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Abstract

Covariance of the orbital state of a resident space object (RSO) is a necessary requirement for various space
situational awareness tasks, like the space collision warning. It describes an accuracy envelope of the RSO's location.
However, in current space surveillance, the tracking data of an individual RSO is often found insufficiently accurate
and sparsely distributed, making the predicted covariance (PC) derived from the tracking data and classical orbit
dynamic system usually unrealistic in describing the error characterization of orbit predictions. Given the fact that
the tracking data of an RSO from a single station or a fixed network share a similar temporal and spatial distribution,
the evolution of PC could share a hidden relationship with that data distribution. This study proposes a novel method
to generate accurate PC by combining the classical covariance propagation method and the data-driven approach.
Two popular machine learning algorithms are applied to model the inconsistency between the orbit prediction error
and the PC from historical observations, and then this inconsistency model is used for the future PC. Experimental
results with the Swarm constellation satellites demonstrate that the trained Random Forest models can capture more
than 95% of the underlying inconsistency in a tracking scenario of sparse observations. More importantly, the trained
models show great generalization capability in correcting the PC of future epochs and other RSOs with similar orbit
characteristics and observation conditions. Besides, a deep analysis of generalization performance is carried out to
describe the temporal and spatial similarities of two data sets, in which the Jaccard similarity is used. It demonstrates
that the higher the Jaccard similarity is, the better the generalization performance will be, which may be used as a
guide to whether to apply the trained models of a satellite to other satellites. Further, the generalization performance
is also evaluated by the classical Cramer von Misses test, which also shows that trained models have encouraging
generalization performance.
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1. Introduction

Space Situational Awareness (SSA) encompasses intelligence
and surveillance of all space objects, prediction of space events,
possible collisions, threats, and activities (Bobrinsky & Del
2010). SSA-related tasks include collision probability computa-
tion (Xu & Xiong 2014), sensor tasking and scheduling (Jiang
et al. 2017), uncorrelated track (UCT) association (Liu et al.
2021), catalog maintenance, and anomaly detection, etc.
Common among these applications is that a proper uncertainty
characterization of the orbit state of an individual resident space
object (RSO), mainly referring to the orbital covariance (Poore
et al. 2016), is required. Unrealistic covariance could lead to
failure in predicting collisions, false correlation between UTCs
and RSOs, inefficient use of sensor resources, and undetected
maneuvers. The notion of covariance realism is not without
precedent, but a clear definition has been often out of reach
(Vallado & Seago 2009). In other tracking domains, the term of
covariance consistency is used in place of the term covariance

realism (Drummond et al. 2007), which describes the proper
characterization of the covariance of the state of a system.
Covariance realism requires the estimate of the mean to be the
true mean (namely, the estimate is unbiased) and the covariance
to possess the right size, shape, and orientation (namely,
consistency). Most often, covariance realism is synonymous
with the covariance accuracy, gauged by comparing the
predicted covariance (PC) with the truth orbit prediction error
(PE) (Vallado & Seago 2009).
In the orbit dynamics field, an estimate of the orbit state and

its covariance matrix is obtained from an orbit determination
(OD) process with available measurements, and then the state
and covariance are propagated forward, namely orbit prediction
(OP), in which the PC describes a certain accuracy envelope of
the predicted orbit state. In this process, the orbital dynamics is
usually assumed to be deterministic, and the measurement errors
are of Gaussian distribution and regarded as the only uncertainty
source. Thus, the estimated covariance matrix only accounts for
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the measurement noises, known as the noise-only covariance
(Montenbruck & Gill 2000), also called formal state covariance
(Lopez et al. 2021). In this way, other sources of uncertainty,
such as force model errors, are typically not accounted for
during the OD and subsequent OP. This usually leads to an
overly-optimistic or conservative covariance matrix, eventually,
causing the accuracy loss of covariance realism.

Techniques of achieving better covariance realism continue to
be increasingly needed by the Space Surveillance and Tracking
(SST) and Space Traffic Management (STM) operators
(Montenbruck & Gill 2000). A number of statistical techniques
have been developed by researchers with various degrees of
success to produce relatively realistic covariance. The
mechanisms used by space communities differ in their
realizations, and can be sorted into two main types: (1) scaling
methods, which inflate the covariance by certain factors with the
purpose of increasing the volume of a Gaussian ellipsoid based
on statistical metrics; some researchers propose to compute such
scale by increasing the initial position uncertainty to match the
velocity error, whereas another option is to employ the
Mahalanobis distance of the orbital differences to find the scale
factor; (2) State Noise Compensation (SNC)method, which uses
a process noise matrix to consider the uncertainties in the
dynamics system or measurements. A well-known example is
the realistic covariance predictions of the Earth Science
Constellation satellites: Aqua, Aura, and Terra (Junkins et al.
1996; Duncan & Long 2006; Pawloski et al. 2018). It is
necessary to clarify that the Consider Analysis method is
another example of the SNC technique which accounts for
modeling uncertainties in the covariance estimation and
prediction. Besides, there exist other techniques conceived to
improve covariance realism instead of modeling the sources of
uncertainty. For instance, state and covariance representation in
mean orbital elements (Junkins et al. 1996) and in the nonlinear
reference frames (Aristoff et al. 2021) are widely studied to
prolong the realism maintenance upon propagation. These
methods have been widely used and achieved great improve-
ments in covariance realism. However, they have limitations of
various degrees from a practical point of view. The scaling
method lacks physical insight and only relies on a statistical
analysis of empirical data to provide covariance corrections. It is
difficult to be generalized or extrapolated since the scaling
factors are not linked to any physical process. The SNC method
requires a significant amount of tuning, and this tuning is prone
to failure. Moreover, the type of dynamics in the SNC method
appears limited by the pre-assumed Gauss-Markov functional
form. Appending dynamics parameters to the state can be an
effective method for recovering dynamics, but it requires a
known noise pattern for those unmodeled dynamics.

With the employment of more accurate sensors and the
growing population of RSOs (Zhang et al. 2022), the potential
number of newly discovered objects is likely to increase by an
order of magnitude within the next decade, thereby placing an

ever-increasing burden on current operational systems. The
above limitations have made existing techniques ill-suited for
future needs. Moving forward, the implementation of new,
innovative, robust, and intelligent methods for covariance
realism is required to enable the development and maintenance
of the present and future space catalog and to support the overall
SSA mission.
Machine learning (ML) techniques have been developed

significantly in recent years and promise viable approaches
within the space domain's solution space to augment,
supplement, and potentially replace traditional methods with
encouraging performance. Different algorithms and tools have
been developed and utilized in the SSA domain. Liu and
Schreiber reported the application of a deep neural network for
an automatic classification scheme for space objects based on a
single track of a photometric light curve (Liu & Schreiber 2021).
Mereta et al. showed that in the case of multi-revolution
transfers between near-earth objects (NEOs) the ML approach is
vastly superior to the commonly used impulsive Lambert
estimate (Mereta et al. 2017). Shen et al. developed both
manifold and deep learning methods to determine the space
object behavior pattern classification (Shen et al. 2019). Curzi
et al. proposed a novel approach to estimate TLE prediction
errors using recurrent neural network (Curzi et al. 2022).
Moreover, using ML modeling techniques to reduce OP errors
shows promising results. Peng and Bai studied the support
vector machine, Gaussian Processes, and artificial neural
network to improve the OP accuracy (Peng & Bai 2018, 2019,
2021). Li et al. achieved better than 70% OP accuracy
improvement by applying the ML-predicted OP errors to
correct the physics-based OPs, and the 7 days OP errors were
reduced from hundreds or even thousands of meters to only tens
of meters through the error correction obtained from the learned
error models (Li et al. 2020, 2021). These applications clearly
show the excellent capability of ML in SSA, which prompts
authors to apply ML methods to achieve better covariance
realism.
In order to achieve better covariance realism, various

approaches have been attempted, including new propagation
methods, reference frames representing covariance, and
calibration methods. In this paper, we aim to improve the
realism of the propagated covariance by the calibration
approach, a novel method is proposed to produce more realistic
covariance through the combination of the classical error
propagation model and the data-driven model. The evolution
pattern of the inconsistency between the error of the propagated
orbit (PE) and the PC is learned by the ML method from
historical data and is then used to produce realistic covariance
for future epochs via the error compensation. A complete ML
framework for the improved covariance realism is implemented
in three steps, including constructing the data set of the
inconsistency between PC and measured PE, training error
models with ML methods, and correcting the future PC using
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ML-predicted inconsistency. In the developed ML framework,
the trained inconsistency model can be used as a corrector to the
physics-based orbit error prorogation system. Thus, accurate
covariance can be obtained over a long duration if the trained
ML model captures the majority of the inconsistency.

In what follows, the generation of state and its associated initial
covariance, as well as their predictions, are described in Section 2.
The implementation of the ML method to improve the covariance
is given in Section 3. In Section 4, experiments with sparse satellite
laser ranging (SLR) data of the low-Earth-orbit (LEO) Swarm
satellites are conducted to show the performance of the proposed
method. In the final section, some conclusions are drawn.

2. Statistical Characterization of Orbit Prediction
Errors

In the real orbital data process, the initial orbit covariance
(IOC) is generated as a part of an OD solution and then
propagated forward with the linear or nonlinear models. Ideally,
the PC provides appropriate information of the PE over the
prediction time span. In this section, the fundamental
computations of the PC and PE are presented.

2.1. PC Generation

An accurate orbit state is determined from an orbit estimation
process, and the batch least-square (BLS) is typically used to
provide a best-fit orbit matching the available observations
(Montenbruck & Gill 2000). IOC is also obtained in the BLS
OD system, providing a measure of the variability and
correlation of the estimated orbit state parameters. A
mathematical description of the IOC matrix can be found in
Ref. (Vallado & Seago 2009). The IOC at the initial epoch t0,
denoted as P(t0), is expressed as

( ) ˆ ( ) ( )s= -P A WAt 1T
0 0

2 1

where A is the partial-derivative matrix (partial derivatives of
the measurements with respect to the estimated parameters); W

is the weight matrix of the measurements, and ŝ0
2 is the posterior

unit variance.
However, Equation (1) disregards the inherent uncertainty of

dynamic and measurement models. In this sense, P(t0) is
commonly found to underestimate the true characterization of
the estimated orbit state uncertainty. Evidence of this
phenomenon is abundant in literature (Junkins et al. 1996;
Duncan & Long 2006; Lopez et al. 2021). For the sake of
simplicity and efficiency, linear dynamics and linear propaga-
tion of covariance are assumed. Linear covariance propagation
is an analytical method that is relatively straightforward, in
which the IOC is propagated from t0 to the future epoch t using
the state transition matrix ( )F t t, 0 as follows

( ) ( ) ( ) ( ) ( )F F=P Pt t t t t t, , , 2T
0 0 0

where P(t) is the propagated covariance matrix at t.

The diagonal elements of P(t) yield the variances of the
position and velocity components while the off-diagonal terms
are a measure of the correlation between errors of individual
components. The final size of P(t0) is a 6× 6 matrix, which
means that the uncertainties in the dynamical parameters such as
drag or solar radiation pressure coefficients are not included,
such that the unmodelled dynamical parameter uncertainty will
contribute to the inconsistency of the PC. To better understand
the error characteristics, the covariance in the Cartesian
coordinate system is usually transformed into the RSW
coordinate system, where R, S, and W represent the radial, in-
track (in-plane normal to radial), and cross-track directions,
respectively (Vallado 2007). In the following, σP is used to
denote the square root of the variance of a position or velocity
component in the RSW coordinate system. Considering that a
principal application of the covariance is in the conjunction
assessment (CA) of space objects, where only the position
portion of the covariance is used, it is reasonable to focus only
on the position portion of the covariance. So, in our study, only
the position covariance, denoted as ( )s s s, ,R

P
S
P

W
P , is concerned,

and the velocity covariance will not be discussed in the
following.

2.2. PE Generation

PE, the difference between the OPs and their “truth” or
precise ephemerides, is a measure to assess the accuracy of state
predictions. The position differences are calculated and then
expressed in the RSW coordinate frame for the orbit error
analysis. The root mean square (RMS) value of PEs for each
position component is computed in a preset interval (e.g., an
orbital period), and used as a measure of the PE magnitude,
representing the 1σ error. This process is basically the same as
that in Ref. (Duncan & Long 2006). In the following, the
computed positional sigma errors, denoted as ( )s s s, ,R

C
S
C

W
C , are

regarded as the realistic magnitude of the state uncertainty in the
OD and OP process.
In theory, if the PC is accurate, it should be consistent with the

computed σC, that is, the magnitudes of σC and σP should be
close to each other to some extent. Figure 1 shows an example of
inconsistency between σC and σP. So, the problem turns out to
bridge the gap between σP and σC. Hence, the inconsistency or
the gap is computed as

( )s s= -e 3C P
dir
gap

dir dir

where edir
gap is the inconsistency between sP

dir and sC
dir, dir ä R,

S, W.
Because σC is computed from the differences between the

propagated orbit and the “truth” orbit, it is regarded as reliable.
In this sense, the inconsistency is mostly due toσP. The key idea
of this study is to model the inconsistency and then apply the
modeled inconsistency pattern to correct PC, such that the
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inconsistency between the corrected σP and σC is significantly
reduced.

3. Development of ML Framework

In our previous studies (Li et al. 2020, 2021), an ML
framework to improve OP accuracy has been developed. This
study expands the ML framework to include the capability of
modeling the inconsistency, defined in Equation (3). The
modified ML framework is illustrated in Figure 2.

3.1. Data Source

Given that optical and radar measurement data is difficult to
obtain, and emulated measurements may not fully simulate real
observation scenes, so, in this study, we consider the single-
station SLR tracking scenario. The tracking station is
Changchun SLR station (CHAL), China, with its geodetic
latitude of 43°79, the longitude of 125°44, and altitude of
274.90 m. In the single-station SLR tracking scenario, the

collected consolidated ranging data (CRD) tracklets are sparse,
mostly less than three passes daily for an SLR satellite. The
CRD is available at the International Laser Ranging Service
(ILRS) data center (ftp://cddis.gsfc.nasa.gov/). Also, the
precise Consolidated Prediction Format (CPF) orbits of the
SLR satellites are downloaded and used as the reference to
compute the PE.
Training data samples are generated based on a consistency

analysis of orbital differences between the reference orbits and
predicted orbits, which are from independent ODs using the
SLR data. The graphical representation of the orbital differences
is depicted in Figure 3. Furthermore, the orbital differences are
time-tagged, forming the population of the PEs and associated
PCs with respect to the prediction time length.
Sufficient statistical samples for the MLwould be acquired by

considering a sufficient number of independent orbits. To
compute the orbital differences between the reference and
predicted orbits, two additional steps are performed:

Figure 1. Schematic illustration of the inconsistency between PC and PE.

Figure 2. ML framework for improved covariance realism.
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1. Requirement on the number of data points per track, for a
track to be used in the OD, it must have at least three data
points.

2. Requirement on the number of tracks within 3 days, for an
OD process to be successfully completed, there are at least
2 tracks available over 3 days (the OD span used in this
study).

The sliding-window manner favored by NASA (Pawloski
et al. 2018; Duncan & Long 2006) has been implemented
and is also demonstrated effective in the work (Li et al.
2020; Lopez et al. 2021). In this study, the sliding step is set
as 1 day.

For clarity, we briefly introduce the OD strategy and settings
used in this study. The equations of motion of an Earth-orbiting
satellite in the Earth-centered inertial (ECI) coordinate system
is given by a system of three second-order differential
equations of

̈ ( )m= - +r
r
r

a 4
3 per

where r and ̈r, are the satellite’s position and acceleration
vectors in the ECI frame, respectively; μ=GM is the Earth
gravitational constant; aper is the perturbation acceleration
vector.

In our experiments, the main perturbations considered are
listed in Table 1. An orbit determination and analysis software
for processing the ranging observations is developed by Li et al.
(Li et al. 2020). It applies the Cowell integrator to propagate
satellite position and velocity vectors in Equation (4), and the
BLS algorithm for the optimal estimations. In the BLS OD
process, three days’ laser tracking arcs of a satellite are used to
compute the optimal estimation of the state. Commonly, model
parameters, such as Cd and Cr, may be estimated. However,
given the sparsity of tracking arcs, only the position and velocity
of the satellite are estimated. The OD fit span is set starting at the
epoch time of the first tracking arc. The initial orbit state is

computed from the latest TLE before the OD fit span. Further
details about the orbit estimation strategy can also be found in
Ref. (Li et al. 2020).

3.2. Learning Features

ML method works on sample data (training and testing data)
to learn the hidden pattern. For a given problem, the success of
the learning relies strongly on data preparation. Generally, the
sample data consists of the input Z, usually a vector, and the
output Y. The objective of the learning is to capture the mapping
Y= f (Z). Therefore, it is imperative that the sample data should
be well-prepared. Determining the target variable Y is always
straightforward. In this study, the target variable Y is the
inconsistency defined in Equation (3). But the choice of feature
variables is subjective, as there are many latent features affecting
Y. Fortunately, most ML algorithms are not sensitive to
irrelevant feature variables. Theoretically, the more feature
variables are included in Z, the more accurate but complex the
trained model would be. Therefore, it is usually favorable to take
into account the main feature variables that affect Y in ML
learning.

Figure 3. OD sliding windows for generating PE and PC.

Table 1
OD Setting in Force Modeling

Parameters Modeling

Earth Geopotential Model 30 × 30 Joint Gravity Model
(JGM) -3

Non-Central Bodies Sun, Moon (JPL DE200
Ephemeris File)

Atmospheric Density Model MSIS86
Ocean Tide Model CSR
drag coefficient Cd 2.2
solar radiation pressure coefficient Cr 1.1
Numerical Integrator Cowell Integrator with 60 s step size
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According to the orbit dynamics theory, the factors that affect
edir
gap at a specific epoch ti should be considered. At some time ti,
the predicted state x̂ti, the PC Pti, the initial orbit state x̂t0, and the
IOC P(t0) are all obtained from the OD and OP process together
with the observation information. The reference CPF state xti is
also available. Based on these key elements, the feature
variables included in Z can be determined as:

1. The prediction duration Δtj= tj− ti. This variable is
important, since the longer the prediction time, the larger
the inconstancy would be.

2. Initial orbit state x̂t0 for state propagation. x̂t0 in both the

form of classical orbital element (COE), x̂t
COE
0

, and the
form of Cartesian coordinates of the ECI position and
velocity (six-dimensional), x̂t

ECI
0

, are used. They contain
necessary orbit characteristics of a RSO, such as the orbit
altitude, period, shape, and state.

3. The predicted state x̂ti, expressed in the COE form as

x̂t
COE
i

, and the ECI position and velocity form x̂t
ECI
i

. They
are used to compute the sigma errors σC.

4. The properties of measurements used in the ODs denoted
as Obsproperties, such as the number of tracks Npass, the
number of data points of a track Npoints, observation time
duration of a track Nduration, the starting time ts of each
track within OD span, maximum elevation angle el over a
track, and the corresponding azimuth angle az. The
starting time ts and the (el, az) pair reflect the temporal
and spatial distribution of measurements. The above
factors have a direct influence on the accuracy of IOC,
thus affecting the growth rate of the inconsistency.

5. The OD accuracy, RMS. This variable reflects the
accuracy of OD results.

The target variable Y refers to the inconsistency as:

1. egap at time ti, expressed in the RSW coordinate system as
egap= [eR

gap,eS
gap,eW

gap], where eR
gap, eS

gap, and eW
gap denote the

radial, in-track, and cross-track position inconstancy,
respectively.

Given the feature and target variables defined above, a sample
of the training/testing data is formed as (Z, Y), where Z = [Δtj,
x̂t

COE
0

, x̂t
ECI
0

, x̂t
COE
i

, x̂t
ECI
i

, Obsproperties, RMS], and Yä egap.
Based on the above configuration of (Z, Y), there exists an

implicit mathematical relation that maps Z to Y. With the well-
prepared samples generated in a sliding-window manner and the
well-designed feature variables, the mapping function, defined
as ˆ ( )= ZY f , is hopefully found through the ML training, if this
mapping exists. Then, the trained ML model is expected to find
the relationship between the PC and PE. In particular, if data
beyond the learning period, or at a future epoch, are input into
the trained model, the model is expected to make good
predictions about the relationship between the PC and PE at
the epoch. The correction to PC can be performed as below.

TheML-predicted inconsistency, denoted as eML
gap is computed

by

ˆ ( ) ( )=e Zf 5gap
ML

where eML
gap is the predicted gap corresponding to given data Z.

Then, the predicted gap is applied to correct the propagated
sigma, σP, such that a modified sigma, σML, is obtained by

( )s s= + e 6PML
ML
gap

where σML is the modified sigma that will replace the original
σP in applications.
The residual error Δe corresponding to σML is

( )D = -e e e 7gap
ML
gap

It is expected that Δe, the inconsistency between σC and
σML, should be significantly less than σgap if the ML models
capture the underlying pattern.
The performance of the learned ML model can now be

assessed using the following metric

∣ ∣

∣ ∣
( )å

å
=

D
´=

=

e

e
P 100% 8i

n

i

nML
1

1
gap

where n is the number of training or testing samples.
In the mathematical sense, PML measures the percentage of

the residual errorΔewith respect to the true inconsistency of the
training or testing data. The lower the PML value is, the more
errors are corrected, thus the better the performance of the
trained ML models would be. The metric reaches its lower
boundary of zero when eML

gap is identical to egap, but has no upper
boundary. When the PML is larger than 100%, it means the
models are invalid in compensating the covariance
inconsistency.

4. Experimental Results

The developed ML framework is applied to train the orbit
covariance inconsistency models of three Swarm satellites. To
implement the ML framework, the boosting tree (BT) and
random forest (RF) (Friedman et al. 2000) are employed. These
two models are both based on the decision tree, have high
accuracy with moderate computation complexity, are versatile
in case of large data sets having high dimensionality, and have a
high degree of interpretability (Molnar 2020). Sharing well
reputation in the ML community, these two models of different
mechanisms are chosen to validate each other and to
demonstrate the effectiveness of the ML framework. More
details about BT and RF models are referred to in Ref. (Russell
& Norvig 2003). In the experiments, the propagated orbits and
PC are obtained from the OD/OP system first. Then, the CPF
orbits are used as references to compute the PE. Lastly, the PC
is calibrated by the learned ML model such that the
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inconsistency between the corrected (sR
P, sS

P, sW
P ) and (sR

C, sS
C,

sW
C ) is reduced.
To demonstrate the learning and generalization capabilities of

the ML models, the three satellites in the Swarm constellation
are chosen as the test objects. The three identical satellites,
named Alpha, Bravo, and Charlie (or A, B, and C), were
launched into three near-polar orbits on 2013 November 22.
Swarm A and Swarm C form the lower pair of satellites flying
side-by-side (1°.4 separation in longitude at the equator) at an
altitude of 460 km and at the inclination of 87°.4, whereas
Swarm B is cruising at a higher orbit of 520 km and at 88°
inclination angle. Orbit parameters of the Swarm satellites are
summarized in Table 2.

4.1. Statistical Characterization of Tracking Data in OD

The pattern of the inconsistency between the PC and PE is to
be learned from historical data. The SLR tracking data of the
Swarm satellites at CHAL in 2021 January have the distribution
properties shown in Figure 4. The left of Figure 4 represents the
distribution of the data points of each arc, and the right
represents the distribution of the pass durations. The bottom of
each box is the first quartile, the top of the box is the third
quartile, and the line inside of the box is the median.

From Figure 4, it can be found that Swarm A and Swarm C
have similar distributions of data points and track durations
owing to their pair-flying attribute, while Swarm B has the best
distributions among the three satellites. There are 35, 27, and 26
tracks in 2021 January for Swarm A, Swarm B, and Swarm C,
respectively. The average track duration of each satellite is

88.4 s, 157.7 s, and 83.7 s, with their corresponding average
number of data points per track being 17, 29, and 16.
With the available data gathered by the CHAL station within

90 days from January to April in 2021, the BLS OD with a 3
days fit span is carried out, and the OD span is sliding forward
with a 1 day step. 35/56/43 OD runs are successful for Swarm
A, Swarm B, and Swarm C, respectively, and each of these
successful OD runs produces the initial orbit state and IOC,
which are then propagated forward for 7 days from the end of
the OD span, generating the required PC and PE. Here, the 7
days OP is believed sufficient for a timely and reliable SSA
application.

4.2. Inconsistency between PC and PE

Examination of the statistical characterization of PC and PE
reveals that PC is a very poor representation of PE dispersion.
Figure 5 displays an example growing trend of the position
components of PC and PE of Swarm A over a 7 days OP time
span. It is noted that each PC/PE point is computed once for
1.5 hr.

Table 2
Orbit Parameters of Swarm Satellites

Parameters Swarm A (Alpha) Swarm C (Charlie) Swarm B (Bravo)

Altitude 460 km 460 km 520 km
Inclination 87°4 87°4 88°
Period 5618 s 5618 s 5618 s
Eccentricity 0.00139 0.00139 0.00139

Figure 4. SLR data distributions of Swarm satellites in January 2021 at CHAL station.
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Figure 5 clearly shows the inconsistency between the PC
(blue dots) and the PE (red dots) when only sparse data is
available. That is, (sR

P, sS
P, sW

P ) greatly underestimate (sR
C, sS

C,
sW

C ) during the OP time span. (sR
P, sW

P ) are virtually not
growing. While the in-track position error sS

P is significantly
larger than the other two components with its magnitude
reaching nearly 40 km at the end of 7 days, similar results can
be noticed in Duncan & Long (2006). Because the in-track
position error contributes the most to the position error, great
attention is paid to the model training of inconsistency in the
in-track position component. It is observed that at the end of
the 7 days propagation, the ratio of PC to PE in the in-track
direction is about 0.015, the magnitude of this kind of ratio is
also found in references (Zaidi & Hejduk 2016), and the level
of PC is within the range of what is considered normal for this
type of analysis.

It is very intuitive to see that the gaps between (sR
P, sS

P, sW
P )

and (sR
C, sS

C, sW
C ) increase as the prediction time increases. It is

also clear that PC does not provide the proper characterization of
the true orbit prediction errors. In fact, they are too conservative
or “optimistic” to describe the errors of the predicted orbits.

Figure 6 shows the inconsistency values in the S direction
over 7 days OP span of Swarm A from the whole data set in 3
months. Examination of Figure 5 has shown that the in-track
position gap is significantly larger than the other two
components. In this figure, different growth trends can be
observed, and this can be explained by the fact that the dynamic
model errors and observation conditions produce different OP
accuracy. So, technically speaking, the more diverse

observation properties contain, the more inconsistency patterns
can be displayed.

4.3. ML Model on the Training and Testing Data

The 3 months time span is divided into a 1 month training
period and a 2 months validation period. That is, the data in
January are used to train the models. To avoid overfitting, the
Cross-Validation (CV) that splits the data set in the training
period into training and testing data is applied. Randomly
chosen 70% of the whole data set is used to train the model for
each of the R/S/W directions while the remaining 30% is used
to evaluate the performance of the learned models. As discussed
earlier, the feature variables of the testing data are the input to
the model, and the output is the ML-predicted covariance
inconsistency in each direction.
Figure 7 presents the results of the trained BT (left) and RF

(right) models on Swarm A training data (3137 samples). The
horizontal axis represents the prediction duration. In the figure,
the green dots are the “true” inconsistency σgap_true and the red
dots are the ML-predicted inconsistency σgap_pred. It is intuitive
to see the RF models perform better. It can be seen that the red
dots with the BT model, on the left of the figure, are more
dispersed, while the red dots with the RF model, on the right of
the figure, are much closer to the “true” green dots, or even
overlapped. The performance metric PML of the BT model is
35.7%, 34.9%, and 20.1% for the radial, in-track, and cross-
track inconsistency, respectively. Great improvement can be
noticed when the RF model is used, with the PML being 1.2%,
1.5%, and 0.4% for the radial, in-track, and cross-track

Figure 5. PC compared with PE in the RSW coordinate system, Swarm A.
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inconsistency, respectively, indicating that the trained models
have captured about 99% of the underlying pattern. Therefore,
the conclusion can be made that the trained models capture the
inconsistency in the training data set very well. Similar results
are obtained for Swarm B and Swarm C.

Figure 8 shows the results of the performance of the trained BT
(left) and RF (right)models on the testing data (1344 samples) for

Swarm A. These two models show a slight drop when they are
used on the testing data. Meanwhile, the RF model outperforms
the BT model. It is intuitive to explain that if the trained model
performs poorly on the training data, it is difficult to obtain
satisfactory predictions on the testing data.
Table 3 gives the PML values of the trained models on the

training data and testing data for all Swarm satellites.

Figure 6. The inconsistency over the 7 days OP span, Swarm A.

Figure 7. Results of the trained BT (a) and RF (b) models on the training data (3,137 samples), Swarm A.
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In Table 3, it can be seen that all PML values are below 50%
for both the BT and RF models, indicating more than half of the
inconsistency errors can be corrected by the trained models.
Moreover, the trained RF models are much more powerful than
the trained BT models in capturing the inconsistency patterns on
the same training and testing data, with the PML all less than 5%
in all three directions for all the satellites. Overall, the developed
ML framework is capable of capturing the majority of the
underlying inconsistency pattern with well-designed samples. If
the learned patterns agree well with the realistic patterns, the
trained models can be employed to predict the inconsistency in
future epochs.

4.4. Generalization of ML Model to Future Epochs

For practical applications, one is more concerned with the
performance of the trainedMLmodels on new data in the future.

So, a desirable ML model should have good generalization
capability, that is, making good predictions with new input
beyond the training period. In this study, after the trained models
on the inconsistency are obtained from the use of the historical
covariance inconsistency data set, it can be generalized to future
epochs to predict new inconsistency at these epochs. Thus, the
improved covariances are obtained via the model compensation.
In order to demonstrate the generalization capability of

the trained ML models on the data beyond the training period,
the data in 2021 January are used to train the ML models, and
the data in February and March are used as the validation data
for the evaluation of capability in the generalization into future
of the trained ML models. The performance metric PML of the
ML models on the validation data is shown in Figures 9–11.
Since the in-track error contributes the most to the position error,
in this section, only the in-track component is displayed. In each
of these figures, the improvement in terms of the percentage of

Figure 8. Results of the trained BT (a) and RF (b) models on the testing data (1,344 samples), Swarm A.

Table 3
Performance PML of the BT and RF Models in Fitting the Training and Testing Data

BT RF

Objects σR σS σW σR σS σW

train/test train/test train/test train/test train/test train/test

Swarm A 35.7%/35.9% 34.9%/36.9% 20.1%/21.3% 1.2%/2.8% 1.5%/3.8% 0.4%/1.0%
Swarm B 39.0%/40.8% 49.2%/49.3% 36.7%/37.4% 0.6%/1.7% 1.2%/3.3% 0.5%/1.4%
Swarm C 45.2%/50.8% 34.0%/36.0% 23.6%/24.7% 0.7%/1.9% 1.6%/4.2% 0.2%/0.6%
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every single validation case is presented. Besides, panels (a) and
(b) in each figure show the predicted gap when the model
performs best (lowest in PML metric value) and performs worst
(highest in PML metric value), with panels (c) and (d) showing
the residual errors after the corrections are made to PC.

Observing Figures 9–11, there are 16/30/28 validation cases
for Swarm A, Swarm B, and Swarm C, respectively. It reveals
that the RF and BTmodels behave similarly and both show good
generalization ability. The means of PML of the trained BT and
RF models on the validation data are all below 50%. The trained
models perform best on the swarm B data set, with the mean
PML metrics of RF and BT models at 25.4% and 26.7%,
respectively. This means that the ML-predicted inconsistency
over the 7 days OP time span is significantly reduced compared
with the original one, confirming the models capability of the
generalization into the 2 months after the training time. The
trained models of Swarm A are poorer in generalization ability,
with the mean PML values at nearly 50%, while the trained
models of Swarm C perform moderately. It is also seen that the
PML on the validation data is generally larger than that on the
training data. This is owing to the variations of the orbital
environment which cause the inconsistency pattern in the
validation time to deviate from the pattern in the training time. In
each of these figures, the best-performed predictions and the
worst-performed predictions have also been shown in panels (a)
and (b), respectively, with the corresponding residual errors
shown in (c) and (d).

Taking Swarm A in Figure 9 as an example, panel (a) shows
the predicted gap when the PML metric value is 19.7% and 6.5%
for RF and BT models, respectively. It can be seen that the eBT

gap

are closely aligned with the egap, while the eRF
gap are generally

higher than the egap, but within a well-accepted margin. In panel
(b), the predicted gaps, when the PML metric value is 76.2% and
74.1% for RF and BT models, respectively, are shown. It clearly
shows that despite the predictions eBT

gap and eRF
gap making the

corrected PCs closer to PEs, the improvement is far less
impressive. Similar results can be observed in Figures 10
and 11.
In summary, the trained models for each satellite have the

remarkable capability of generalization into the future, and a
reduction of the inconsistency is achieved for all satellites,
achieving a better covariance realism.

4.5. Generalization of ML Model to Other Satellites

In this section, the generalization capability of trained models
of a satellite into other satellites is examined, which is highly
important for the SSA applications, since there may be no
sufficient samples for training a desirable model of other RSOs.
So, the question is whether the learned models of a specific RSO
can be applied to other RSOs that result in improved covariance
realism.
Here, the trained models of Swarm A are applied to Swarm B

and Swarm C. The Swarm A models are trained using all data
over the 3 months. The validation data is also over the same 3

Figure 9. Improved covariance realism beyond the training period, Swarm A.
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Figure 10. Improved covariance realism beyond the training period, Swarm B.

Figure 11. Improved covariance realism beyond the training period, Swarm C.
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months. The performance of Swarm A model's generalization to
Swarm B is summarized in Figure 12. It is observed that the
mean metric PML exceeds 100%, reaching 282.1% and 400% for
the RF and BT models, respectively, which indicates the trained
models have very poor capability of generalization to Swarm B.
As can be seen in Figure 12(a) and (b), the predicted gap, eRF

gap

and eBT
gap given by the RF and BT models, are about 40 km at the

end of the 7 days OP span, while the true inconsistency egap is
about 10 km. An obvious reason is that the two satellites are at
different altitudes, one at 460 km and the other at 520 km. This
causes the data conditions and orbital environment, especially
the atmospheric drag conditions, for the two satellites
significantly different, and thus the inconsistency patterns of
Swarm B would be significantly different from those of Swarm
A. As a result, the trained models of Swarm A unlikely to
contain all the patterns of Swarm B, and this causes large
fluctuations of the predicted inconsistency when the Swarm A
models are applied to Swarm B. This phenomenon would be
further analyzed from the perspective of data similarity in
Section 4.6.

On the other hand, the generalization performance of Swarm
A models to Swarm C, shown in Figure 13, is much better. The
mean PML values are 21.1% and 36.7% for RF and BT models,
respectively, and the performance of the RF model is better than
that of the BT model. It is also noted that the curves of the
predicted gaps are smooth. As can be seen from subplot (a), the
best performance of the RF model, with the PML equal to 4.2%,
is achieved, which means more than 95% of the gap can be

corrected by the trained RF model. Even in the worst validation
case, as shown in (b), the predicted gap is larger than the true gap
but the difference between them appears acceptable. For
example, the propagated PC and RF-model predicted gap at
the end of the 7 days OP span are 4.31 km and 33.46 km,
respectively, while the PE is 33.76 km, making the difference
reduced from 29.44 to 4.01 km. The rewarding performance of
the trained Swarm A model's generalization to Swarm C is
promising. This can be attributed to the fact that the two
satellites are pair-flying such that they share similar data
conditions and orbital environments.

4.6. Generalization Capability Analysis

The generalization of Swarm A models to Swarm B and
Swarm C exhibits vastly different performances. An analysis is
necessary to understand the possible causes.
Generally speaking, the generalization performance of the

trained models is strongly dependent on the similarities between
the training data and application (validation) data. That is, when
the training data and application data have high similarities,
good generalization performance can be expected. In real
scenarios, this assumption may not be satisfied, rendering the
generalization performance difficult to be guaranteed. In this
section, we propose the use of Jaccard similarity to measure the
similarity between training and validation data sets and to
examine the relation between the data similarity and general-
ization performance.

Figure 12. Performance of Swarm A models generalization to Swarm B.
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Jaccard similarity is a common proximity measurement that
can be used to find the similarity between two data sets (Baroni
& Buser 1976). Given two data sets, P and Q, their intersection
is P ∩Q with the size |P ∪Q| (the number of members in the
intersection set), and the union is P∪Q with the size |P ∪Q|.
Then, the Jaccard similarity between them is defined as

∣ ∣ ( )Ç
È

=J
P Q

P Q
. 9

The Jaccard similarity will be 0 if the two sets do not have any
member in the intersection set and 1 if the two sets are identical.
It is intuitive to see that J gets higher when the two data sets are
more alike. Additionally, this function can be used to find the
dissimilarity between two sets by calculating 1− J. This metric
is applicable to a wide range of applications due to its generality.

We now use the Jaccard similarity to measure the similarity
between the training and validation data sets. To apply
Equation (9), the training data set is defined as P, and the
validation data set as Q, both of which are formed in the
following way. Recalling that the training data set or the
validation data set span over the same 3 months, and each data
set has different numbers of OD runs. Each 3 days OD span is
divided into several equal intervals. For every interval, the
availability of the SLR track is examined. If there is a track in an
interval, the track is coded as 1, otherwise as 0. For example, in
the interval from 1.6 to 3.2 hr (assuming the interval length is 1.6
hr), there is a track of Swarm A, then the track is coded as 1. For

a 3 days OD span, the data set is encoded as [1, 0, 1,...,0], where
the number of encoded values is the number of intervals. In this
way, the training or validation data set is constructed, as shown
in Figure 14, where each row represents one 3 days OD span.
Here, the 3 days OD span is divided into nine intervals of a
length of 8 hr, actually, this figure can be regarded as the
temporal distribution of the observation attributes.
The similarity between the training and validation data sets is

examined in terms of temporal and spatial closeness. Consider
the case that, there is a track from the training data set, and in the
same interval, there is a track from the validation data set. The
starting time of a track is denoted as tt for the track from the
training data set or tv for the track from the validation data set.
The azimuth and elevation at the point of maximum elevation of
a track are denoted as (az, el)t or (az, el)v, which are converted to
the unit vector rt or rv. The introduction of temporal and spatial
closeness is to assist us in determining whether a model from
data sets of one object (say Object A) can be generalized to an
OD case of another object (say Object B). To do this, we first
find the maximum J from all J values each is computed using
Equation (9) with one data set of Object A and the data set of
Object B. (For example, Object A has 30 data sets, we will have
30 J values.) Then, if the maximum J is larger than the threshold
of J (Jthreshold), we proceed to compute the angle between the
data set of Object B and the data set of Object A which has the
maximum J using Equation (10). Last, if the angle is larger than
its threshold α, we decide that the model of Object A can be

Figure 13. Performance of Swarm A models generalization to Swarm C.
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generalized to the data set of Object B.

·
∣ ∣∣ ∣
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J J and arccos 10t v
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For other cases where there is no or only one track from either
the training or validation data set in an interval, the intersection
in the interval is not available. The intersection set of the training
and validation sets can now be formed, and the number of
intersected tracks is counted. Figure 15 gives the schematic
illustration of the spatial distribution of data.

When constructing the union set, only the interval having at
least one track from either the training or validation data set is
regarded as a member of the union, and thus the number of
members in the union is obtained. The similarity between the
training data set of Swarm A and the validation data set of
Swarm B, as well as that between Swarm A and Swarm C, is
presented in Table 3.

In Table 4, it is seen that different thresholds result in different
similarity measures. When the thresholds for the time difference
and angular difference increase, the similarity understandably
increases as well. The similarity between Swarm A and Swarm
C is always higher than that between Swarm A and Swarm B,
indicating the observations of Swarm A and Swarm C are much
closer to each other both temporally and spatially, which is
favorable to generalize the Swarm A models to Swarm C. It is
worth noticing that, in most cases, for a fixed time interval, the
increase of angular threshold has no or little effect on the
similarity. The higher similarity between Swarm A and Swarm
C is understandable, because they are flying almost side-by-side,
and the projected distance in the in-track direction between them
is about 15 km, thus, the data condition and orbital environment
for them are very similar. Different for the Swarm A and Swarm
B, the similarity measures are significantly smaller than that
between Swarm A and Swarm C, which leads to poorer
generalization performance when the Swarm A models are
applied to Swarm B.

The results provide some insights into whether the trained
models of a satellite can be successfully generalized to other

satellites. If the data of a satellite is temporally and spatially
close to the training data, the trained models are more likely to
have better generalization performance. In this sense, one may
first perform the Jaccard similarity between the training data and
application data, and then determine whether to apply the
trained models to the application data.

4.7. Another Perspective of the Generalization Capability

Theoretically speaking, if the PEs are accurately described by
the PCs at each propagation point, the set of ratios of the errors
to the covariances expectations, calculated as Mahalanobis
distances, should conform to a chi-squared distribution with 3
Degrees of Freedom (DoF) (Drummond et al. 2014). Usually, a
Goodness-of-Fit (GOF) test is performed to assess how well the
empirical distribution of Mahalanobis distances for each group
of trajectories conforms to the expected 3-DoF chi-squared
hypothesized parent distribution. Many GOF tests are proposed
(Drummond et al. 2014; Aristoff et al. 2021), among these tests,
Cramer von Misses (CvM) is widely used in space community.
In this section, the CvMGOF test is carried out to evaluate the

effectiveness of the proposed compensation method. The
evaluation procedure starts with the collection of bins of
3-DoF chi-squared statistics at each 60 s propagation point for a
group of propagations. Accordingly, the number of 3-DoF chi-
squared statistics in each bin is equal to the number of
trajectories propagated in the group being tested. Ultimately,
each bin of 3-DoF chi-squared statistics (at a common
propagation point) is tested for realism using the aforementioned
CvM test statistic.
Figure 16 shows the empirical and hypothesized parent

3-DoF chi-squared distributions before the trained model of
Swarm A was generalized to Swarm C, the red curves represent
empirical distributions at each propagation point whereas the
blue square-dot curve represents the hypothesized parent
distribution. Clearly, the empirical and hypothesized parent
3-DoF chi-squared distributions do not match at all, while in
Figure 17 the empirical distributions are conforming much

Figure 14. Illustration of the encoded data set.
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closer to the hypothesized parent distribution after the trained
model was generalized to Swarm C.

Figure 18 shows a p-value versus propagation time bar chart
in which each p-value represents the likelihood the bin of
covariances at a particular propagation point conforms to a
3-DoF chi-squared distribution. The red-dot line represents the
1% Confidence Interval whereas the blue bar represents the
likelihood the empirical distribution conforms to its parent
distribution at a particular propagation point (Sackrowitz &
Samuel 1999). The covariance realism assessment in this study
collects bins at each 1.5 hr propagation time step over a 7 days
propagation timespan. As a result, 112 bins are assessed for
covariance realism. After the trained model using Swarm A was
generalized to Swarm C, 55.3% of the set of trajectories during
the trajectory propagation timespan conform to a 3-DoF chi-
squared hypothesized parent distribution. such a figure can be
used to determine in which parts of the propagation timespan the
covariance realism is faring well and in which it is faring poorly.

It is noted that covariance unrealism, however it may be
evaluated, is unlikely consistent over the propagation time in the
sense that, if the covariance is realistic at a particular

propagation point, it cannot be expected to be realistic at all
propagation points. When pursuing covariance realism remedia-
tion, one will therefore need to decide whether some sort of
omnibus improvement over all propagation points is desired or
whether it is preferable to focus on a particular part of the
propagation timespan.
For our result, a Pass Percentage of 55.3% is not an ideal

result, but a set of covariances produced by the generalized
model exhibiting a Pass Percentage closer to 60% is still a
significant step forward.

5. Conclusion

This work proposes an alternative approach to achieving
better covariance realism of the predicted orbit state. The work
has demonstrated the feasibility of using ML methods to capture
the difference between the propagated covariance and the orbit
prediction errors, and thus, applying the trained models to
correct the propagated covariance will result in a more realistic
characterization of the orbit prediction errors. Compared with
our previous dynamic calibration method (Li et al. 2019), the
proposed approach in this study is more automatic and general.
The BT and RF methods are implemented in the ML

framework to learn the inconsistency pattern when only
sparse SLR track data are available in the orbit determination.
Using the data in one month as training and testing data, the
RF methods can capture more than 98% of the underlying
inconsistency pattern. Applying the learned models to the
data in the subsequent two months (the generalization to the
future), the propagated covariance can be effectively corrected
for more than 50% of the inconsistency, resulting in the
corrected covariance much closer to the errors of true predicted
states.
The performance of applying Swarm A models to Swarm B

and Swarm C is also investigated. The generalization of the
Swarm A models to Swarm C is more successful than that to

Figure 15. Schematic illustration of the spatial distribution of data set.

Table 4
Jaccard Similarity between Tracks of Swarm Satellites

Time
Interval (hr)

Angular
Interval (°)

Swarm A versus
Swarm B

Swarm A versus
Swarm C

5 0.110 0.436
1.6 10 0.110 0.519

15 0.169 0.519
5 0.291 0.912

3.2 10 0.291 0.912
15 0.310 0.325
5 0.368 0.912

4.8 10 0.368 0.912
15 0.368 0.912
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Swarm B. Because Swarm A and Swarm C are flying side-by-
side, about 79% and 64% of the inconsistency of Swarm C can
be corrected on average when the Swarm A models are applied.
To further explore the behind causes, the Jaccard similarity is
introduced to examine the temporal and spatial similarity
between the training data and application data. It is found that
the Jaccard similarity is a proper metric that can guide one on
whether and when is the right time to generalize the trained
models of one satellite to another.

Furthermore, a traditional CvM GOF test is performed to
evaluate the covariance realism. A Pass Percentage of 55.3% has
been achieved, which further demonstrates the effectiveness of
the proposed machine learning algorithm in improving the
covariance realism.
From an operational perspective, the trained models, once

optimized, could be deployed to run alongside traditional
methods to perform near-real-time calibration to achieve better
covariance realism. Further research is suggested to apply the

Figure 16. Empirical and hypothesized parent 3-DoF chi-squared distributions (before the trained model of Swarm A was generalized to Swarm C).

Figure 17. Empirical and hypothesized parent 3-DoF chi-squared distributions (after the trained model of Swarm A was generalized to the Swarm C).
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established ML framework to more tracking data scenarios and
more RSOs.
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