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Abstract

The Wide-field Infrared Survey Explorer (WISE) has detected hundreds of millions of sources over the entire sky.
However, classifying them reliably is a great challenge due to degeneracies in WISE multicolor space and low
detection levels in its two longest-wavelength bandpasses. In this paper, the deep learning classification network,
IICnet (Infrared Image Classification network), is designed to classify sources from WISE images to achieve a
more accurate classification goal. IICnet shows good ability on the feature extraction of the WISE sources.
Experiments demonstrate that the classification results of IICnet are superior to some other methods; it has obtained
96.2% accuracy for galaxies, 97.9% accuracy for quasars, and 96.4% accuracy for stars, and the Area Under Curve
of the IICnet classifier can reach more than 99%. In addition, the superiority of IICnet in processing infrared
images has been demonstrated in the comparisons with VGG16, GoogleNet, ResNet34, MobileNet,
EfficientNetV2, and RepVGG-fewer parameters and faster inference. The above proves that IICnet is an
effective method to classify infrared sources.
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1. Introduction

Infrared astronomical observation is one of the most
important branches of observational astronomy today, which
mainly focus on the study of various types of celestial sources
in the universe through observations in the infrared band
(Glass 1999), and the objects which are too dim in the visible
band can also be detected in the infrared band.

The Earth is surrounded by a thick layer of atmosphere that
contains many substances, such as water vapor, carbon dioxide,
oxygen, and ozone. They have a strong scattering and
absorption effect on celestial radiation from outer space at
infrared wavelengths (Liou 2002), which limits ground-based
infrared astronomical observations. Some initial observatories,
such as the Kuiper Airborne Observatory (Erickson et al. 1985)
and Stratospheric Observatory for Infrared Astronomy
(Erickson 1992), developed to infrared space telescopes, such
as the Infrared Astronomical Satellite (Duxbury & Soifer 1980),
the Infrared Space Observatory (Kessler et al. 1996), and the
Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010).

Classification is an essential means for humans to acquire
knowledge, and the problem of classifying celestial targets has
been studied for a long time (Lintott et al. 2008). The
classification scheme of galaxies, quasars, and stars is one of

the most fundamental classification tasks in astronomy (Kim &
Brunner 2016; Ethiraj & Bolla 2022). The classification of
celestial objects usually includes spectral classification and
morphological image classification.
Spectral classification is very popular and there are many

reported works. The classification of stars, galaxies, and
quasars by spectroscopy has been studied commonly, but
generally it requires a large workload by comparing the
observed spectra with a template. Later, a random forest
method was also used to do the same task, but the
classification accuracy of quasars was only 94% (Bai et al.
2018).
The morphological classification is also a common experi-

ment. A self-supervised learning method was used to classify
the three classes based on photometric images, and the
accuracy could only reach 88% (Martinazzo et al. 2021).
Some researchers have classified sources into stars, galaxies,
and quasars with high accuracy based on Sloan Digital Sky
Survey (SDSS) photometric images using deep learning
methods, which is instructive for our work (He et al. 2021).
A support vector machine (SVM) (Steinwart &

Christmann 2008) method was used to classify three classes
based on WISE and SDSS with information from the W1
band (Kurcz et al. 2016). Classification of galaxy morph-
ology based on WISE infrared images has been previously
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investigated (Guo et al. 2022), and we have taken the
classification of infrared images a step further.

In this paper, the data used with their pre-processing details
are introduced in Section 2; the Infrared Image Classification
Network (IICnet) with the modules is introduced described in
Section 3; the classification results are presented, and some
comparison experiments are performed in Section 4; the
experimental results are analyzed in Section 5; and the
summary in Section 6.

2. Data

The data set is constructed on some selected infrared image
data from WISE.4

2.1. Data Preparation

WISE has four bands, W1, W2, W3, and W4, at wavelengths
of 3.4 μm, 4.6 μm, 12 μm, and 22 μm, respectively (Wright
et al. 2010). The WISE all-sky images and source catalog,
released in 2012 March, contain over 563 million objects and
provide a massive amount of information on mid-infared
(MIR)properties of many different types of celestial objects
and their related phenomena (Wright et al. 2010; Tu & Wang
2013). By 2013, WISE had detected over 747 million objects
with SNR > 5 and publicly released in the AllWISE source
catalog (Cutri et al. 2013).

When acquiring raw data in WISE, if the image size is set to
600″ (the default value), there will be too many sources in the
image, as shown in Figure 1(a). To find the specific source
corresponding to the R.A. and decl., the image size is set to
50″, as shown in Figure 1(b). The data corresponding to each

R.A. and decl. in this paper was obtained in INFRARED
SCIENCE ARCHIVE (IRSA).5 The band information of W1,
W2, W3, and W4 of the corresponding sources are obtained
from WISE after the crossover between SDSS6 and WISE to
form the experimental database of this project.

2.2. Image Pre-processing

WISE image classification can be adversely affected by
excessive dust around the sources, and the presence of more
dust in the W4 band and the lower signal-to-noise ratio (SNR)
compared to the other three bands are shown in Figure 2. W4
exhibits a significantly lower SNR than the other three bands,
therefore, in this paper, the W1, W2, and W3 bands have been
used as the three channels of the RGB image to synthesize the
infrared image, as shown in Figure 3.
Further more, 7298 galaxy images, 7215 quasar images, and

7223 star images are chosen to form the data set finally. Their
numbers are approximately equal to each other to ensure data
balance between different classes for satisfying the demands of
deep learning algorithms. The data set is randomly divided into
training, validation, and test sets with a ratio of 8:1:1, as shown
in Table 1.
One of the difficulties of the classification is that some

infrared images of galaxies, quasars, and stars look highly
similar. As shown in Figure 4, they all have a brighter light
source in the image center and lack obvious image features that
can clearly distinguish them from each other by human eyes.
This paper introduces the IICnet method to do the classification
automatically. The basis of this method is that convolutional

Figure 1. Images corresponding to different arcseconds. We chose 50″ for processing, as WISE website defaults to 600″.

4 https://irsa.ipac.caltech.edu/applications/wise/

5 https://irsa.ipac.caltech.edu/frontpage/
6 http://skyserver.sdss.org/CasJobs/SubmitJob.aspx
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neural networks can extract image features that human eyes
cannot distinguish (Egmont-Petersen et al. 2002).
When the RGB histogram is used to distinguish the three

images in Figure 4, the results are shown in Figure 5. It can be
found that three histograms are similar to each other. So simple
image features like histogram cannot distinguish the three types,
the deep learning method is designed to do the classification.
In the low-redshift universe, the stars and galaxies of W1-W2

exhibit very similar colors (Kurcz et al. 2016). If the color–color

Figure 2. Statistical and probability distribution figures of SNR for the four bands. (a) Statistical figure of SNR. (b) Probability distribution of SNR.

Figure 3. A galaxy image of W1, W2, W3, W4 bands and an RGB infrared image synthesized by W1, W2, W3.

Table 1
Datasets Division of Three Types of Celestial Bodies

Type Training Sets Test Sets Validation Sets

Galaxy 5838 730 730
Quasar 5772 722 721
Star 5778 723 722

Note. Some celestial objects in this work have corresponding spectra to ensure
their type being determined.
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diagram composed of W1, W2, and W3 is used to analyze the
distributions between stars, galaxies, and quasars (Wright et al. 2010)
(Figure 6), it can be found that there are large overlap regions among
the three types, especially the overlap between stars and galaxies is
very obvious. This illustrates that it is difficult to accomplish the
infrared image classification task by conventional means.

3. Methods

In this paper, a new deep learning algorithm IICnet is
designed to accomplish the task of infrared image classifica-
tion. For this task, experiments are conducted based on the
Pytorch architecture and the Python programming language.

Figure 4. Sample images for each type. The three types of objects have confusing features. (a) A galaxy. (b) A star. (c) A quasar.

Figure 5. 3D waterfall of galaxies, stars and quasars. On the left there are RGB histograms of sample images of a star, a quasar, and a galaxy, respectively, and on the
right it is a 3D waterfall combination of the left.
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An NVIDIA TESLA V100 GPU (5120 CUDA cores and
32 GB of video memory) is used for training.

3.1. Infrared Image Classification Network: IICnet

The structure of IICnet is shown in Figure 7. The network
includes five convolutional layers, three down-sampling layers
(pooling layers), one feature extraction module (Receptive
Field Block, RFB) (Liu et al. 2018), and two convolutional
block attention modules (CBAM) (Woo et al. 2018) at the
beginning and the end.

In IICnet, the first block is a large convolutional kernel of
5× 5, it has been demonstrated by several researchers that
large convolutional kernels are more capable of extracting
semantic information (Peng et al. 2017). It extracts information
from an image’s more extensive neighborhood range to ensure
its relative integrity after it starts convolution. The subsequent
addition of the BN layer and ReLU can suppress gradient
explosions and help extract deeper semantic information. The
experiments demonstrate that the 5× 5 convolutional kernel
for this task outperforms the 3× 3 kernel. As shown in
Figure 8, the validation accuracy of the network using the 5× 5
convolutional kernel is significantly higher than that of the
3× 3 kernel.

After the first layer of convolution, the raw feature map is
generated and in the following fed to the Receptive Field Block
(RFB) (the first module) for further processing. As shown in
Figure 9, RFB is a feature extraction module that can enhance
the feature extraction capability of the network by simulating
the perceptual field of human vision. The first half of the
module is similar to GoogleNet in which it can simulate group

receptive fields of various sizes and adds dilated convolution to
increase the receptive fields effectively. The latter half
reproduces the relationship between the size and eccentricity
of the population receptive field (pRF) (Wandell &
Winawer 2015) in the human visual system, increasing the
distinguishability and robustness of the features.
An attention module, the Convolutional Block Attention

Module (CBAM) (the second module), is connected after the
RFB and at the last layer of the network, respectively. CBAM
not only indicates the direction of attention but also improves
the representation of regions of interest. IICnet aims to improve
feature representation by focusing on essential features and
suppressing unnecessary ones. The channel and spatial
attention modules are combined by CBAM, as shown in
Figure 10. The Channel Attention Module (CAM) is shown in
Figure 10(a). After the feature map is input, the one-
dimensional vector of channel attention is first obtained
through the global MaxPool and the global AvgPool; the
respective one-bit vector is obtained after a shared Multi-Layer
Perception (MLP) for element addition. Finally the spatial
attention vector is obtained through sigmoid activation.
Through the above process, the CAM can focus on the
meaningful information in the image. The Spatial Attention
Module (SAM) is shown in Figure 10(b), which is comple-
mentary to channel attention which focuses on the target’s
location information. The Spatial SAM first uses MaxPool and
AvgPool to obtain the channel-refined features in CAM,
concatenates them and generates a feature descriptor, and
finally activates them by sigmoid to obtain the feature map of
SAM. The joint use of the two modules can achieve better
results. The equations for CAM and SAM are expressed as
follows:

M F F F
W W F W W F
MLP AvgPool MLP MaxPool

, 1
c

c c
1 0 1 0avg max

s
s

= +
= +

( ) ( ( ( )) ( ( )))
( ( ( )) ( ( ))) ( )

where σ denotes the sigmoid function. W0 and W1 are the
weights of the MLP, and they are shared for both inputs and the
ReLU activation function is followed by W0. Fc

avg and Fc
max

which denote average-pooled features and max-pooled features
respectively.
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s
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s s

7 7

7 7
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s
s

=
=

´
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where σ denotes the sigmoid function and f 7×7 represents a
convolution operation with the filter size of 7× 7.
A softmax function is used at the end of the network to

calculate the probability distribution of each class (Liu et al.
2016), which ultimately classifies the targets into stars,
galaxies, and quasars.
The IICNet plays an essential role in improving the

classification accuracy by performing feature extraction
through each convolutional layer and downsampling layer.

Figure 6. Color–Color diagram showing the locations of three types. There are
large areas of overlap between the three types of objects.
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The RFB and CBAM modules can improve attention to the key
position of the image, and the performance is significantly
improved. Adam (Kingma & Ba 2014) is one of the optimizers

Figure 7. Network structure of IICNet. This network is used for the classification of infrared images. The input is a 3-channel matrix with a size of 80 × 80 and
contains data in the three bands of W1, W2 and W3, and the output is the type of input source predicted by the network.

Figure 8. Verification accuracy of different convolution kernels. The
accuracy of the 5 × 5 convolution kernel is significantly higher than that
of the 3 × 3.

Figure 9. The architectures of RFB.
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that uses hyperparameter computation efficiently, usually
requires no tuning, and is simple to be implemented. It is used
during training. In the training process, it is set to 200 epochs,
and the initial value of the learning rate is set to 10−4, and after
50 epochs, it is set to half of the initial value (5× 10−5), to
ensure reasonable convergence of the training.

3.2. Feature Visualization of Network Layers

When analyzed with our data set, the image central source is
the most important part to be focused on. There are different
information around different sources, such as the predominance
of red around stars, black and red around galaxies, and the
more complex colors shown around quasars, with some blue
and green mixed. The region of interest generated by IICnet
can be observed by visualizing the features of the middle layer
of the network, as shown in Figure 11. The feature maps are
processed by the first layer convolution, RFB and CBAM
respectively, and the regions of interest are more and more
concentrated, which proves the importance of the feature
extraction capability of RFB and the attention mechanism of
CBAM for classification.

4. Result

4.1. Influence of Image Size

In the network of Convolutional Neural Network (CNN), the
input image size is an essential factor affecting the network’s
performance (Touvron et al. 2019). To obtain the optimal input
size of the image, this paper tested the accuracy from 64× 64
to 128× 128, spanning 8, using 64× 64 as the starting size.
The relationship between different input sizes and accuracy is
shown in Figure 12. The image size achieves the highest
accuracy at 80× 80. The accuracy gradually decreases as the
image size increases, so 80× 80 is the most adaptable size for
IICnet.

4.2. Influence of Epoch

In this paper, the pre-processed infrared images of galaxies,
stars, and quasars are input into IICnet, and the accuracy and
loss obtained through the experiments are shown in Figure 13.
In this experiment, accuracy and loss were analyzed through
200 epochs. The accuracy increased with the increase of epochs
and then leveled off. The loss decreases as the epoch increases

Figure 10. Diagram of each attention sub-module. CAM makes use of average and maximum pooling in simultaneously. SAM connects two feature layers together to
create one feature layer.
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and then levels off. The accuracy of the validation set can reach
up to 95% or more. IICnet’s ability to get better results on
infrared image classification is proven.

4.3. Evaluation Indices

For the classification task, the following statistical metrics
are used in this paper: precision, recall (Harrington 2012),
specificity, F1-score (Chinchor & Sundheim 1993), and
accuracy, and the specific values are shown in Table 2.
Precision indicates the number of correctly classified positive
samples as a proportion of the total number of samples
predicted to be positive, and recall indicates the number of

correctly classified positive samples as a proportion of the
actual total number of positive samples. The higher these two
metrics are, the better, but they are a pair of contradictory
metrics, so we use the F1-score (the summed average of
precision and recall) to evaluate the classification results, and
the formula is shown below.

F1
2 Precision Recall

Precision Recall
. 3=

´ ´
+

( )

Specificity measures the classifier’s ability to recognize
positive examples; sensitivity measures the classifier’s ability
to recognize negative ones, which is calculated similarly to
recall. The Receiver Operating Characteristic curve (ROC)
(Chawla et al. 2002) can also prove the superiority of the
classifier in this paper, as shown in Figure 14. The ROCs of
galaxies, quasars, and stars all rise rapidly to around 1,
effectively demonstrating that the algorithm in this paper has
good classification results for all types of objects.

4.4. Comparative Experiment

This section compares IICnet with some classic novel
classification networks, including VGG16 (2014) (Simonyan &
Zisserman 2014), GoogleNet (2015) (Szegedy et al. 2015),
ResNet34 (2016) (He et al. 2016), Mobilenet (2017) (Howard
et al. 2017), EfficientNetV2 (2021) (Tan & Le 2021), and
RepVGG (2021) (Ding et al. 2021) (EfficientNetV2 and
RepVGG are the latest CNN-based networks we could find
so far). The accuracy curves on the validation set for each
network are shown in Figure 15(a). Except for the comparison

Figure 11. Middle layer visualization of the IICnet model. After the image
passes through RFB and CBAM, the middle layer shows the focus on the
central source.

Figure 12. A plot of the relationship between input image size and IICnet
accuracy. The accuracy achieves a maximum value of 0.9521 when the input
image size is 80 × 80 pixels.

Table 2
The Classification Index of IICnet Including Precision, Recall, Specificity, F1-

score, and Accuracy

Type Precision Recall Specificity F1-score Accuracy

Galaxy 95.4% 93.2% 97.7% 94.3% 96.2%
Quasar 96.6% 97.1% 98.3% 96.8% 97.9%
Star 93.7% 95.4% 96.8% 94.5% 96.4%
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experiments using 7 models, this work is also experimented on
different data sets (infrared images, spectra, color–color and
“infrared images + color–color”).

It seems that the results of IICnet are better than the other
mainstream classification networks. As shown in Figure 15(a),
only IICnet can achieve more than 95% accuracy. Besides of
this, it can maintain a small computational and parametric
volume while improving accuracy, as shown in Table 3. IICnet
can obviously reduce the amount of computation by more than
a half and the number of parameters by 1.47M compared to

Mobilenet, which is the least computationally intensive way in
Table 3.
As mentioned in Section 2.2, only W1, W2 and W3 bands

are used to synthesize the images, due to the lower SNR of the
W4 band. The performance of using 3-channel and 4-channel
images are conducted, which shows that the former are slightly
better than the latter, as shown in Figure 15(b).
Color-color classification and “infrared image + color–

color” classification are based on revised IICnet, as shown in
Figure 16, where the upper part covered with blue shading is

Figure 13. (a) The curve of IICnetʼs loss against training set and validation set with epoch. (b) The curve of IICnetʼs accuracy against training set and validation set
with epoch.

Figure 14. ROC for galaxies, quasars and stars.
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the color–color classification network, and the composition of
the upper and the lower form the “infrared image + color–
color” classification network.

The accuracy curves of the validation sets, which are
respectively obtained by IICnet and revised IICnet, are shown
in Figure 17. Spectral classification has the highest accuracy,
but it is difficult to obtain. The image classification accuracy
can exceed 95%, so using image classification will be a more
common way. The color–color classification results are the
worst, which also corresponds to the results shown in Figure 6.
The results of “infrared image + color–color classification” are
about 1% higher than infrared image classification results. The
reason is that some color information is lost when extracting
features from infrared images, which can be alleviated by

adding the magnitude information. The fused features will be
further investigated in the subsequent work.

4.5. Confusion Matrix

The confusion matrix can be used to demonstrate the
classification effect. The confusion matrix drawn for the test set
in this paper is shown in Figure 18. Of these, the number of
misclassified samples is tiny, with the vast majority concen-
trated on the diagonal.
The histogram in Section 2.2 (Figure 5) cannot distinguish

the types to which the three images in Figure 4, but inputting
the three images into the IICnet model gives evident confidence
in the classification, as shown in Table 4. All three images are
classified correctly, with a confidence level close to 1.

5. Discussion

5.1. Analysis of Misclassified Samples

In Figure 18, there are 104 misclassified images, which are
divided into four classes, namely Class 1 (37 images), Class 2
(13 images), Class 3 (45 images), and Class 4 (nine images).
Some examples of misclassified images are shown in
Figure 19, and the analysis is as follows.
K-means clustered the misclassified samples to obtain three

classes of images: Class 1, Class 2, and Class 3. Visually, it can
be seen that the images in Class 1 are darker, mainly showing
the confusion of galaxies and quasars; in Class 2, the colors are
complex, so the misclassification is more complicated; and in
Class 3, the colors are brighter, mainly showing the confusion
of galaxies and stars. How to further distinguish these images

Figure 15. (a) Comparison results of IICnet and other image classification networks validation accuracy. (b) Comparison results of 3-channel (W1, W2, W3) and
4-channel (W1, W2, W3, W4) validation accuracy.

Table 3
Comparison of Flops and Params in the Seven Networks

Model Flops Params

VGG16 15.5G 134.27M
GoogleNet 1.59G 5.98M
ResNet34 12.25G 46.99M
MobileNet 587.94M 3.22M
EfficientNetV2 2.97G 24.18M
RepVGG 3.83G 30.07M
IICNet 218.66M 1.75M

Note. Flops is the number of floating-point operations that can be used to
measure the complexity of an algorithm. Params refers to the total number of
parameters to be trained in the model training, which is used to measure the
size of the model (computational complexity).

10

Research in Astronomy and Astrophysics, 23:085010 (14pp), 2023 August Zhao et al.



requires more effort in future work. Class 4 is a particular type
found in misclassified samples, because its sample center has
no source, which is unfavorable for feature extraction in IICnet.
IICnet is more concerned with central sources, as evidenced by
Section 3.2, so how to handle such images is to be considered
in the subsequent work.

5.2. Analysis of Outlier Samples

In addition to the misclassified samples, some images are
correctly classified but have low confidence in the classifica-
tion, which are called outlier samples in this paper. These

samples have features easily confused with other types, so it is
necessary to analyze them.
When the test set is inputted into IICnet for testing, the

classification confidence for each image is obtained. By
filtering the classification confidence, the filtering condition is
the images with a confidence below 0.6, although the
classification is correct. A total of 14 images were chosen, as
shown in Figure 20, and combined with Figure 6 to facilitate
viewing the distribution. According to the image character-
istics, the analysis of these samples are presented in Figure 21
and are divided into six cases. Each case has its unique
characteristics. The classifier in this paper obtains a lower

Figure 16. “Infrared image + color–color” classification network. The upper part, covered by the blue shade, is the color–color classification network.

Figure 17. The accuracy curves of the validation sets corresponding to
different data sets (infrared images, spectra, color–color, “infrared images +
color–color”).

Figure 18. Confusion Matrix of IICnet. Each column of the confusion matrix
represents the number of true labels for each class, and each row represents the
number of predicted labels for each class.

11

Research in Astronomy and Astrophysics, 23:085010 (14pp), 2023 August Zhao et al.



confidence level in distinguishing images whose features need
to be clarified but still obtains correct classification results. The
above proves the superiority of IICnet.

6. Conclusions

The task of the infrared image classification of galaxies,
quasars, and stars has been rarely reported in past literatures. For
many images it becomes extremely difficult owing to the
complexity of the images and similarities between different types.

This paper uses W1, W2, and W3 for WISE to synthesize RGB
images and specifically designs the IICnet to classify infrared
images into galaxies, quasars, and stars. IICnet intergrates RFB
and CBAM (Section 3.1), which improve feature extraction for
the sources and enable higher classification accuracy rates. In the
experiments, by comparing IICnet with VGG16, GoogleNet,
Resnet34, MobileNet, EfficientNetV2, and RepVGG, it is proved
that IICnet outperforms all the other methods for the classification
of infrared images.
For the analysis of misclassification samples, K-means

clustering is used and four cases are discussed. Case 1, 2,
3 are misclassified because the images’ features are highly
similar. Case 4 misclassified because the source is off-center
and cannot be extracted efficiently.
Outliers are also analyzed which are the correctly classified

images but with low confidence. Outliers are at the borders of the
types. Because the confidence level is low, it seems to be lucky
that they can be classified correctly by the current method, IICnet.
In the future, an SVM mechanism may be considered to be used
because the outliers here are like support vectors.
In summary, experiments have proven that IICnet is very

effective in classifying infrared images. It may provide a new
tool for astronomers. It can be further enhanced by a better
feature extraction block, a new post-processing block like
SVM, etc.

Figure 19. A few misclassified images. Class 1, 2, and 3 are the three types obtained by K-means. Class 4 involves some images in which the source is obscured or
absent entirely from the center.

Table 4
The Confidence of the Three Samples in Figure 4

Classification Probability
Class Sample Galaxy Star Quasar

galaxy 0.999486 0.000453 0.000061

star 0.000157 0.999814 0.000029

quasar 0.024439 0.000004 0.975557

Note. The confidence that each image falls into three types can be obtained,
after the three images are input into IICnet.
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