct receivers react differently to the same
signal. In Figure 1, s represents the astronomical signal, e
represents the error signal, and v1 represents the interference
signal measured by the radio telescope. In this problem, it is
assumed that the interference signal is uncorrelated with the
astronomical signal, and wo represents the Wiener solution of
the system, given as:

w
w v v

v v
1o

H

H
unknown 2 2

2 2

· ·
·

( )=

Here the superscript H represents Hermitian transpose,
Equation (1) and all symbols “·” used in the remainder of
this paper represent the multiplication operator. When the
adaptive LMS filter operates optimally, the output
y v w v w vo

H H
2 2 unknown 1· ·= = = resulting in e= s, which

means that in ideal conditions, RFI can be completely
eliminated to obtain a clean astronomical signal.
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Let us consider an adaptive LMS filter with an order denoted
as M, and the current sample index marked as n. Equation (2)
presents the relationship between the output of the LMS filter
and its input, where u represents the filter’s input data,
specifically the interference signal v2 received by the reference
antenna in this context. The superscript T signifies matrix
transpose. Equation (3) relates the expected signal d to
astronomical signals s and the interference signals v1 measured
by the radio telescope. Equation (4) illustrates the relationship
between the error signal e, the expected signal d, and the filter’s
output y. Equation (5) outlines the coefficient update formula
for the LMS filter, with μ representing the step size, typically a
small positive value. From Equations (2) to (5), we can
compute that processing L data points using an adaptive LMS
filter of order M requires 2LM multiplications. To reduce
algorithmic complexity, this paper introduces the block
adaptive LMS algorithm (Walzman & Schwartz 1973) into
the RFI mitigation problem.
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Figure 1. RFI enters the reference antenna and radio telescope through different paths (left), using the RFI received by the reference antenna as a reference. The
difference between the RFI measured by the reference antenna and that measured by the radio telescope, denoted as w

w
ast

ref
, is abstracted as wunknown. This transformation

converts the noise cancellation problem into a system identification problem (right).
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A segment of data with a length of L is extracted to form a
block. Within each block, L input vectors share the same filter
coefficients, now represented as L× 1 vectors. k denotes the
block number, and the physical meanings of d, s, v1, e and y
remain the same, though they are now in the form of L× 1
vectors. Equation (6) describes the relationship between the
filter’s output and its input. Equations (7) and (8) express the
same meanings as Equations (3) and (4), albeit now in the form
of L× 1 vectors. Equation (9) provides the filter’s coefficient
update Equation.

Equation (6) illustrates the connection between the input and
output of a block filter. Each row in the input matrix represents
the input vector derived after sampling data at the current time
step, and all rows in the input matrix use the same filter
coefficient matrix. When the input matrix has only one row,
Equation (6) simplifies to the scenario discussed in
Equation (2). While Equation (9) involves the linear correlation
between the filter input signal and the error signal. According
to the time-domain convolution theorem, the FFT (Fast Fourier
Transform) can be used to replace matrix multiplication,
effectively reducing the number of multiplication operations.
This transforms the block-based adaptive LMS filter into a fast
block-based adaptive LMS filter.

W k w k w k 0FFT 10T
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In Equations (10) and (11), W and U are (L+M)× 1
vectors, 0 is a 1× L zero vector, and symbols like k, w, L, T
and others represent the same meanings as before. FFT[...]
represents fast Fourier transformation applied to the data within
the brackets.

y U Wk k k LIFFT last elements 12( ) ( ( ) ( )) ( )=

In Equation (12), e denotes element-wise vector multi-
plication, also known as the hadamard product. IFFT[...]
represents inverse fast Fourier transformation applied to the

data within the brackets. Utilizing the properties of the
overlap-save method and circular convolution, the result of
linear convolution is the last L values of the inverse fast
Fourier transformation, hence y is an L× 1 vector.
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In Equation (13), E is an (L+M)× 1 vector, but the
difference is that a 1×M zero vector 0 is added before e. conj()
denotes the conjugate of all elements within the brackets. Let f
be the cross-correlation matrix between the filter input signal
and the error signal. By using properties of inverse discrete
Fourier transform and cross-correlation, the result of the cross-
correlation operation is the first M values of the inverse fast
Fourier transform. Therefore, f is an M× 1 vector. In
Equation (10), W is an (L+M)× 1 vector, so in
Equation (15), an L× 1 zero vector 0 is added. The computation
from Equation (10) to (15) yields the multiplicative complexity
required for M-order filter output data at L points, denoted as

L M L M L M5 log 8( ) · ( ) ( )+ + + + (Shynk 1992). In this
paper, when both the block length and filter order are set
to 512, the fast block-based adaptive LMS filter requires
only about 1/9 of the multiplications compared to the
adaptive LMS filter. However, the fast block-based adaptive
LMS filter incurs some tracking performance loss since it

Figure 2. Adaptive RFI suppressor.

Table 1
Basic Information of Experimental Data

Parameter Value

Source J0437-4715
Center Freq 1382 MHz
Bandwidths 400 MHz
Nbit 8
Npol 2
Dm 2.64467 cm−3 pc
Tsamp 1/(2 ∗ 400) μs
Instrument CASPSR

3

Research in Astronomy and Astrophysics, 24:015021 (8pp), 2024 January Wu et al.



updates the filter coefficients only once for every L data
points, in contrast to the adaptive LMS filter. In practical
applications, it is crucial to carefully balance filter tracking
performance and algorithm complexity while selecting an
appropriate block length. According to the algorithm
complexity formula, however, when hardware resources are
limited and the filter order is not high, the reduction in
algorithm complexity with the use of block-based adaptive
LMS filter is quite limited. For instance, if the filter order
is only 128 and data of the same length, 512, is being

processed, the algorithm complexity is only reduced by
approximately 3.75 times.
Previously, the primary method for mitigating RFI was

“channel blanking,” which removed the entire channel data
affected by RFI. This approach traded bandwidth for signal-to-
noise ratio, rendering it ineffective when facing broadband
interference. Furthermore, adaptive algorithms, while similar to
AI algorithms, demand lower computational resources and can
handle a greater volume of astronomical data with limited
hardware resources.

Figure 3. Interference signal generation process (above), spectrum of the interference signal received by the radio telescope (bottom left), and spectrum of the
interference signal received by the reference antenna (bottom right).
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3. Experimental Environment

The experiment utilized baseband data obtained from the
64 m Parkes radio telescope in Australia during the observation
of the pulsar J0437-4715 on 2011 October 29. The basic
information of the observed data is presented in Table 1, with
an observation duration of approximately 8 s and a data size of
12.8 GB.

In the simulation experiment, 222× 1000 data points from
polarization 1 of J0437-4715 were used, corresponding to an
observation duration of approximately 5.24288 s. The astro-
nomical signal pol1 in Figure 2 corresponds to s in Figure 1,
and pol1¢ represents the output after adaptive RFI mitigation.
The radio frequency interference v1 and v2 are generated
through a software simulation process as shown in Figure 3,
while the meanings of the other symbols remain the same as
previously mentioned.

In Figure 3, the power of white noise is 100 mW. The
rounded rectangular boxes represent bandpass filters, with the
first data inside each box indicating the center frequency of the
bandpass filter, and the second data indicating the bandwidth of
the bandpass filter. There are three bandpass filters with center
frequencies of 1230, 1310, and 1450MHz, designed to
generate Gaussian noise with different center frequencies and
widths. The gains of these three filters are all positive. Figure 3
employs a bandpass filter with a center frequency of 1382MHz
to simulate the frequency response of a radio telescope to
interference signals, resulting in interference signal v1 received
by the radio telescope. v1 is then delayed by N points and
passed through a bandpass filter with a center frequency of
1350MHz to simulate the interference signal v2 measured by
the reference antenna. In Figure 3, the N-point delay is used to
simulate the phase difference between the interference signals

Figure 4. Parkes single-polarization pulsar profile.

Figure 5. Pulsar profile containing RFI.

Figure 6. Pulsar profile after RFI mitigation with phase correction.

Figure 7. Pulsar profile after RFI mitigation without phase correction.
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measured by the radio telescope and the reference antenna. The
bandpass filter is used to simulate the frequency response
differences between the reference antenna and the radio
telescope. Since the aperture of the reference antenna is
significantly smaller than that of the radio telescope, the gain of
the bandpass filter is negative here.

3.1. Phase Preprocessing

In the context of adaptive RFI mitigation, synchronization
between the interference signals measured by the reference
antenna and the radio telescope is crucial. Without synchro-
nization, the RFI mitigation problem could become an RFI
prediction problem, and prediction problems often yield less
satisfactory results compared to mitigation problems.

In practical observations, the distances to the radio telescope
and the reference antenna from the interference source may
differ, resulting in unsynchronized interference signals. One
possible approach is to select the first P sampled points from
both the radio telescope and reference antenna for cross-
correlation. The x-coordinate of the maximum value in the
correlation function represents the number of sampling points
for phase offset between signals. Using this fixed phase offset,
the leading signals in v2 and pol1+ v1 can be delayed for
alignment.

⎡
⎢⎢

⎤
⎥⎥

P
S

c
f_ 16smax delay

T&R · ( )=

Equation (16) provides the maximum number of points for
phase offset when the positions of the radio telescope and
reference antenna are fixed. In this case, the number of points P
used for cross-correlation must exceed the maximum phase
offset points. Here, Pmax_delay represents the maximum number

of points for phase offset between the two interference signals,
ST&R is the distance between the radio telescope and reference
antenna, c is the propagation speed of electromagnetic waves in
the medium, fs is the sampling rate, and ⌈⌉ denotes rounding up
to the nearest integer.

3.2. Experimental Steps

1. Divide the CASPSR baseband data into 10 blocks and
perform interference mitigation separately for each block.
Each block contains 222× 100 data points.

2. Simulate the generation of RFI signals received by the
radio telescope and the reference antenna: v1 and v2,
where each generated interference signal has the same
length as the input baseband signal, and the specific
generation process is shown in Figure 3.

3. Combine interference signal v1 with the observation
signal pol1 to obtain the adaptive filter reference input
pol1+ v1, and use v2 as the filter input signal.

4. Select the first P sampled points for preprocessing,
calculate the phase offset point number N, and delay the
leading signal by N points.

5. Apply the fast block-based adaptive LMS filter with an
order and block length of 512 for adaptive RFI filtering.
After each iteration, save the filter output data and
coefficient vector. These saved coefficients become the
initial values for the next iteration, with the initial
coefficients being a zero vector for the first iteration.

6. Read the 10 filter output data files one by one, perform
operations such as dispersion removal, folding, and
integration to obtain the final pulsar profile.

4. Results Analysis

The pulsar data for J0437-4715 contain two polarization
signals. In this experiment, only one polarization data (pol1)
was used. After undergoing dispersion removal, folding,
integration, and other operations, the original pulsar profile
was obtained (Zhang et al. 2023), as shown in Figure 4. After
adding interference to the original astronomical signal, the
resulting signal pol1+ v1 undergoes dispersion, folding,
integration, and other operations to generate a pulsar profile
image containing RFI, as shown in Figure 5.
To illustrate the impact of phase correction on RFI

mitigation, the first block of data (222× 100 samples) was
used for RFI mitigation separately with and without phase
correction. After applying dispersion, folding, and integration
operations to the two sets of data, we obtained Figures 6 and 7.
Plot the frequency spectrum of the original astronomical

signal pol1, the astronomical signal with RFI pol1+ v1, and the
output signal pol1¢ after RFI fast mitigation. Comparing the
frequency spectrum in Figures 8, 9, and 10, it is observed that

Figure 8. Frequency spectrum of the original pulsar signal.
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the spectrum after RFI mitigation closely matches the spectrum
of the original astronomical signal.

Combine the obtained data from all 10 blocks of pol1¢,
perform dispersion, folding, integration, and other operations to
obtain the pulsar profile after RFI mitigation, as shown in
Figure 11. A comparison between Figures 11 and 5 reveals the
effective mitigation of interference signals by the RFI fast
mitigation algorithm. When comparing the pulsar profile after
RFI fast mitigation with the original pulsar profile, as depicted
in Figure 12, we observe nearly identical phase and amplitude
characteristics.

5. Conclusions

This paper addresses the issue of resource consumption and
high computational complexity in the adaptive RFI mitigation
process by proposing a block-based adaptive RFI fast
mitigation algorithm. Simulated experiments were conducted
using baseband pulsar data observed with the Australian Parkes
64 m radio telescope, simulated RFI data, and their combina-
tion. When comparing the spectra and profiles before and after
interference mitigation, it is clear that the block-based adaptive
RFI fast mitigation algorithm effectively reduces wideband
interference in the baseband data, even when the two
interference signals differ. Through theoretical calculations,

Figure 9. Frequency spectrum of the pulsar signal with RFI.

Figure 10. Frequency spectrum of the pulsar signal after interference
mitigation.

Figure 11. Pulsar profile after RFI fast mitigation.

Figure 12. Comparison between the pulsar profile after RFI fast mitigation and
the original pulsar profile.
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compared to the traditional LMS algorithm, the proposed
block-based adaptive RFI fast mitigation algorithm reduces the
number of multiplications by approximately 9 times when the
block length and filter order are set to 512, significantly
improving computational efficiency. This paper also introduces
a new preprocessing method for the issue of unsynchronized
phase between two interference signals and provides a lower
bound for the preprocessing data length. Comparing the folded
and integrated pulse profiles, the interference mitigation results
are improved after phase correction.
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