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Abstract

As the second of Earth’s Trojan asteroids, 2020 XL5 is worthy of rendezvous and even sample return missions
in many aspects. In this paper, a rendezvous mission to Earth’s second Trojan asteroid 2020 XL5 is proposed.
However, due to its high inclination and large eccentricity, direct impulsive transfer requires large amounts of
fuel consumption. To address this challenge, we explore the benefits of electric propulsion and multi-gravity
assist techniques for interplanetary missions. These two techniques are integrated in this mission design. The
design of a low-thrust gravity-assist (LTGA) trajectory in multi-body dynamics is thoroughly investigated,
which is a complex process. A comprehensive framework including three steps is presented here for
optimization of LTGA trajectories in multi-body dynamics. The rendezvous mission to 2020 XL5 is designed
with this three-step approach. The most effective transfer sequence among the outcomes involves Earth–
Venus–Earth–Venus-2020 XL5. Numerical results indicate that the combination of electric propulsion and
multi-gravity assists can greatly reduce the fuel consumption, with fuel consumption of 9.03%, making it a
highly favorable choice for this rendezvous mission.
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1. Introduction

It was proved in 1772 that there are two groups of small
bodies which can stably share the orbit of a planet if they
remain near the triangular point 60◦ ahead (L4 point) or behind
(L5 point) it in its orbit (Connors et al. 2011). The first
discovery of these Trojan asteroids dates back to 1906, when
Max Wolf found 588 Achilles (Nicholson 1961), orbiting
around the triangular point 60◦ ahead of Jupiter along its orbit.
Since then, more than 10,000 Trojans have been identified for
Venus (De la Fuente Marcos & de la Fuente Marcos 2014),
Mars (de La Fuente Marcos & de La Fuente Marcos 2013),
Jupiter (Dvorak & Schwarz 2005), Uranus (de la Fuente
Marcos & de la Fuente Marcos 2015) and Neptune (Sheppard
& Trujillo 2006), with the majority being Jupiter Trojans.
However, no Earth Trojan (ET) was identified until 2011.
Asteroid 2010 TK7 was observed in the Wide-field Infrared
Survey Explorer (WISE) mission, and was found to be the first
ET asteroid (Connors et al. 2011). As the current limits allow a
population of perhaps 103 ETs with diameters greater than
100 m (H≈ 23) (Wiegert et al. 2000), there are more ETs to be
discovered besides 2010 TK7. However, due to the unfavorable
viewing geometry of an object orbiting Earth–Sun’s L4 or L5
points as seen from Earth (Malhotra 2019), all the dedicated
surveys aimed at detecting new ETs found nothing (Wiegert
et al. 1997; Whiteley & Tholen 1998; Markwardt et al. 2020;
Lifset et al. 2021).

Asteroid 2020 XL5 was discovered by the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS) survey
on 2020 December 12,1 and was considered as a potential
candidate of an ET asteroid (de la Fuente Marcos & de la
Fuente Marcos 2021). Subsequent investigations, conducted
through follow-up studies, solidified 2020 XL5ʼs identity as the
second ET asteroid (Hui et al. 2021; Santana-Ros et al. 2022).
Both 2010 TK7 and 2020 XL5 are classified as transient ETs,
with their orbital stability around L4 shown to be on the scale of
thousands of years, far from the stability timescale of a
theoretical primordial ET population (Santana-Ros et al. 2022).
The inferred diameter for 2020 XL5 is 1.18 0.08

0.08
-
+ km with an

assumed albedo of 0.06± 0.03 (Santana-Ros et al. 2022). This
diameter is larger than that of the first ET asteroid 2010 TK7,
which was estimated to have a diameter of ∼0.3 km (Connors
et al. 2011). Because of some non-gravitational effects like the
Yarkovsky effect, the orbital motion is related to its physical
and geological properties. The determination of such properties
becomes crucial to study the origin and orbital evolution of the
asteroid. Moreover, because ETs share the orbit of Earth, their
chemical composition can greatly reflect the space environment
of Earth. Therefore, ETs are significant candidates for
rendezvous and even sample return missions.
However, due to the relatively high inclination and

considerable eccentricity of both 2020 XL5 and 2010 TK7,
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reaching the targets directly from low Earth orbit (LEO) using
chemical propulsion (CP) proves to be a costly mission. The
minimum total delta-v for the rendezvous mission with ballistic
trajectory varies between 7.9 and 10.3 km s−1 for 2020 XL5,
depending on the launch conditions. Meanwhile, for 2010 TK7,
this range is between 6 and 8.5 km s−1 (Santana-Ros et al.
2022). Thus, a rendezvous mission to 2020 XL5 is much
costlier than a mission to 2010 TK7. Considering the delta-v
budget, it is imperative to further optimize the trajectory for the
rendezvous mission. For a mission to 2010 TK7, there have
been relevant studies about the optimization of transfer
trajectory (Lei et al. 2017; Gao et al. 2019). The gravity-assist
technique can be adopted to reduce the launch energy and
rendezvous delta-v since it can effectively change the
inclination of a spacecraft’s trajectory. In two-body dynamics,
numerical results show that the fuel consumption of an
impulsive trajectory with a Venus-Earth-Venus swingby
sequence is 41% with flight time of 1694 days (Lei et al.
2017). Moreover, electric propulsion (EP) is also an efficient
technique to save the fuel consumption (Chen et al. 2018). EP
was applied in the last leg of an impulsive transfer trajectory,
i.e., from Venus to 2010 TK7, transforming the impulsive leg
into a low-thrust leg (Lei et al. 2017). The application of EP in
the last leg reduced the fuel consumption to 4.59% with flight
time of 1684 days, where the initial mass was 800 kg and the
maximal magnitude of thrust was 120 mN. This work aims for
the design of a rendezvous mission to the new ET asteroid
2020 XL5. In this work, since the orbit of 2020 XL5 has a high
inclination together with a large eccentricity, EP and multi-
gravity assist techniques are combined for the optimization of
transfer trajectory.

There have been numerous studies about the optimization of
a low-thrust transfer trajectory (Morante et al. 2021).
Approaches to solve the fuel-optimal problem can be generally
categorized into direct methods, indirect methods and hybrid
methods. In the direct method, the fuel-optimal problem is
converted into a parameter optimization problem and then
nonlinear programming (NLP) can be applied to obtain the
solution (Hargraves & Paris 1987). Direct methods do not
require an accurate initial guess because of a large domain of
convergence. Besides, the optimization variables have physi-
cally intuitive meanings. However, direct methods require a
large amount of computation and may not converge to the
optimal solution. As for an indirect method, the optimization
problem is usually turned into a two-point boundary-value
problem (TPBVP) or multi-point boundary-value problem
(MPBVP) (Haberkorn et al. 2004; Jiang et al. 2012; Chen
et al. 2018). Indirect methods provide assurances that the first-
order necessary conditions are satisfied (Morante et al. 2021).
Nevertheless, indirect methods normally require an appropriate
initial guess and are usually difficult to solve due to the small
convergence radius. Hybrid methods are combinations, which
have the advantages of both methods, where the time histories

of costate variables are directly parameterized and the optimal
solution is obtained through the NLP method (Gao &
Kluever 2004).
A multitude of research efforts has been dedicated to

optimizing low-thrust gravity-assist (LTGA) trajectories (Casa-
lino et al. 1999; McConaghy et al. 2003; Petropoulos &
Longuski 2004; Vasile & Campagnola 2011; Jiang et al. 2012;
Yang et al. 2015). A broad search algorithm with a simplified
shape-based trajectory model was applied to generate initial
estimates for Gravity-Assist, Low-Thrust, Local Optimization
Program (GALLOP) (Petropoulos et al. 2000; Petropoulos &
Longuski 2004). This algorithm was implemented in the
software Satellite Tour Design Program for Low-Thrust
Gravity-Assist (STOUR-LTGA), which automatically searches
for low-thrust, gravity-assist trajectories. Subsequently,
STOUR was utilized to conduct a broad search, and the
resulting LTGA trajectory candidates were optimized using a
direct method (McConaghy et al. 2003). In some works,
patched conic trajectories via CP have been taken as initial
guesses for the optimization of LTGA trajectories, the under-
lying idea of which was that optimal impulsive transfers can be
regarded as a limiting case of the fuel-optimal low-thrust
transfers with no limit on the thrust level (Okutsu et al. 2006;
Vasile & Campagnola 2011). An automated approach was
demonstrated to find the number and sequence of swingbys
(Englander & Conway 2017). In this approach, two nested
optimization algorithms were combined. The outer loop used a
genetic algorithm to select the flyby number and sequence
while the inner loop solved the corresponding sequence of
interplanetary legs using a direct method. Different from the
shape-based method and direct method, a practical homotopic
method which can be applied to solve LTGA trajectories was
proposed (Jiang et al. 2012). However, this method primarily
addressed single gravity-assist scenarios, and achieving reliable
convergence for multi-gravity assist cases remained challen-
ging due to the large number of unknowns. To deal with this
issue, low-thrust trajectories with triple swingbys were divided
into three trajectories and solved by a three-step method (Yang
et al. 2015). An indirect gradient-based method was also
developed to automatically find swingbys under the multi-body
dynamics (Olympio 2008).
This work is carried out in three steps. First of all, the

determination of number and sequence of swingbys is based on
the patched conic trajectories via CP. It is reasonable to apply
the results of number and sequence for optimization of LTGA
trajectories (Okutsu et al. 2006; Vasile & Campagnola 2011).
This method greatly reduces computation time. Second, the
initial guesses are globally searched in the design space in two-
body dynamics. The first-order necessary conditions for
gravity-assist constraints are applied, as derived in the practical
homotopic method (Jiang et al. 2012). In addition, the
necessary conditions for optimizing initial and final times are
derived in this work. An improved cooperative evolutionary
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algorithm (ICEA) is used (Lei et al. 2013), where the objective
function combines the propellant mass and constraints with
penalty factors. Because of the convergence issue for multi-
gravity assists in the indirect method, the purpose of this step is
not to achieve precise solutions for the MPBVP, but to obtain
feasible parameters essential for the subsequent step. Finally,
the transfer trajectories are further optimized to achieve higher
accuracy. For transfer from Earth to 2020 XL5, gravitations of
Venus, Earth, Mars and Jupiter are considered in order to
ensure the accuracy of the transfer trajectory. However, in
multi-body dynamics, Euler–Lagrange equations cause sensi-
tivity issues in the indirect method. The costate variables
change rapidly over many orders of magnitude during the
swingby (Olympio 2008). To address this issue during
swingby, instead of solving the whole transfer trajectory
directly, a patched-arc model is used. The whole trajectory is
segmented into interplanetary trajectory legs governed by
gravitation and thrust of the EP system, and coasting
planetocentric phases where the spacecraft is only influenced
by gravitation. The interplanetary trajectory legs remain outside
the planets’ sphere of influence (SOI), avoiding the rapid
changes in costate variables during swingby.

The structure of this paper is as follows. In Section 2, the
three-step approach for designing the low-thrust multi-gravity
assist trajectories is introduced, including selecting number and
sequence of swingbys, calculating basic parameters of the
trajectories, and optimizing the trajectories in multi-body
dynamics. Then the three-step approach is applied to design
the rendezvous mission to 2020 XL5. Details of the rendezvous
mission are provided in Section 3. The article concludes in
Section 4.

2. Methodology

2.1. Determination of Swingby Number and Sequence

In the rendezvous mission to an asteroid, the spacecraft
departs from LEO, followed by a series of selected planet
swingbys, culminating in the rendezvous with the target
asteroid. Below is the search method described in detail. In
this work, the delta-v required to launch from LEO is assumed
to be supported by the upper stage of a rocket. The departure
delta-v is defined by Xu et al. (2007)

∣∣ ( ) ( )∣∣ ( )v vv t t v v , 1E e1 0 0
2 2

LEOD = - + -¥

where ( )v t0 and ( )v tE 0 are, respectively, the velocity vectors of
the spacecraft and Earth in the heliocentric ecliptic reference

frame at the departure epoch, and v 2e r
E

LEO
= m

¥ and

v
rLEO

E

LEO
= m

are, respectively, the magnitudes of the

Earth-escape velocity and actual velocity at the low Earth
parking orbit with rLEO = 6578.137 km.

In order to obtain more feasible solutions, deep-space
maneuvers (DSMs) are introduced in cases where relative
velocities at swingby are not exactly equal (Lei et al. 2017; Gao
et al. 2019). For an impulsive maneuver during swingby, the
periapsis can be a useful starting point because it is found
easily and often close to the optimum solution (Gobetz 1963),
which is demonstrated in Figure 1.
When there is a DSM at the periapsis, the angles δ1, δ2 and θ

can be respectively presented by Gao et al. (2019)

∣∣ ∣∣

∣∣ ∣∣

( ) ∣∣ · ∣∣
∣∣ ∣∣∣∣ ∣∣

( )

v

v

v v

v v

arcsin
1

1
,

arcsin
1

1
,

cos cos ,

2

r

r

1 2

2 2

1 2

p

P

p

P

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d

d

q d d

=
+

=
+

= + =

m

m

¥
-

¥
+

¥
-

¥
+

¥
-

¥
+

where μP is the gravitational constant of the planet, rp is the
periapsis radius, and v¥

- and v¥
+ are respectively the hyperbolic

excess velocities before and after the DSM. The hyperbolic
excess velocities are calculated by ( ) ( )v v vt tPGA GA= -¥

  ,
where vP is the velocity vector of the planet in the heliocentric
ecliptic reference frame and tGA is the swingby date. When
there is no DSM at swingby, the angles have the relationship
that δ1= δ2= θ/2. According to Equation (2), the value of rp
can be determined with

∣∣ · ∣∣
∣∣ ∣∣∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣
( )

v v

v v v

v

arccos arcsin
1

1

arcsin
1

1
. 3

r

r

2

2

p

P

p

P

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q = =
+

+
+

m

m

¥
-

¥
+

¥
-

¥
+

¥
-

¥
+

Given a range of rp, Equation (3) is solved using the bisection
method (Gao et al. 2019). The norms of velocity relative to the
planet after and before the DSM vsc

 can be obtained by
applying the method from Gao et al. (2019)

∣∣ ∣∣ ( )vv
r

2 . 4sc
P

p

2 m
= +

¥


Then the DSM impulse ΔvDSM is

∣∣ ∣∣ ∣∣ ∣∣ ( )v vv
r r

2 2 . 5P
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p
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2 2m m
D = + - +¥
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-

Therefore, once rp is solved, ΔvDSM can be obtained.
The rendezvous delta-v is obtained by

∣∣ ( ) ( )∣∣ ( )v vv t t , 6f a f2D = -
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where ( )v tf and va(tf) are respectively the velocity vectors of
the spacecraft and target asteroid in heliocentric ecliptic
reference frame at rendezvous epoch. The total delta-v budget
can be expressed as

( )( )v v v v , 7
k

n
k

1 2
1

DSM

0

åD = D + D + D
=

where n0 is the number of swingbys. Usually, during mission
planning, constraints should be imposed on the DSM impulse
due to the engine’s limited thrust capabilities, while constraints
should also be placed on the departure delta-v due to the upper
stage’s limit. However, on the one hand, the optimization
process in this procedure focuses on determining the number
and sequence of swingbys. On the other hand, the required
DSM impulse and excessive departure delta-v are feasible with
EP. Therefore, these constraints are ignored in this process.

With the total delta-v budget, the impulsive transfer trajectory
can be optimized using global optimization algorithm ICEA.
Since the swingby altitude is constrained, the objective
function is

( )

( ) ( )

J v p r r

p t t

max , 0

max , 0 , 8

r
k

n

p k p k

t f f

sequence
1

, ,

0

min

max

å=D + -

+ -
=

where pr and pt are penalty factors, and t fmax
is the given

maximal flight time for the rendezvous mission. For this case,
the decision variables encompass the departure epoch t0, flight
time of spacecraft traveling from Earth to the first swingby
planet ΔT0 and flight times from the k-th swingby planet to the
next planet or asteroid ΔTk ( )k n1, 2, , 0= ¼ . Then the swingby
epochs tGA,k ( )k n1, 2, , 0= ¼ and rendezvous epoch tf can be
determined with those decision variables. Subsequently, the

Figure 1. Hyperbolic trajectory during swingby with DSM.
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position vectors of the swingby planets are calculated with
Keplerian elements.2 Next, the velocity vectors of the space-
craft at different epochs, including ( )v t0 , ( )v tf and ( )v tGA

 , can
be evaluated by solving the Lambert problem (Gooding 1990).
Finally, the total delta-v budget is derived using Equations (1),
(5), (6) and (7).

The candidate swingby planets available for swingby are
denoted as { }P P P, , , N0 1 1P

¼ - , where NP is the count of candidate
swingby planets. The maximum number of swingbys is N0. The

approach to search the number and sequence of swingbys is
depicted in Figure 2. In this diagram, for a given swingby number
n0, the total number of swingby sequence combinations amounts
to ( )NP

n0. An integer j between 1 and ( )NP
n0 can be represented in

base-NP with ( ) ( )j p p p p N...n N n P
n

dec 1 1 0 1
1

P0 0
0= = ´ +- -
- ...

p N p NP P1
1

0
0+ ´ + ´ . Therefore, every j can be used

to represent a transfer sequence for Earth Pp0
- -

P P...p pn1 0 1
- -

-
asteroid. Then the ICEA algorithm is applied to

optimize every transfer trajectory corresponding to the sequence
Earth P P P...p p pn0 1 0 1

- - - -
-

asteroid.

Figure 2. Search algorithm of swingby sequence.

2 https://ssd.jpl.nasa.gov/planets/approx_pos.html
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2.2. Optimization of LTGA Trajectory in Two-body
Dynamics

2.2.1. Time-free Fuel-optimal Problem for LTGA Trajectory

In the second step of this work, only the gravitation of the
Sun is considered. Most derivations in this optimal problem are
based on Jiang et al. (2012). The motion of the spacecraft is
governed by the thrust force of the EP system and gravitation
of the Sun. The equations of motion (EOM) can be expressed
as

( )







r v

v r
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I g
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9
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=
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where r and v respectively denote the position and velocity
vectors of the spacecraft in the heliocentric ecliptic reference
frame, r is the Euclidean norm of r, m is the mass of the
spacecraft, μs is the gravitational constant of the Sun, Tmax and
Isp are respectively the maximal thrust and specific impulse of
the EP system, g0 is the gravitational acceleration of Earth at
sea level, [ ]u 0, 1Î is the thrust ratio and the unit vector α
signifies the direction of thrust. In the optimization of the
LTGA trajectory, quantities about length are nondimensiona-
lized by the astronomical unit au = 149,597,870 km. Quantities
about time are nondimensionalized by au s

3 m , where the
Sun’s gravitational constant is μs= 1.32712438×
1011 km3 s−2. Quantities about mass are nondimensionalized
by the spacecraft’s initial mass m0.

Generally, the fuel-optimal problem means maximizing the
final mass, or minimizing the fuel consumption, which is
defined by
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where t0 and tf are respectively the initial and final times, which
are both free. The boundary conditions are as follows
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where rE is the position vector of Earth, vE∞ is the hyperbolic
excess velocity at departure from Earth and ra is the position
vector of the target asteroid in the heliocentric ecliptic reference
frame. In addition, for the multi-gravity assist mission, there are

also constraints at the swingby points (Jiang et al. 2012)
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where rP,k is the position vector of the k-th swingby planet in
the heliocentric ecliptic reference frame. To address both
equality and inequality constraints, numerical multipliers ν, ξ,
χ and κ are introduced. Moreover, it is well known that in a
fuel-optimal problem, the optimal control law has a bang-bang
structure, where the discontinuity causes the optimal solution to
converge within a limited domain. To overcome this challenge,
a numerical continuation method is introduced (Bertrand &
Epenoy 2002). There have been various approaches to achieve
this (Haberkorn et al. 2004). A homotopic parameter ε is
utilized to perturb the performance index (Jiang et al. 2012).
For convenience, define
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where λ0 is a positive numerical factor applied to normalize the
solution. There is a normalization condition of (Jiang et al.
2012)
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where ( ) ; ;r v ml l l l is the costate vector. When the
parameter ε= 1, the performance index is identical to that of
the energy-optimal problem, which is easier to solve because of
its control continuity. By the use of Pontryagin’s Maximum
Principle (PMP), this problem can be transformed into an
MPBVP. The corresponding Hamiltonian is constructed (Jiang
et al. 2012)
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According to PMP, the optimal thrust direction and magni-
tude, which minimize the Hamiltonian, are determined by
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Jiang et al. (2012)
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Substituting the optimal control law presented by Equation (19)
into the Hamiltonian function, the differential equations
governing the costate variables, often called Euler–Lagrange
equations, can be derived

·

∣∣ ∣∣

( )







r
r

r r

T u

m

3

,

.

22

r
v v

v r

v

s

m

3 5

max
2

⎧

⎨

⎪⎪

⎩
⎪
⎪

⎛
⎝

⎞
⎠

l l l

l l

l

m

l

= -

= -

= -

The transversality conditions for swingbys are (Jiang et al.
2012)
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¥
 is the unit vector of v k,¥

 , and aP,k is
the acceleration vector of the k-th swingby planet.
Equations (23) and (24) are used to update the position and
velocity costate vectors. Detailed information for A, B and C
can be found in Jiang et al. (2012), and they have the forms
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In addition, the complementary slackness conditions due to the
inequality constraints are (Jiang et al. 2012)

( )0, 0. 30k k kk s k=

In Jiang et al. (2012), the initial time and final time are fixed. In
contrast, the approach in this paper allows for flexibility in both
initial and final times. For the time-free problem, the first
differential boundary conditions are given by Hull (2013)
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where ( )x r v m; ; . Therefore, the transversality conditions
are obtained as

( ) ( ) · ( ) ( ) · ( ) ( )v aH t t t t t 0, 33r vf E E1, 0 0 0 0 0j l l= - - =e

( ) ( ) · ( ) ( ) · ( ) ( )v aH t t t t t 0, 34r vf f f a f f a f2,j l l= - - =e

( ) ( )t 0. 35m fl =

where aa is the acceleration vector of the target asteroid in the
heliocentric ecliptic reference frame. For the energy-optimal
problem (ε= 1), the differential equations expressed by
Equations (9) and (22) are numerically integrated using the
classic eighth-order Runge–Kutta integrator with a seventh
order for automatic step-size control, i.e., RKF7(8) (Fehlberg
1968). However, as the homotopic parameter ε approaches 0,
the right-hand sides of ordinary differential equations (ODEs)
experience abrupt variations around switching points. To
ensure the accuracy of integration with RKF7(8), the bisection
method is used to detect the switching points (Martinon &
Gergaud 2010; Zhang et al. 2015).
For this MPBVP at ε= 1, there are 10+ 9n0 unknowns in

total, including initial and final times t0, tf, the positive
numerical factor λ0, seven initial values of costate vector λ(t0),
3D gravity-assist impulse vectors v v vG k k k, , ,D = -¥

+
¥
- (k= 1,

2,K,n0), swingby dates tGA,k, 4D numerical Lagrange multi-
pliers χk and 1D Lagrange multipliers κk. Meanwhile, there are
10+ 9n0 equations as well, consisting of the 6D Equation (12),
the 1D Equation (33), the 1D Equation (34), the 1D
Equation (35), the 4D Equation (13) ψk, the 1D
Equation (30) with the application of inequality
Equation (14) σk, the 3D Equation (25) j1∼3,k, the 1D
Equation (26) j4,k and the normalization condition
Equation (17).

2.2.2. Global Search with ICEA Algorithm

The main purpose of the second step is to obtain feasible
basic parameters, which can be applied in the optimization of
LTGA trajectories in the next step. These basic parameters
include initial and final times t0 and tf respectively, swingby
dates tGA,k, launch vE∞, hyperbolic excess velocities v k,¥

 and
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periapsis radius rp,k at swingbys. Because it would be difficult
to solve the MPBVP directly, a global optimization method is
employed to obtain these parameters. Accurate solutions are
not required in this search. To reduce the computation time, the
control law based on the energy-optimal problem (ε= 1) is
utilized to search the parameters. With normalization condition
Equation (17), the search space can be transformed from an
unbounded space into a hypersphere (Jiang et al. 2012). The
8+ 5n0 variables λ0, λ(t0), χk and κk are normalized with
7+ 5n0 angle variables β. In addition to the variables involved
in the MPBVP, launch vE∞ is considered a decision variable in
the global optimization process. Meanwhile, as the problem is
constrained, penalty factors are introduced to turn it into an
unconstrained one. The objective function is expressed as

( ) ∣∣ ∣∣ ( ) ( )f m p p t tmax , 0 , 36p f t f fmax
g = + G + -

where ( ) v vt T T; ; ; ; ;k E G k0 0 ,g b D D D¥ , [ ( )] t; ; ; ; ;f k k k k f m fy j jk s lG X .
In this search, the penalty factors are pf= 1000 and pt= 1000.

2.3. Design of LTGA Trajectory in Multi-body Dynamics

2.3.1. Time-fixed Fuel-optimal Problem Without Swingby in
Multi-body Dynamics

In the third step, the third-body perturbations of the planets
in the solar system are considered. The problem without
swingby is stated in multi-body dynamics here. Given that the
orbital elements provided by the Minor Planet Center (MPC)

are heliocentric, the EOM are described in the heliocentric
ecliptic reference frame. Most derivations are identical to
those in a time-free fuel-optimal problem in two-body
dynamics, with the exception of the EOM and Euler–
Lagrange equations. The motion of the spacecraft is governed
by the thrust force of the EP system, as well as the
gravitations of Sun, Earth and other planets in the solar
system. The EOM can be expressed as

∣∣ ∣∣ ∣∣ ∣∣
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Figure 3. Scheme of patched-arc model.

Table 1
Heliocentric Orbital Elements of 2020 XL5

Epoch (MJD) 59649.0

Semimajor axis, a (au) 1.0006928
Eccentricity, e 0.3871117
Inclination, i (Deg) 13.84744
Longitude of ascending node, Ω (Deg) 153.59764
Argument of perihelion, ω (Deg) 87.98465
Mean anomaly, M (Deg) 4.6601
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where μi (i= 1, 2,K,8 for eight planets, i= 9 for Pluto and
i= 10 for the Moon) is the gravitational constant of the
corresponding celestial body, and ri is the position vector of the
corresponding celestial body. In this step, the states of planets
are also determined using the JPL ephemeris DE 421. The

boundary conditions are

* * * * * *( ) ( ) ( ) ( )r r v vt t m t m, , , 380 0 0 0 0 0= = =

* * * *( ) ( ) ( )r r v vt t, . 39f f f f= =

For the optimization of low-thrust trajectory between planets,
there are no additional intermediate constraints. Applying the
homotopic parameter ε, the performance index and corresp-
onding Hamiltonian are as follows

*
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The optimal thrust magnitude and direction are the same
with those in two-body dynamics, which are determined by
Equations (19), (20) and (21). Combining the optimal control
law and the Hamiltonian function, the Euler–Lagrange

Table 2
Keplerian Elements of the Swingby Planets

Venus Earth/Moon Barycenter Mars

Epoch (MJD) 51,544.5 51,544.5 51,544.5
Semimajor axis, a0 (au) 0.72332102 1.00000018 1.52371243
a (au/Century) −0.00000026 −0.00000003 0.00000097
Eccentricity, e0 (Rad) 0.00676399 0.01673163 0.09336511
e (Rad/Century) −0.00005107 -0.00003661 0.00009149
Inclination, I0 (Deg) 3.39777545 −0.00054346 1.85181869
I (Deg/Century) 0.00043494 −0.01337178 −0.00724757
Mean longitude, L0 (Deg) 181.97970850 100.46691572 −4.56813164
L (Deg/Century) 58,517.81560260 35,999.37306329 19,140.29934243
Longitude of perihelion, 0w (Deg) 131.76755713 102.93005885 −23.91744784
w (Deg/Century) 0.05679648 0.31795260 0.45223625
Longitude of the ascending node, Ω0 (Deg) 76.67261496 −5.11260389 49.71320984
W (Deg/Century) −0.27274174 −0.24123856 −0.26852431

Table 3
Candidate Swingby Sequences and Performances

Transfer sequence n0 Δv (km s−1) Transfer sequence n0 Δv (km s−1)

E-2020 XL5 0 10.33 E-V-E-V-2020 XL5 3 6.31
E-E-V-E-V-2020 XL5 4 7.00 E-E-V-2020 XL5 2 7.95
E-V-2020 XL5 1 7.97 E-E-E-V-E-2020 XL5 4 8.27
E-V-M-V-2020 XL5 3 8.35 E-V-V-2020 XL5 2 8.39
E-V-E-2020 XL5 2 8.58 E-E-V-M-V-2020 XL5 4 8.76
E-E-V-E-2020 XL5 3 8.88

Table 4
Parameters of the Impulsive Transfer Trajectory Corresponding to the Earth–

Venus–Earth–Venus-2020 XL5 Swingby Sequence

Launch date (m/d/y) 1/6/2025
Venus’ first swingby date (m/d/y) 3/26/2025
Venus’ first swingby altitude (km) 5025.7
Earth’s swingby date (m/d/y) 2/6/2026
Earth’s swingby altitude (km) 43,125.2
Venus’ second swingby date (m/d/y) 1/26/2027
Venus’ second swingby altitude (km) 215.4
Rendezvous date (m/d/y) 12/12/2027
Departure delta-v (km s−1) 4.52
DSM at Venus’ first swingby (km s−1) 1.18 × 10−2

DSM at Earth’s swingby (km s−1) 4.54 × 10−3

DSM at Venus’ second swingby (km s−1) 2.19 × 10−2

Rendezvous delta-v (km s−1) 1.69
Total delta-v (km s−1) 6.26
Flight time (days) 1069.42
Propellant mass ratio (mp/m0) 44.51%
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equations in multi-body dynamics are described as
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In the third step, the initial time and final time are fixed. There
is only one transversality condition on the mass costate shown
in Equation (35). The normalization condition is modified as

*∣∣ ( )∣∣ ( )t 1. 430
2

0
2ll + =

For this TPBVP at ε= 1, by the use of normalization condition
in Equation (43), there are seven unknowns, i.e., the seven
angle variables transformed from λ0 and λ(t0). There are seven
constraints including the boundary conditions in 6D in
Equation (39) and the transversality condition in
Equation (35). When the homotopic parameter ε< 1, the
positive numerical factor λ0 is held constant at the value

Figure 4. Convergence curves of the solutions.

Table 5
Basic Parameters for Optimization of LTGA Trajectory Corresponding to the

Earth–Venus–Earth–Venus-2020 XL5 Swingby Sequence

Launch date (m/d/y) 1/3/2025
Launch vE∞ (km s−1) [5.60, 2.37, 1.52]
Norm of launch vE∞ (km s−1) 6.27
Venus’ first swingby date (m/d/y) 3/21/2025
Venus’ first swingby altitude (km) 2969.6
v ,1¥
- (km s−1) [12.25, 2.04, 0.22]

v ,1¥
+ (km s−1) [12.14, − 2.32, 1.96]

Earth’s swingby date (m/d/y) 2/3/2026
Earth’s swingby altitude (km) 33 578.8
v ,2¥
- (km s−1) [10.35, − 6.65, 2.32]

v ,2¥
+ (km s−1) [10.87, − 5.49, 3.11]

Venus’ second swingby date (m/d/y) 1/21/2027
Venus’ second swingby altitude (km) 845.6
v ,3¥
- (km s−1) [13.79, − 1.59, 2.43]

v ,3¥
+ (km s−1) [11.88, − 2.97, 7.27]

Rendezvous date (m/d/y) 3/5/2028
Flight time (days) 1156.84

Table 6
Orbital Elements of Parking Orbit at Launch in Earth-centered Inertial Frame,
Date and Velocity Vector at the Boundary of SOI in Earth-centered Ecliptic

Reference Frame

Epoch (MJD) 60,678.85

Semimajor axis, a (km) 6578.137
Eccentricity, e 0
Inclination, i (Deg) 28.5
Longitude of ascending node, Ω (Deg) 327.904
Argument of perigee, ω (Deg) 284.087
Mean anomaly, M (Deg) 0
Departure delta-v, Δv1 (km s−1) 4.88
Date leaving Earth’s SOI (m/d/y) 1/5/2025
Velocity vector leaving Earth’s SOI (km s−1) [5.66, 2.40, 1.54]
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obtained in the energy-optimal problem. There are seven
unknowns at ε< 1, i.e., the initial values of costate vector
λ(t0). The normalization condition is not applicable at ε< 1.
Compared with the MPBVP for low-thrust multi-gravity
assists, a good initial guess of TPBVP is easier to obtain using
global optimization. Thus, a numerical method for solving
nonlinear equations is applied for this problem to attain precise
transfer trajectories. Here, the ICEA algorithm is utilized to
search for an initial guess of the energy-optimal problem. The
objective function is expressed as

* *( ) ∣∣ ∣∣ ( )f p , 44fb = G

where β
*

is the seven angle variables transformed from λ0 and
λ(t0) according to the normalization condition, and Γ

*

consists
of the boundary condition in Equation (39) and the transvers-
ality condition in Equation (35). In this paper, a hybrid solver
in the GNU Scientific Library (GSL) is used to solve the

TPBVP (Powell 1970). The steps of solving the fuel-optimal
problem can be summarized as (Jiang et al. 2012):

1. Apply the ICEA algorithm to search for approximate
solutions of the normalized costate [ ( ) ( ) ( )]t t t; ;r v m0 0 0l l l
and positive numerical factor λ0 to the energy-optimal
problem, i.e., ε= 1. The integrator is RKF7(8).

2. Take the approximate normalized solution of step 1 as an
initial guess to solve the accurate solution of the energy-
optimal problem. The integrator is RKF7(8), and the
solver is a hybrid solver in GSL. Go back to step 1 if it
does not converge.

3. Fix the positive factor λ0, and decrease the parameter ε
gradually until zero. Solve the new problem using the
previous solution as an initial guess. The integrator is
RKF7(8) combined with the bisection method to detect
the switching points. If it does not converge, shorten the
decreasing step and try it again.

4. Output the solutions of the fuel-optimal problem.

2.3.2. Patched-arc Model for Optimization of LTGA Trajectory

The patched-arc model is often used for interplanetary
missions (Melbourne & Sauer 1965; Pierson & Kluever 1994).
Swingby planets are often seen as massless, and the swingbys
are considered as instantaneous events (Johnson 1969). How-
ever, when considering multi-body dynamics, this assumption
is not adequate. To deal with the rapid changes of costate
variables during a swingby, the hyperbolic trajectory within the
planet’s SOI remains unpowered, only subject to gravitation.
The SOI is applied to place the limit between each low-thrust
leg. Once the low-thrust legs remain outside the SOI, there are
no rapid changes in costate variables anymore. The radius of
SOI of a planet P is calculated by Bate et al. (2020)

( )r a
m

M
, 45P

P

s
SOI

2
5
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⎛
⎝

⎞
⎠

=

Table 7
Orbital Elements of Hyperbolic Trajectories at Periapsis, Dates and Velocity Vectors at the Boundary of SOI in Planetocentric Ecliptic Reference Frame

Venus’ First Swingby Earth’s Swingby Venus’ Second Swingby

Epoch (MJD) 60,755.72 61,074.51 61,426.77
Semimajor axis, a (km) 2072.93 2523.43 1601.83
Eccentricity, e 5.352 16.834 5.306
Inclination, i (Deg) 157.652 34.353 107.114
Longitude of ascending node, Ω (Deg) 11.892 311.230 356.494
Argument of periapsis, ω (Deg) 283.564 292.636 291.437
True anomaly, f (Deg) 0 0 0
Date entering SOI (m/d/y) 3/21/2025 2/2/2026 1/21/2027
Velocity vector entering SOI (km s−1) [12.40, 2.03, 0.23] [10.42, −6.69, 2.34] [13.96, −1.63, 2.50]
Date leaving SOI (m/d/y) 3/22/2025 2/4/2026 1/22/2027
Velocity vector leaving SOI (km s−1) [12.19, −2.32, 1.97] [10.90, −5.51, 3.12] [11.91, −2.98, 7.29]

Table 8
Parameters of LTGA Trajectory Corresponding to the Earth–Venus–Earth–

Venus-2020 XL5 Swingby Sequence

Departure date (m/d/y) 1/3/2025

Norm of ( )( )V tE out
1 (km s−1) 6.34

Propellant mass of first leg (kg) 4.4
Venus’ first swingby date at periapsis (m/d/y) 3/21/2025
Norm of velocity vector at the boundary of SOI (km s−1) 12.56
Propellant mass of second leg (kg) 4.7
Earth’s swingby date at periapsis (m/d/y) 2/3/2026
Norm of velocity vector at the boundary of SOI (km s−1) 12.60
Propellant mass of third leg (kg) 22.3
Venus’ second swingby date at periapsis (m/d/y) 1/21/2027
Norm of velocity vector at the boundary of SOI (km s−1) 14.28
Propellant mass of fourth leg (kg) 40.8
Rendezvous date (m/d/y) 3/5/2028
Flight time (days) 1156.84
Total propellant mass (kg) 72.2
Total propellant mass ratio (%) 9.03
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where aP is the semimajor axis of the orbit of planet P, and mP

and Ms are the masses of planet P and the Sun respectively. For
the kth low-thrust leg starting from the boundary of the k− 1th
celestial body’s SOI to the boundary of the kth celestial body’s
SOI, the boundary conditions are expressed as

( ) ( ) ( )
( ) ( ) ( )
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In the equations above, the superscript (k) denotes the kth
low-thrust leg, ( )t k

out is the date when the spacecraft leaves the
k− 1th celestial body’s SOI, ( )t k

in is the date when the spacecraft
enters the kth celestial body’s SOI, and RP,k and VP,k are
respectively the position and velocity vectors of the spacecraft
in the planetocentric ecliptic reference frame. The 0th celestial
body is Earth. Define ( )( )m t 1in

0 = . Because the n0+ 1th
celestial body is the target asteroid 2020 XL5, there are

( )t tn
fin

10 =+ and ( ) ( )( ) ( )R Vt t 0P n
n

P n
n

, 1 in
1

, 1 in
1

0
0

0
0= =+

+
+

+ .
The position and velocity vectors of a spacecraft at the

boundary of Earth’s SOI ( )( )R tP,0 out
1 , ( )( )V tP,0 out

1 and the corresp-
onding date ( )tout

1 are determined by integrating the state of the
spacecraft from the parking orbit after the launch supported by
the upper stage of the rocket at t= t0. The orbital elements of
the parking orbit are derived using the launch vE∞. In addition,
the orbital elements of the parking orbit are expressed in the
Earth-centered inertial frame. For the parking orbit, eccentricity
epark and semimajor axis apark are both known, and the mean
anomaly is set as M= 0, which is the perigee. There is a
minimal admissible inclination imin for given vE∞. When the
required inclination of parking orbit i0 is larger than imin, the
inclination is ipark = i0. Otherwise the inclination is
i ipark min= . The expressions of imin, longitude of ascending
node Ω and argument of perigee ω are shown in the Appendix.
With the orbital elements and departure delta-v given, ( )tout

1 ,
( )( )R tE

ECI
out

1 and ( )( )V tE
ECI

out
1 in the Earth-centered inertial frame are

obtained by integrating the EOM of an unpowered spacecraft
until ∣∣ ( )∣∣ R t rE SOI,E. Then the position and velocity vectors
in the Earth-centered inertial frame are transformed to

( )( )R tP,0 out
1 , ( )( )V tP,0 out

1 in the Earth-centered ecliptic frame.
For the swingby, the position and velocity vectors of the

spacecraft when it leaves or enters the kth planet’s SOI, and the
corresponding date, are determined by integrating the state of
the spacecraft forward or backward from the periapsis at
t= tGA,k. The orbital elements of the spacecraft at periapsis are
calculated with v¥

 and periapsis radius rp. Detailed expressions
of the orbital elements can be found in the Appendix. With the
orbital elements at the periapsis, ( )t k

out
1+ , ( )( )R tP k

k
, out

1+ and
( )( )V tP k

k
, out

1+ are obtained by integrating the EOM of an

unpowered spacecraft forward until ∣∣ ∣∣ R rP k, SOI,P. The
quantities ( )t k

in , ( )( )R tP k
k

, in and ( )( )V tP k
k

, in are obtained by
integrating the EOM of an unpowered spacecraft backward
until ∣∣ ∣∣ R rP k, SOI,P. The patched-arc model is illustrated in
Figure 3. The general algorithm of the patched-arc model is
presented in algorithm 1.

Algorithm 1. Algorithm of patched-arc model

Input: initial time t0, final time tf, launch vE¥, swingby dates t kGA, , hyperbolic
excess velocities v k,¥

 at swingbys, periapsis radius rp k, ( )k n1, 2, , 0= ¼
Output: the fuel-optimal solutions of all low-thrust legs, the whole trajectory
and the optimal thrust

Begin
evaluate ipark, parkW , parkw in an Earth-centered inertial frame and v1D , and
transform orbital elements into state vector;
calculate ( )tout

1 , ( )( )R tE
ECI

out
1 , ( )( )V tE

ECI
out

1 in Earth-centered inertial frame with a
forward integration, and transform state vector into ( )( )R tP,0 out

1 ( )( )V tP,0 out
1 in

planetocentric ecliptic reference frame;
for k = 1 to n0 do
calculate the orbital elements at periapsis using v k,¥

 and periapsis
radius rp k, ;

obtain ( )t k
out

1+ , ( )( )R tP k
k

, out
1+ ( )( )V tP k

k
, out

1+ , ( )t k
in , ( )( )R tP k

k
, in and ( )( )V tP k

k
, in with

forward and backward integration;
end
for k = 1 to n 10 + do
set the boundary conditions with Equations (46) and (47);
solve the fuel-optimal problem with the given boundary conditions;

end
end

In this section, the design process has been introduced step
by step. The design process is concluded as:

1. Selection of the number and sequence of swingbys based
on Lambert problems. Compute the performances of
impulsive transfer trajectories for all possible swingby
sequences according to the process shown in Figure 2.

2. Search for feasible basic parameters of LTGA trajec-
tories. Instead of directly solving the MPBVP in an
indirect method, a global optimization algorithm is used
to obtain solutions. Those solutions are not accurate
enough for the MPBVP, but may be helpful to design an
LTGA trajectory in this three-step approach. Then basic
parameters are calculated with the solutions.

3. In order to design a trajectory with better performance,
the search in step 2 is repeated many times. The
performances of LTGA trajectories corresponding to all
solutions in step 2 are briefly estimated with the patched-
arc approach. However, in the estimation, to save
computation time, only two-body dynamics is considered
in low-thrust legs, while planetocentric legs are still
governed by multi-body dynamics. Finally, the basic
parameters with the best performance are used in the
design of the LTGA trajectory in multi-body dynamics.
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3. Results

In this section, the rendezvous mission to 2020 XL5 is designed
through the three-step approach. First of all, the swingby sequence
to 2020 XL5 is determined. Second, the basic parameters for the
LTGA trajectory are obtained through a global optimization.
Finally, a more precise LTGA trajectory for a rendezvous mission
to 2020 XL5 is optimized in multi-body dynamics.

3.1. Swingby Sequence for Rendezvous to 2020 XL5

The orbital elements of the ET 2020 XL5 are listed in
Table 1, which is provided by the MPC.3

Given that the synodic periods of Earth relative to Venus and
Mars are respectively 1.6 yr and 2.1 yr (Takao et al. 2021), in
the global search for swingby sequence, the departure epoch
spans from 2024 January 1 to 2028 January 1, a range
approximately twice the width of synodic periods to account
for more possible sequences. All the flight timesΔT0,ΔTk vary
between 10 and 1200 days. In previous work, it was
emphasized that Venus and Earth are significant swingbys
planets for rendezvous to asteroid 2010 TK7 (Lei et al. 2017).
Additionally, considering the large eccentricity of 2020 XL5,
with its distance from the Sun ranging from 0.6133 to 1.3881 au,
Mars is also a favorable swingby planet. Therefore, Venus, Earth
and Mars are designated as potential swingby planets. The
minimum swingby altitudes for Venus, Earth and Mars are
uniformly set as 200 km. The Keplerian elements of Venus,
Earth/Moon barycenter and Mars are listed in Table 2. In this
search, the Keplerian elements for Earth/Moon barycenter serve
as an approximation of Earth’s position. The maximum
allowable total flight time for the rendezvous mission is set as
t 1200fmax

= days. In the optimization of impulsive transfer
trajectories for all the sequences using ICEA, the subpopulation
allocated for the particle swarm optimization (PSO) algorithm is
NP1= 400, while the subpopulation related to the differential
evolution (DE) algorithm is NP2= 100. The number of
generations is NG= 3000. The penalty factors are set as
pr= 105 and pt= 103. For this mission, the number of candidate
swingby planets is NP= 3, and the corresponding set is
{ } { }P P P, , Venus, Earth, Mars0 1 2 = . Given the mission’s total
flight time constraint of 1200 days, the maximum number of
swingbys is restricted to N0= 5.
The computations are executed on a desktop personal

computer with a CPU of 3.7 GHz, and Visual Studio 2019 is
used. The best 10 results are listed in Table 3, where E denotes
Earth, M means Mars and V signifies Venus. For those results,
the constraints on swingby altitude and total flight time are
satisfied. Moreover, for comparison, the direct transfer from
Earth to asteroid 2020 XL5 is optimized in the same way. The
result is listed in Table 3 as well. Direct transfer to 2020 XL5

requires a launch delta-v of 5.93 km s−1 and rendezvous delta-v
of 4.40 km s−1. Both of them are too large for the mission.
According to this result, the multi-gravity assist technique
greatly reduces the total delta-v for this mission. Mars is not an
adequate swingby planet for the rendezvous mission to 2020
XL5. Moreover, using Venus as the final swingby is the best
option to reach asteroid 2020 XL5. The swingby sequence
Earth–Venus–Earth–Venus-2020 XL5 is the best for this
rendezvous mission, where the number of swingbys is
n0= 3. Therefore, in the following parts, the LTGA trajectory
corresponding to the Earth–Venus–Earth–Venus-2020 XL5

sequence will be optimized. Before the optimization of the
LTGA trajectory, the impulsive transfer trajectory corresp-
onding to the Earth–Venus–Earth–Venus-2020 XL5 sequence
is further optimized with NG= 5000, and related parameters are

Figure 5. The LTGA trajectory in the heliocentric ecliptic reference frame
corresponding to the Earth–Venus–Earth–Venus-2020 XL5 swingby sequence.
The orbits of Earth, Venus and the target asteroid 2020 XL5 are displayed by lines
with different colors; the red in the transfer trajectory means the legs where the
thruster works, and the green in the transfer trajectory represents the planetocentric
coasting legs.

3 https://www.minorplanetcenter.net/data
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Figure 6. The time histories of the magnitude of thrust and spacecraft’s mass corresponding to the Earth–Venus–Earth–Venus-2020 XL5 swingby sequence.

Figure 7. The time histories of the direction of thrust in the heliocentric ecliptic reference frame corresponding to the Earth–Venus–Earth–Venus-2020 XL5 swingby
sequence.
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listed in Table 4. In Table 4, the propellant mass ratio is
calculated by Mingotti et al. (2012)

( )
( )m

m

v v

I g
1 exp , 48

p k
n k

0

2 1 DSM

spc 0

0

⎜ ⎟
⎛
⎝

⎞
⎠

= - -
D + å D=

where Ispc = 300 s is the specific impulse of the CP system,
and mp is the propellant mass. For the impulsive transfer
trajectory corresponding to the Earth–Venus–Earth–Venus-
2020 XL5 sequence, the midcourse maneuvers at swingbys are
relatively small. The propellant mass ratio is 44.51%. In order
to save more propellant, low-thrust and multi-gravity assist
techniques are applied in the following part. The optimal
solutions of impulsive transfer trajectory are used to provide
the upper and lower bounds of launch date, swingby dates and
rendezvous date.

3.2. Global Search for Basic Parameters

In this mission, the maximal thrust magnitude of EP is
T 60max = mN, the specific impulse of EP is Isp= 3000 s, the
gravitational acceleration of Earth at sea level is
g0 = 9.80665 m s−2 and the initial mass of the spacecraft is
m0= 800 kg. The states of planets are determined using the
JPL ephemeris DE 421 (Folkner et al. 2009). The number of

Figure 8. The time histories of orbital elements in heliocentric ecliptic reference frame including semimajor axis, eccentricity, inclination and longitude of ascending
node corresponding to the Earth–Venus–Earth–Venus-2020 XL5 swingby sequence.

Table 9
Parameters of Direct Low-thrust Transfer Trajectory from Earth to 2020 XL5

Departure date (m/d/y) 2/15/2025

Departure delta-v, Δv1 (km s−1) 5.00
Date leaving Earth’s SOI (m/d/y) 2/16/2025
Norm of ( )( )V tE out

1 (km s−1) 6.57

Rendezvous date (m/d/y) 10/9/2027
Flight time (days) 966.27
Propellant mass (kg) 166
Propellant mass ratio (%) 20.8
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generations NG= 100,000, NP1= 160, NP2= 40. Referring to
the optimized parameters of impulsive transfer trajectories, the
launch date ranges from 1 October 2024 to 1 March 2025,
flight time of spacecraft traveling from Earth to the first

swingby planet ΔT0 ranges from 50 to 100 days and flight
times from the kth swingby planet to the next planet or asteroid
ΔTk all range from 300 to 500 days. Because the maximal
gravity-assist impulse is the local circular speed at the minimal
admissible periapsis radius (Sims 1996), which means
∣∣ ∣∣v rG k P k p k, max , ,min

mD = , all magnitudes of the gravity-
assist impulse range from 0 to 10 km s−1. Considering the limit
of the upper stage, the departure delta-v Δv1 is assumed not to
exceed the critical velocity VC= 5 km s−1 for a payload of
800 kg (Lei et al. 2017). Thus, the launch ||vE∞|| is no more
than 6.50 km s−1 according to Equation (1). The maximum
total flight time is t 1200fmax

= days.
This search process is repeated for 40 times with these

configurations. There are totally three solutions that can
provide feasible basic parameters for optimization in the third
step. The basic parameters are then derived with those
solutions. The corresponding LTGA trajectories of these
solutions are briefly estimated using the patched-arc approach,
where only two-body dynamics is considered in low-thrust
legs. In two-body dynamics, the minimum fuel consumption is
8.95% with a total flight time of 1157 days. The worst solution
exhibits a fuel consumption of 10.4% with a total flight time of
1142 days. The convergence curves of these results are
depicted in Figure 4. Theoretically, the convergence curve
should converge to a value smaller than 1 where f (γ)=mp and
Γ= 0. However, because of the critically small convergence
domain of the multi-gravity assist problem, reaching this value
through optimization is exceedingly challenging. According to
the convergence curves, objective functions of these solutions
all reach 20∼ 30. A large generation number is necessary for
the objective function to reach a small value. It can have more
of a chance to provide basic parameters that lead to converged
transfer trajectories with better performances. Nevertheless, a
larger number of generations is much more time-consuming.
The basic parameters of the LTGA trajectory which has the
minimum fuel consumption are listed in Table 5.

Table 10
Position and Velocity Errors of the Low-thrust Trajectory for Different force Models

Two-body Force Gravitations of Sun, Venus, Earth, Mars and Jupiter

Position error of first leg 2.77 × 10−3 4.88 × 10−5

Velocity error of first leg 4.26 × 10−3 9.69 × 10−5

Position error of second leg 1.75 × 10−2 1.83 × 10−5

Velocity error of second leg 1.62 × 10−2 1.00 × 10−5

Position error of third leg 2.96 × 10−3 1.59 × 10−5

Velocity error of third leg 4.54 × 10−3 3.23 × 10−5

Position error of fourth leg 2.63 × 10−2 1.61 × 10−5

Velocity error of fourth leg 4.61 × 10−2 2.72 × 10−5

Note. Both position and velocity errors are nondimensionalized.

Figure 9. The LTGA trajectory in the synodic coordinate system corresp-
onding to the Earth–Venus–Earth–Venus-2020 XL5 swingby sequence.
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3.3. LTGA Trajectory from Earth to 2020 XL5 in Multi-
body Dynamics

In this mission, the semimajor axis of the parking orbit is
apark = 6578.137 km. The eccentricity is epark = 0. The
preferred inclination of the parking orbit is i0= 28°.5. The
gravitations of the Sun, Venus, Earth, Mars and Jupiter are
taken into account. With the basic parameters given in the last
section, the LTGA trajectory is optimized in multi-body
dynamics with algorithm 1. The orbital elements of the parking
orbit and departure delta-v are listed in Table 6. The orbital
elements of the hyperbolic trajectories at periapsis are listed in
Table 7. Parameters of the LTGA trajectory are presented in
Table 8. The trajectory of the spacecraft in the heliocentric
ecliptic reference frame is depicted in Figure 5. Because the
target asteroid 2020 XL5 has a large inclination with respect to
the ecliptic plane, the final Venus swingby must be performed
around the date when Venus crosses the ascending or
descending nodes of 2020 XL5. This opportunity comes every
112.35 days, as the orbital period of Venus is about 224.7 days.
This analysis is identical to the trajectory depicted in Figure 5.
The time histories of the magnitude and direction of thrust and
spacecraft’s mass are shown in Figures 6 and 7. The time
histories of orbital elements in the heliocentric ecliptic
reference frame, including semimajor axis, eccentricity,
inclination and longitude of ascending node, are displayed in
Figure 8. As affirmed in Table 8, the total flight time is 1156.84
days, and the propellant mass ratio is 9.03%. The final mass of
the spacecraft is 728 kg. For comparison, the direct transfer

trajectory from Earth to 2020 XL5 is optimized with the
patched-arc model as well, whose parameters are presented in
Table 9. As shown in Table 9, the total flight time is 966.27
days, which is 190.57 days shorter than the transfer with the
multi-gravity assist technique. However, the propellant mass
ratio is 20.8%. It means that the multi-gravity assist technique
reduces the propellant mass ratio by 11.8%, corresponding to a
saving of 94 kg in propellant mass. Therefore, the multi-gravity
assist technique is significant for this mission to save the fuel
consumption.
In order to show the influence of force models on the

trajectory design result, the control laws derived from the two-
body dynamics model and multi-body dynamics, including the
gravitations of Sun, Venus, Earth, Mars and Jupiter, are
respectively applied in the full gravitation system (gravitations
of Sun, eight planets and the Moon). The position and velocity
errors at the end of every leg are listed in Table 10. The
position and velocity errors in Table 10 are both nondimensio-
nalized. The results show that the control law derived from a
two-body force model can lead to a large position and velocity
errors (∼10−2) at the end of every low-thrust leg, while the
control law derived under multi-body dynamics, including
gravitations of Sun, Venus, Earth, Mars and Jupiter, can keep
the position and velocity errors around 10−5. The inclusion of
Mercury, planets outside Jupiter and the Moon will greatly
increase the computation time for optimization of the transfer
trajectory. Therefore, for the transfer trajectory to 2020 XL5, a
multi-body dynamics model, including gravitations of Sun,

Figure 10. The direct low-thrust transfer trajectory in the synodic coordinate system corresponding to the Earth-2020 XL5 sequence.
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Venus, Earth, Mars and Jupiter, not only ensures accuracy, but
also saves computation time.

For transfer to the ET asteroid, some characteristics in the
Sun–Earth synodic coordinate system are significant. The
trajectory of the spacecraft in the synodic coordinate system is
depicted in Figure 9. The trajectory of direct transfer in the
synodic coordinate system is shown in Figure 10 as well. In the
Circular Restricted Three-Body Problem (CR3BP), the trajec-
tories that lie along an unstable manifold of an L1 orbit
naturally approach the L4 region (Elliott et al. 2020). In
Figures 9 and 10, the two transfers both approach 2020 XL5

through trajectories near the L1 point. The Jacobi value
represents a constant of motion within the rotating frame
(Sood & Howell 2019). With the definition of Jacobi constant,

a low value of the Jacobi constant is analogous to a higher
energy for the spacecraft as it moves within the Sun–Earth
system (Elliott et al. 2020). Although the Jacobi constant is
only conserved in the CR3BP, and not in any higher-fidelity
models, it is valuable in preliminary trajectory design activities.
The spacecraft orbiting around Earth has a large value of Jacobi
constant (∼3). However, the target asteroid 2020 XL5 is
orbiting around the L4 point with a low value of Jacobi constant
(∼2.8). From the viewpoint of energy, the transfer from Earth
to 2020 XL5 is challenging. The time histories of Jacobi
constant of transfer with and without swingbys are both
illustrated in Figure 11. For direct transfer, the thruster works
for most of the flight to reach the desired Jacobi value. In
contrast, employing multiple swingbys greatly reduces the
Jacobi constant, requiring the thruster to work for a relatively
shorter duration. It highlights the significance of the multi-
gravity assist technique in reducing fuel consumption for this
rendezvous mission. From the viewpoint of the Jacobi constant,
Venus’ first swingby reduces most of the Jacobi value (by
∼0.1), and Venus’ second swingby reduces the Jacobi value by
0.04. Judging from the time histories of orbital elements in
Figure 8, the semimajor axis, eccentricity and longitude of
ascending node are mainly changed by Venus’ first swingby,
while the inclination is greatly changed by Venus’ second
swingby.

4. Conclusions

In this paper, a rendezvous mission to Earth’s second ET
asteroid 2020 XL5 with low-thrust multi-gravity assist
techniques is proposed. A three-step approach is introduced
to design the LTGA trajectories in multi-body dynamics. The
key conclusions of our study are as follows:

1. The direct impulsive transfer from Earth to 2020 XL5

requires a total delta-v of 10.33 km s−1, which is
challenging for the capacity of current technology.

2. It is found that the best transfer sequence for a
rendezvous mission to 2020 XL5 is Earth–Venus–
Earth–Venus-2020 XL5. For the optimization of impul-
sive transfer trajectory corresponding to this sequence,
the total delta-v is 6.26 km s−1, with a fuel consumption
of 44.51%. It highlights the potential of the multi-gravity
assist technique in reducing both the launch energy and
rendezvous delta-v for such a rendezvous mission.
Moreover, Venus takes an important role in the
rendezvous mission to 2020 XL5.

3. The direct low-thrust transfer trajectory from Earth to
2020 XL5 requires fuel consumption of 20.8%. This
aspect emphasizes that the EP system is significant for
saving fuel consumption in an interplanetary mission.

4. For the LTGA trajectory corresponding to the Earth–
Venus–Earth–Venus-2020 XL5 sequence, the fuel con-
sumption is 9.03%, demonstrating the effectiveness of

Figure 11. The Sun–Earth Jacobi constant of direct transfer trajectory (above)
and LTGA trajectory (below). Red color means the parts where the thruster
works, and green color in the transfer trajectory signifies the planetocentric
coasting parts.
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combining EP and multi-gravity assist techniques
compared to using either individually. Therefore, low-
thrust multi-gravity assist techniques are recommended in
the rendezvous mission to 2020 XL5.
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Appendix

In this appendix, some expressions about the conversion
between launch v∞ (transformed by vE∞ from Earth-centered
ecliptic reference frame to Earth-centered inertial frame) or
swingby v¥

 and the orbital elements of the parking orbit or
hyperbolic trajectory are listed.

For the parking orbit, the minimal admissible inclination is
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where the subscripts x, y, z represent the three components of
the vector in the reference frame. The longitude of ascending
node Ω is given by
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For the hyperbolic trajectory at swingby, the semimajor axis is
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Note that because the solution in Section 3 may not completely
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+ , which is like the swingby with DSM illustrated in
Figure 1. To obtain the hyperbolic trajectory without DSM, the
orbital elements are evaluated mainly based on the last part of
the hyperbolic trajectory where the spacecraft is going away
from the planet, and ∣∣ ∣∣v¥

+ is used. The eccentricity, inclination
and longitude of ascending node of the hyperbolic trajectory
are expressed as
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The true anomaly is zero at the periapsis.

References

Bate, R. R., Mueller, D. D., White, J. E., & Saylor, W. W. 2020, Fundamentals
of Astrodynamics (Mineola, NY: Courier Dover Publications)

Bertrand, R., & Epenoy, R. 2002, OCAM, 23, 171
Casalino, L., Colasurdo, G., & Pastrone, D. 1999, JGCD, 22, 637
Chen, S., Li, H., & Baoyin, H. 2018, Ap&SS, 363, 128
Connors, M., Wiegert, P., & Veillet, C. 2011, Natur, 475, 481

19

Research in Astronomy and Astrophysics, 24:015020 (20pp), 2024 January Yang, Xu, & Li

https://doi.org/10.1002/oca.709
https://doi.org/10.2514/2.4451
https://ui.adsabs.harvard.edu/abs/1999JGCD...22..637C/abstract
https://doi.org/10.1007/s10509-018-3334-x
https://ui.adsabs.harvard.edu/abs/2018Ap&SS.363..128C/abstract
https://doi.org/10.1038/nature10233
https://ui.adsabs.harvard.edu/abs/2011Natur.475..481C/abstract


de La Fuente Marcos, C., & de La Fuente Marcos, R. 2013, MNRAS: Letters,
432, L31

De la Fuente Marcos, C., & de la Fuente Marcos, R. 2014, MNRAS, 439, 2970
de la Fuente Marcos, C., & de la Fuente Marcos, R. 2015, MNRAS, 453, 1288
de la Fuente Marcos, C., & de la Fuente Marcos, R. 2021, RNAAS, 5, 29
Dvorak, R., & Schwarz, R. 2005, CeMDA, 92, 19
Elliott, I., Sullivan, C., Jr, Bosanac, N., Stuart, J. R., & Alibay, F. 2020, JGCD,

43, 1854
Englander, J. A., & Conway, B. A. 2017, JGCD, 40, 15
Fehlberg, E. 1968, NASA Technical Report , R-287
Folkner, W. M., Williams, J. G., & Boggs, D. H. 2009, IPN Progress Report,

42, 1
Gao, Y., & Kluever, C. 2004, Collection of Technical Papers—AIAA/AAS

Astrodynamics Specialist Conference, 2, 5088
Gao, Y., Lu, X., Peng, Y., Xu, B., & Zhao, T. 2019, AdSpR, 63, 432
Gobetz, F. W. 1963, AIAAJ, 1, 2034
Gooding, R. 1990, CeMDA, 48, 145
Haberkorn, T., Martinon, P., & Gergaud, J. 2004, JGCD, 27, 1046
Hargraves, C. R., & Paris, S. W. 1987, JGCD, 10, 338
Hui, M.-T., Wiegert, P. A., Tholen, D. J., & Föhring, D. 2021, ApJL, 922, L25
Hull, D. G. 2013, in Optimal Control Theory for Applications, ed.

F. Ling Frederick (New York, NY: Springer)
Jiang, F., Baoyin, H., & Li, J. 2012, JGCD, 35, 245
Johnson, F. T. 1969, AIAAJ, 7, 993
Lei, H., Xu, B., & Sun, Y. 2013, AdSpR, 51, 917
Lei, H., Xu, B., & Zhang, L. 2017, AdSpR, 60, 2505
Lifset, N., Golovich, N., Green, E., Armstrong, R., & Yeager, T. 2021, AJ,

161, 282
Malhotra, R. 2019, NatAs, 3, 193
Markwardt, L., Gerdes, D. W., Malhotra, R., et al. 2020, MNRAS, 492, 6105
Martinon, P., & Gergaud, J. 2010, PhD thesis, INRIA

McConaghy, T. T., Debban, T. J., Petropoulos, A. E., & Longuski, J. M. 2003,
JSpRo, 40, 380

Melbourne, W., & Sauer, C., Jr 1965, in Supporting Research and Advanced
Development, Space Programs Summary 37, 36, 14, 36 (Pasadena, CA:
California Institute of Technology) 14–19

Mingotti, G., Topputo, F., & Bernelli-Zazzera, F. 2012, CNSNS, 17, 817
Morante, D., Sanjurjo Rivo, M., & Soler, M. 2021, Aeros, 8, 88
Nicholson, S. B. 1961, ASPL, 8, 239
Okutsu, M., Yam, C. H., & Longuski, J. 2006, in Low-Thrust Trajectories to

Jupiter via Gravity Assists from Venus, Earth, and Mars (Keystone, CO:
AIAA/AAS Astrodynamics Specialist Conference and Exhibit), 6745

Olympio, J. 2008, PhD thesis, Citeseer
Petropoulos, A. E., & Longuski, J. M. 2004, JSpRo, 41, 787
Petropoulos, A. E., Longuski, J. M., & Vinh, N. X. 2000, AsDyn, 1999, 563
Pierson, B. L., & Kluever, C. A. 1994, JGCD, 17, 1275
Powell, M. J. 1970, A hybrid method for nonlinear equations, in Numerical

Methods for Nonlinear Algebraic Equations, ed. P. Rabinowitz (London:
Gordon & Breach Science Pub) 87–114

Santana-Ros, T., Micheli, M., Faggioli, L., et al. 2022, NatCo, 13, 447
Sheppard, S. S., & Trujillo, C. A. 2006, Sci, 313, 511
Sims, J. A. 1996, PhD thesis, Purdue Univ.
Sood, R., & Howell, K. 2019, JAnSc, 66, 247
Takao, Y., Mori, O., Matsushita, M., & Sugihara, A. K. 2021, AcAau, 181, 362
Vasile, M., & Campagnola, S. 2009, JBIS, 62, 15
Whiteley, R. J., & Tholen, D. J. 1998, Icar, 136, 154
Wiegert, P., Innanen, K., & Mikkola, S. 2000, Icar, 145, 33
Wiegert, P. A., Innanen, K. A., & Mikkola, S. 1997, Natur, 387, 685
Xu, R., Cui, P., Qiao, D., & Luan, E. 2007, AdSpR, 40, 220
Yang, H., Li, J., & Baoyin, H. 2015, AdSpR, 56, 837
Zhang, C., Topputo, F., Bernelli-Zazzera, F., & Zhao, Y.-S. 2015, JGCD,

38, 1501

20

Research in Astronomy and Astrophysics, 24:015020 (20pp), 2024 January Yang, Xu, & Li

https://doi.org/10.1093/mnrasl/slt028
https://ui.adsabs.harvard.edu/abs/2013ApJ...771L..31D/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJ...771L..31D/abstract
https://doi.org/10.1093/mnras/stu152
https://ui.adsabs.harvard.edu/abs/2014MNRAS.439.2970D/abstract
https://doi.org/10.1093/mnras/stv1725
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.1288D/abstract
https://doi.org/10.3847/2515-5172/abe6ad
https://ui.adsabs.harvard.edu/abs/2021RNAAS...5...29D/abstract
https://doi.org/10.1007/s10569-005-2630-2
https://ui.adsabs.harvard.edu/abs/2005CeMDA..92...19D/abstract
https://doi.org/10.2514/1.G004993
https://ui.adsabs.harvard.edu/abs/2020JGCD...43.1854E/abstract
https://ui.adsabs.harvard.edu/abs/2020JGCD...43.1854E/abstract
https://doi.org/10.2514/1.G002124
https://ui.adsabs.harvard.edu/abs/2017JGCD...40...15E/abstract
https://doi.org/10.1016/j.asr.2018.08.047
https://ui.adsabs.harvard.edu/abs/2019AdSpR..63..432G/abstract
https://doi.org/10.2514/3.1989
https://ui.adsabs.harvard.edu/abs/1963AIAAJ...1.2034G/abstract
https://doi.org/10.1007/BF00049511
https://ui.adsabs.harvard.edu/abs/1990CeMDA..48..145G/abstract
https://doi.org/10.2514/1.4022
https://ui.adsabs.harvard.edu/abs/2004JGCD...27.1046H/abstract
https://doi.org/10.2514/3.20223
https://ui.adsabs.harvard.edu/abs/1987JGCD...10..338H/abstract
https://doi.org/10.3847/2041-8213/ac37bf
https://ui.adsabs.harvard.edu/abs/2021ApJ...922L..25H/abstract
https://doi.org/10.2514/1.52476
https://ui.adsabs.harvard.edu/abs/2012JGCD...35..245J/abstract
https://doi.org/10.2514/3.5265
https://ui.adsabs.harvard.edu/abs/1969AIAAJ...7..993J/abstract
https://doi.org/10.1016/j.asr.2012.10.011
https://ui.adsabs.harvard.edu/abs/2013AdSpR..51..917L/abstract
https://doi.org/10.1016/j.asr.2017.09.020
https://ui.adsabs.harvard.edu/abs/2017AdSpR..60.2505L/abstract
https://doi.org/10.3847/1538-3881/abf7af
https://ui.adsabs.harvard.edu/abs/2021AJ....161..282L/abstract
https://ui.adsabs.harvard.edu/abs/2021AJ....161..282L/abstract
https://doi.org/10.1038/s41550-019-0697-z
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..193M/abstract
https://doi.org/10.1093/mnras/staa232
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.6105M/abstract
https://doi.org/10.2514/2.3973
https://ui.adsabs.harvard.edu/abs/2003JSpRo..40..380M/abstract
https://doi.org/10.1016/j.cnsns.2011.06.033
https://ui.adsabs.harvard.edu/abs/2012CNSNS..17..817M/abstract
https://doi.org/10.3390/aerospace8030088
https://ui.adsabs.harvard.edu/abs/1961ASPL....8..239N/abstract
https://doi.org/10.2514/1.13095
https://ui.adsabs.harvard.edu/abs/2004JSpRo..41..787P/abstract
https://doi.org/10.2514/3.21344
https://ui.adsabs.harvard.edu/abs/1994JGCD...17.1275P/abstract
https://doi.org/10.1038/s41467-022-27988-4
https://ui.adsabs.harvard.edu/abs/2022NatCo..13..447S/abstract
https://doi.org/10.1126/science.1127173
https://ui.adsabs.harvard.edu/abs/2006Sci...313..511S/abstract
https://doi.org/10.1007/s40295-018-00141-4
https://ui.adsabs.harvard.edu/abs/2019JAnSc..66..247S/abstract
https://doi.org/10.1016/j.actaastro.2021.01.020
https://ui.adsabs.harvard.edu/abs/2021AcAau.181..362T/abstract
https://doi.org/10.1006/icar.1998.5995
https://ui.adsabs.harvard.edu/abs/1998Icar..136..154W/abstract
https://doi.org/10.1006/icar.2000.6339
https://ui.adsabs.harvard.edu/abs/2000Icar..145...33W/abstract
https://doi.org/10.1038/42662
https://ui.adsabs.harvard.edu/abs/1997Natur.387..685W/abstract
https://doi.org/10.1016/j.asr.2007.03.025
https://ui.adsabs.harvard.edu/abs/2007AdSpR..40..220X/abstract
https://doi.org/10.1016/j.asr.2015.05.013
https://ui.adsabs.harvard.edu/abs/2015AdSpR..56..837Y/abstract
https://doi.org/10.2514/1.G001080
https://ui.adsabs.harvard.edu/abs/2015JGCD...38.1501Z/abstract
https://ui.adsabs.harvard.edu/abs/2015JGCD...38.1501Z/abstract

	1. Introduction
	2. Methodology
	2.1. Determination of Swingby Number and Sequence
	2.2. Optimization of LTGA Trajectory in Two-body Dynamics
	2.2.1. Time-free Fuel-optimal Problem for LTGA Trajectory
	2.2.2. Global Search with ICEA Algorithm

	2.3. Design of LTGA Trajectory in Multi-body Dynamics
	2.3.1. Time-fixed Fuel-optimal Problem Without Swingby in Multi-body Dynamics
	2.3.2. Patched-arc Model for Optimization of LTGA Trajectory


	3. Results
	3.1. Swingby Sequence for Rendezvous to 2020 XL5
	3.2. Global Search for Basic Parameters
	3.3. LTGA Trajectory from Earth to 2020 XL5 in Multi-body Dynamics

	4. Conclusions
	Appendix
	References



