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Abstract

An empirical stellar spectral library with large coverage of stellar parameters is essential for stellar population
synthesis and studies of stellar evolution. In this work, we present Stellar Spectra Factory (SSF), a tool to generate
empirical-based stellar spectra from arbitrary stellar atmospheric parameters. The relative flux-calibrated empirical
spectra can be predicted by SSF given arbitrary effective temperature, surface gravity, and metallicity. SSF
constructs the interpolation approach based on the Stellar LAbel Machine, using ATLAS-A library, which contains
spectra covering from O type to M type, as the training data set. SSF is composed of four data-driven sub-models
to predict empirical stellar spectra. Sub-model SSF-N can generate spectra from A to K type and some M giant
stars, covering 3700 < T < 8700K, 0 <logg < dex, and —1.5 < [M/H] < 0.5 dex. Sub-model SSF-gM is
mainly used to predict M giant spectra with 3520 < T <4000 K and —1.5 < [M/H] < 0.4 dex. Sub-model
SSF-dM is for generating M dwarf spectra with 3295 < T <4040 K, —1.0 < [M/H] < 0.1 dex. Sub-model
SSF-B can predict B-type spectra with 9000 < T.¢ < 24,000 K and —5.2 < Mg < 1.5 mag. The accuracy of the
predicted spectra is validated by comparing the flux of predicted spectra to those with same stellar parameters
selected from the known spectral libraries, MILES and MaStar. The averaged difference of flux over optical
wavelength between the predicted spectra and the corresponding ones in MILES and MaStar is less than 5%. More
verification is conducted between the magnitudes calculated from the integration of the predicted spectra and the
observations in PS1 and APASS bands with the same stellar parameters. No significant systematic difference is
found between the predicted spectra and the photometric observations. The uncertainty is 0.08 mag in the » band
for SSF-gM when comparing with the stars with the same stellar parameters selected from PS1. The uncertainty
becomes 0.31 mag in the i band for SSF-dM when comparing with the stars with the same stellar parameters
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selected from APASS.
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1. Introduction

An empirical spectral library with complete stellar parameter
coverage and flux calibration is of great significance for stellar
population synthesis (Bruzual & Charlot 2003; Vazdekis et al.
2010, 2012; Maraston & Strombick 2011), which can be used
to model stellar populations of galaxies (Le Borgne et al. 2004;
Prugniel et al. 2007). In addition, an empirical spectral library
can provide reference for classifying stars and determining
stellar atmospheric parameters (Prugniel & Soubiran 2001;
Koleva et al. 2009). An automatic stellar parameterization and
spectral classification tools, nowadays, are necessary for large
spectroscopic surveys, such as LAMOST (Deng et al. 2012),
SDSS/APOGEE (Majewski 2012), GALAH (Freeman 2012)
etc.

Compared with theoretical spectral library, the spectra in an
empirical library can better reflect the real information of stars
so that it can also be used to constrain the theoretical stellar
model. The empirical stellar spectral libraries are widely used,

such as Pickles (Pickles 1985, 1998), ELODIE (Prugniel &
Soubiran 2001), STELIB (Le Borgne et al. 2003), UVES-POP
(Bagnulo et al. 2003), INDO-US (Valdes et al. 2004), MILES
(Séanchez-Blazquez et al. 20006) etc. The main shortcomings for
these libraries is the poor coverage of parameters or the limited
wavelength range by the capacity of observation instruments.

In recent years, newly released experiential spectral libraries,
e.g., Du et al. (2019), MaStar (Yan et al. 2019), and ATLAS (Ji
et al. 2023), are based on large spectroscopic surveys and hence
cover broader parameter space and more stellar types.
Compared with Du et al. (2019) and MaStar, ATLAS covers
larger parameter space and spectral types. In addition, the
spectra of ATLAS calibrate in absolute manner, while spectra
of MaStar calibrate the absolute fluxes that are normalized to
5450 A.

Other than the coverage of parameter space, all current
stellar libraries provide discrete stellar spectra with more or less
randomly distributed stellar parameters (as a comparison, the
synthetic libraries usually align their stellar parameters with a
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regular parameter grid). To establish a synthetic stellar
population, one always needs to develop an approach to
interpolate spectra from the grid of data. As an empirical
spectral library, a good interpolation may play important role in
the population synthesis or in the stellar parameterization.

On the other hand, data-driven approaches for stellar
parameterization from stellar spectra was well developed in
these years. The Cannon (Ness et al. 2015), Stellar LAbel
Machine (SLAM) (Zhang et al. 2020) etc. provide a forward
modeling framework based on empirical stellar spectra. Such
technique can take the place of the conventional interpolation
to provide an alternative but effective way to obtain a spectrum
with arbitrarily given stellar parameters. In this work, we apply
the technique of forward-modeling developed by SLAM to
provide a stellar spectra factory (SSF), that is, to produce an
empirical stellar spectrum given an arbitrary set of stellar
parameters as input. The SSF can be used as a software
package for many potential usage, such as stellar population
synthesis, stellar classification, and parameterization.

This paper is organized as follows. We give a brief
description of SLAM in Section 2, and we briefly describe
the four training sets for SLAM to derive the four sub-models
of SSF in Section 3. In Section 4, we assess the performance of
the four sub-models in details. We list some caveats when
using SSF in Section 4.2. Finally, we draw conclusions of this
paper in Section 5.

2. Method

The key of SSF is to set up a function that maps a set of
arbitrary stellar parameters to a stellar spectrum with somehow
calibrated flux. SLAM is adopted as the function. SLAM is
originally designed to estimate atmospheric parameters from
the stellar spectra (Guo et al. 2021; Li et al. 2021). As a data-
driven method, SLAM (Zhang et al. 2020) well combines the
empirical stellar spectra with a wide range of atmospheric
parameters and produce a forward model to generate spectrum
in response to a set of given stellar parameters. Because the
mapping from stellar parameters to the spectrum is highly
nonlinear, SLAM selects a machine-learning algorithm to
handle it. Support Vector Regression (SVR; Smola &
Scholkopf 2004; Chang & Lin 2011) is adopted as the default
algorithm to build the mapping. It is a robust nonlinear
regression method used in many astronomical research and
analysis (Liu et al. 2012, 2014; Li et al. 2014; Bu & Pan 2015;
Lu & Li 2015).

Support Vector Machine (SVM) is a kind of nonlinear
classifier that classifies data in a binary way according to a
supervised learning process. As an extension of SVM, SVR
slightly modifies SVM so that it can solve regression problems.

As SLAM is based on SVR and adopts the radial basis
function (RBF) as the kernel in SVR, it has three hyperpara-
meters. C and € represent penalty level and tube radius,
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respectively, while v represents the width of the kernel. These
three hyperparameters are all needed to be determined using the
empirical spectra as the training data.

We apply SLAM to build SSF in three steps:

1. Pre-processing. As the first step, we pre-process the
training sample so that its spectral fluxes and parameters
are in the standardized space. Unlike the other SLAM
applications that normalize the training spectra to remove
the continua, we normalize the spectra to the sum of
fluxes to keep the information of the relative flux
calibration. Then, we standardize the training spectral
fluxes at each wavelength pixel. The stellar labels, i.e.,
the stellar atmospheric parameters, are also standardized
so that their mean is 0 and standard deviation is 1.* The
standardized procedure is taken from SLAM’s internal
algorithm.

2. Data training. We then train the SVR model with the
standardized labels and fluxes at each wavelength pixel to
obtain the best-fit hyperparameters for each wavelength
pixel. To achieve this, we first set the grid of
hyperparameters to be €=0.05, C=[0.01, 100] and
~ = [0.01, 100] and then run SLAM to search for the
hyperparameters based on a k-fold cross-validation
procedure, i.e., we separate the training data into k
groups, then we train the SVR model using k — 1 groups
and predict the spectra for the rest group. For each test,
we measure the performance of the model with the mean
squared error (MSE) at the jth pixel, which is defined as

MSE; = %Z[f,-(ﬂild)) - £ (1)
i=1

where 6; is the input stellar label vector of the ith star of
the test data. f,(6;|¢) denotes the predicted jth pixel of the
test spectrum corresponding to 6; given the hyperpara-
meter of ¢ = (¢, C, ). f;; denotes the flux of the jth pixel
of the ith spectrum of the test data. After k run by
selecting different group as the test data, the averaged
MSE; of the k-fold cross-validation can be used to find
the best-fit hyperparameters. We finally adopt the
hyperparameters that can minimize the averaged MSE;
for the jth wavelength pixel.

3. Spectra prediction. The last step is to predict the
spectrum corresponding to a set of given stellar labels
with the trained SVR model with best-fit
hyperparameters.

3. The Training Data Set

To provide a reliable and precise SSF, one needs a suitable
empirical stellar spectral library to be acted as the training data

4 The standardization is calculated as Xgqd = (x — X)/0y, where X and o, are

the mean and standard deviation, respectively, of the random variable x.
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Table 1
The Coverage of Spectral Type and Parameters of the SSF Packages

Library Name Coverage of Spectral Type Coverage of Parameters

SSF-N A, F, G, K, and early-M type (part of M giant) Tog: 3700 to 8700 K; log g: 0 to 6 dex; [M/H]: —1.5 to 0.5 dex.
SSF-gM M giant Tet: 3520 to 4000 K; [M/H]: —1.5 to 0.4 dex; giant: 1

SSF-dM M dwarf Tegr: 3295 to 4040 K; [M/H]: —1.0 to 0.1 dex; dwarf: O

SSF-B B type Tetr: 9000 to 24,000 K; Mg: —5.2 to 1.5 dex

set of the SLAM. Some broadly used empirical library, e.g.,
MILES, ELODIE, BCO03 and etc. (Prugniel & Soubiran 2001;
Bruzual & Charlot 2003; Sénchez-Blazquez et al. 2006) can
only provide limited stellar spectra. Therefore, we select
ATLAS-A library, which is a set of the ATLAS library (Ji et al.
2023) and covers a wide range of spectral types, as the training
data. ATLAS is an empirical stellar spectra library with
resolution of R ~ 1800 and wavelength coverage from 3800 to
8700 A.

ATLAS-A contains 5342 spectra with effective temperature
(Tefp), surface gravity (log g), and metallicity ([M/H]) and 242
spectra with only the effective temperature and surface gravity.
It covers spectral types from O to M and also includes some
special types of stars, such as A supergiant, blue horizontal-
branch, and Carbon stars. The parameter coverage of ATLAS-
A is from Toe ~ 3000 to 50,000 K, from log g ~ 0 to 6 dex, and
from [M/H] ~ —1.5 to 0.5 dex. ATLAS-A also provides the
coverage of absolute magnitude of G-band from —9.5 to 12
mag. The spectra in ATLAS-A are absolutely calibrated in flux
with wavelength range of 3800-8700 A. Because not all
spectra in ATLAS-A have all three atmospheric parameters
measured, we separate them into four groups and set up for
SLAM sub-models.

3.1. Training Data for SSF-N

We first select spectra with Tuy, logg and [M/H] from
ATLAS-A as the training set for SSF-N, i.e., the SSF for
normal stars. The ranges of parameters of SSF-N are
3700 < T.r < 8700 K, 0<logg <6 dex, and —1.5<[M/
H] < 4+0.5 dex. To ensure that the parameters are roughly
evenly distributed, we assign the samples into small grids in the
Terr, logg, and [M/H] space with size of AT.p= 100 K,
Alogg = 0.2 dex, and A[M/H] = 0.05 dex. In each grid, we
select 1 to 3 spectra with highest signal-to-noise ratio in the g-
band. We finally select 3609 spectra as the training spectra,
covering from A to early M-type stars.

3.2. Training Data for SSF-gM

We select M giant spectra only with T, and [M/H] as the
training data for SSF-gM. The [M/H] of M giants is measured
by SLAM (Qiu et al. 2023). This training set contains 249

spectra. The range of T is from 3520 to 4000 K and that of
[M/H] is from —1.5 to 0.4 dex.

3.3. Training Data for SSF-dM

SSF-dM is trained with M dwarf spectra with only T.¢ and
[M/H]. The [M/H] for M dwarfs is adopted from Li et al.
(2021). This training set contains 217 spectra. The range of T
is from 3295 to 4040 K and that of [M/H] is from —1.0 to
0.1 dex.

3.4. Training Data for SSF-B

Because some parameters, such as metallicity, of B-type
stars are not given, we use T.¢ and absolute magnitude (M) as
input parameters and 30 B type spectra as input spectra for
SSE-B. The range of T, is from 9000 to 24,000 K and Mg is
from —5.2 to 1.5 mag.

4. Results

According to the different training sets, we finally establish
the SSF, which is composed of four sub-models for different
spectral types: SSF-N, SSF-gM, SSF-dM and SSF-B. The
coverage of spectral types and parameters for the four sub-
models are listed in Table 1. All four sub-models can be
downloaded from the website: https: //nadc.china-vo.org/res/
r101182/ and we also provide a README which can be
downloaded from the website: https://github.com/
hypergravity /SFF to introduce how to use the models. The
source code of SLAM can be downloaded on GitHub https://
github.com/hypergravity /astroslam under an MIT License.

4.1. Validation

In order to assess the accuracy of the predicted spectra, we
verify them from two aspects. The first is to verify the flux
continua of predicted spectra by comparing with the spectra
corresponding to the same parameters in the known stellar
empirical spectra library. The second is to verify the accuracy
of the photometry calculated from the predicted spectra by
comparing with the observed magnitude with same stellar
parameters. It is noted that for different training sample sets, we
adopt different verification methods.
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4.1.1. Validation of the Spectra

In order to verify the predicted spectra, we make a few
comparisons with spectra. First, we select the normal spectral
type spectra with stellar labels from the known libraries. Then,
we input the stellar labels of these selected spectra to SSF to
derive the corresponding predicted spectra.

We select the spectra from MILES and MaStar libraries to
verify SSF-N and SSF-gM, while we only select spectra from
MILES library for the verification of SSF-dM, since MILES
contains few M-type stars.

First, we predict the spectra from SSF using the stellar labels
of the spectra in the known libraries. Then, since MaStar does
not correct the extinction, we need to add extinction effect back
to the predicted spectra before comparison. This step can be
conducted as

Fex () = Fpre (M) 107 47RC), 2

where Fe,()\) represents the flux of predicted spectra with
extinction effect added back, Fy.(\) denotes the flux of
predicted spectra, Ay is V band extinction obtained from
spectral energy distribution (SED) fitting of the photometries of
the selected stars from MaStar and R()\) is the extinction law
adopted from Cardelli et al. (1989).

Finally, we normalize both the predicted spectra and the
spectra from the known libraries using the sum of flux of the
spectra over all range of wavelength. Since that the spectra in
MILES are originally normalized to the median flux in the
range of 5000-5050 A while spectra with MaStar are originally
normalized to the flux at 5450 A, we perform a further
normalization of the predicted spectra before comparison.
When comparing the predicted spectra with MILES spectra, we
further normalize both spectra by the median flux in the range
of 5000-5050 A. When comparing the predicted spectra with
MaStar spectra, we further normalize both spectra using the
flux at 5450 A. We use two steps of normalization to adopt a
more accurate flux comparison for that the accuracy of
comparison with MaStar can be improved by 19% if we add
one more normalization at 5450 A after the first normalization.

In order to show the comparison more clearly, we quantified
the comparison results by calculating the flux ratio over the
wavelength. At each wavelength pixel, we calculate the 15th,
50th, and 85th percentiles. The difference between 15th and
50th percentiles and between 50th and 85th percentiles in each
wavelength pixel are calculated by:

Fis(\) — Fso(\)

AF15,50()\) = FSO()\)
F5o(\) — Fgs(N)
AFs50_ =7 >
50—85(A\) FaO) 3)

where AF5_so()\) and AF5q_g5()\) denotes the difference of
flux ratio between 15th and 50th percentiles and between 50th
and 85th percentiles, respectively. Fis()), Fso(A) and Fgs(\)
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represents the value of the flux ratio of multiple spectra at 15th,
50th, and 85th percentiles, respectively, at each wavelength
pixel. Notice that the fluxes of strong absorption lines are
excluded in the calculation.

We use 532 spectra from MILES library and 237 spectra
from MaStar library for the comparison with SSF-N. We use
five and four spectra selected from MILES library for the
comparison with SSF-gM and SSF-dM, respectively. Figure 1
shows the distribution of the flux ratio between the predicted
spectra from SSF-N and the corresponding selected MILES
spectra with same stellar parameters. The color codes the
effective temperatures of individual stars in the upper panel.
The pink lines in the bottom panel denote the 15th, 50th, and
85th percentiles of the flux ratios. The mean values over
wavelength of AF|5_s5o(\) and AF5o_gs(\) are 3.7% and 4.2%,
respectively.

Figure 2 shows the distribution of the flux ratio between the
predicted spectra from SSF-N and corresponding spectra with
same stellar parameters selected from MaStar. The mean values
over the wavelength of the flux ratios AF;5_so()\) and
AF50_85(A) are 4.4% and 5.0%.

Since either SSF-gM or SSF-dM contains only one spectral
type of stars (M giant and M dwarf spectra, respectively), we
selected five M giants and four M dwarf stars in MILES library
for the comparison. Figures 3 and 4 show the flux ratios
between the predicted spectra by SSF-gM and SSF-dM and the
corresponding MILES spectra. It is noted that some MILES
spectra of cooler M type stars is not consistent with their
originally published stellar parameters. Therefore, we adopt the
Terrand metallicity from Sharma et al. (2016) as the atmo-
spheric parameters to extract spectra from SSF-gM or SSF-dM.
The mean values over wavelength of AF5_s0(\) and
AFs5q_gs(A) are 3.0% and 3.6%, respectively, for SSF-gM,
while the values become 2.7% and 2.9%, respectively, for
SSF-dM.

We also find four common M giants in both MaStar library
and ATLAS-A. We obtain the predicted spectra from SSF-gM
for these stars using the stellar parameters given by MaStars.
The flux ratios of these spectra are shown in Figure 5. The
mean values of AF;s_s0(A) and AFsq_g5()\) are 2.7% and
2.3%, respectively. The dispersion of the flux ratio becomes
larger at wavelength range smaller than 4500 A in Figure 5.

We find the largest uncertainty occurs in the wavelength
range of 3800—4000 A, which is illustrated in Figure 5. To see
these differences more clearly, we plot a few typical sample
spectra in Figure 6. The blue lines denote the predicted spectra
and the red lines denote the spectra with same stellar
parameters selected from MaStar spectra. All the spectra are
normalized to the flux at 5450 A. At 3800—4000 A, the large
uncertainty shown in Figure 5 is likely due to the lower fluxes
at blue wavelength for these cold stars.

For SSF-dM, we find the largest uncertainty occur in a
wide range of wavelength, as shown in Figure 4. Similarly,
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Figure 1. Flux ratio between predicted spectra from SSF-N and the corresponding MILES spectra with the same stellar parameters. In the upper panel, colors represent
the effective temperatures of the individual spectrum. In the bottom panel, the pink thick lines indicate the 15th, 50th, and 85th percentiles of the flux ratio at each
wavelength pixel.
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Figure 2. Flux ratio between predicted spectra from SSF-N and the corresponding MaStar spectra. The symbols and colors are same as in Figure 1.

we plot a comparison some predicted sample spectra with the appear in the M dwarf spectra with T less than 3700 K. It
MILES spectra with same stellar parameters in Figure 7. The may be cause that either the absorption lines for atmospheric
spectra shown in the figure are normalized to the median flux oxygen molecule in MILES is not cleanly reduced or they

in the range of 5000-5050 A. We find that the largest have been over-subtracted in the process of skylight
difference in wavelength range of 6750-6850 A mainly subtraction of LAMOST data pipeline. To further investigate
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Figure 3. Flux ratio between predicted spectra from SSF-gM and the corresponding MILES spectra. The yellow, blue, and purple thick lines indicate the 15th, 50th,

and 85th percentiles of the flux ratio at each wavelength pixel, respectively.
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Figure 5. Flux ratio between predicted spectra from SSF-gM and the corresponding MaStar spectra. The symbols and colors are same as in Figure 3.

this difference, we compare some sample M dwarf spectra
from MaStar spectral library with the predicted spectra using
same stellar parameters. As shown in Figure 8, the predicted
spectra are well consistent with the MaStar spectra. This
means that it is likely the MILES that does not cleanly
subtract the atmospheric O, lines during data reduction.
Except the uncertainty at 67506850 A, Figures 7 and 8 show
that the wave-like uncertainties are mainly due to (a) the larger
difference of continuum between the predicted and MILES/

MaStar spectra or (b) the large uncertainties in stellar
parameters for these cold stars.

4.1.2. Validation by the Observed Photometric Measurement

To further verify the accuracy of the predicted spectra, we
also compare the values of the observed magnitude with the
corresponding ones that calculated from the predicted spectra.
In accordance with the steps in Section 4.1.1, we first select the
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Figure 6. This figure shows some samples of the direct comparison between the MaStar spectra and the corresponding predicted spectra from SSF-gM. The blue and
red indicate the predicted spectra from SSF and the spectra from MaStar, respectively. We label the different parameters in the panels for each spectra.
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Figure 7. This figure shows some samples of the direct comparison between the MILES spectra and the corresponding predicted spectra from SSF-dM. The blue and
red indicate the predicted spectra from SSF and the spectra from MILES, respectively. We label different parameters in the panels for each spectrum.

samples with stellar labels falling in the parameter space of the
training set from LAMOST DRS5 data. Then, we apply the SVR
model to find the corresponding predicted spectra using the
stellar parameters provided by LAMOST catalog. We add
extinction, which is derived from ATLAS-A catalog using SED
fitting, back to the predicted spectra by Equation (2) and
integrate the fluxes of the predicted spectra in each photometric
band by

Fi= [FaNTiVAA, )

where i denotes the name of band, F; is the derived flux of the
given band from the predicted spectrum, and T;(\) represents
the transmission curve of the band i. The F; is then converted
into AB magnitude by

F xc
2

m; = —2.5log —48.6, 5)

where m; represents the AB magnitude, A is the effective
wavelength for the given photometric band and c is the speed
of light.
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Figure 8. This figure shows some samples of the direct comparison between the MaStar spectra and the corresponding predicted spectra from SSF-dM. The blue and
red indicate the predicted spectra from SSF and the spectra from MaStar, respectively. We label different parameters in the panels for each spectrum.

Because that the fluxes of ATLAS spectrum are calibrated
according to g, r, and i bands in PS1 (The Panoramic Survey
Telescope and Rapid Response System-1 Chambers et al.
2016) and APASS (The American Association of Variable Star
Observers  Photometric  All-Sky Survey Henden &
Munari 2014; Henden et al. 2016), we also select the
photometric values of the same bands in these two photometric
systems for comparison.

Since our predicted spectrum is not absolutely flux-
calibrated, in order to obtain accurate magnitude value in
photometric bands, we need to calculate the absolute flux of
spectrum with extinction by

Fear(A) = k X Fex(N), (6)

where F;(\) denotes the flux with extinction and distance that
to calculate the observed magnitude and k is coefficient
between F.(\) and Fe ().

In order to get k, we first calculate the magnitude in the g
band for F.,()\) and then we calculate the difference between
the calculated magnitude and the observed magnitude in the g
band. According to the Pogson formula, we get k by

Ag= 8pre — 8obs
k =10"25x4¢ @)

where g, represents the magnitude for the predicted spectrum
with extinction effect added and g, represents the observed
magnitude in the g band.

Since we use the g band to obtain k, the value of magnitude
calculated from F_;()\) in the g band must be equal to the
observed magnitude. Therefore, we only choose r and i bands
in PS1 and APASS photometric systems for comparison.

For the validation of SSF-N, we generate two sets of samples
with atmospheric parameters and spectra published by
LAMOST DRS. One has been observed in PS1 with accurate
(but not saturated) g, r, and i bands and the other has APASS g,
r, and i bands. We randomly select 726 objects with clear
photometry information and with representative observed
parameter ranges in SSF-N. We finally obtain 484 samples
with PS1 photometry and 242 samples with APASS photo-
metry. Both samples are sent to SSF-N to obtain the predicted
spectra by using their corresponding Tesr, logg, and [M/H]
from LAMOST as the input stellar labels.

Figures 9 and 10 display the distributions of the difference of
magnitudes between the predicted spectral fluxes and observed
magnitudes in r and i bands. In Figure 9, by comparing with the
corresponding magnitudes from PS1, the systematic shifts of
the predicted spectra are 0.01 and 0.01 mag in » and i band,
respectively, with the random uncertainties of <0.04 mag,
which is slightly larger than the typical error of PSI1
photometry. In Figure 10, by comparing with APASS
magnitudes, the systematic biases of the predicted spectra are
—0.05 and —0.11 mag in r and i bands, respectively, with the
random uncertainties less than 0.31 mag. Comparing with the
typical error of APASS magnitude, which is around 0.1 ~ 0.2
mag, the uncertainty is not surprisingly large. The two figures
show that the performance of the fluxes of spectra is poor in the
i band, which is mainly contributed by the late type stars with
significant molecular absorption bands in red wavelength.
Nevertheless, these figures show that the prediction of spectra
according to the stellar labels can robustly reproduce the
photometry of stars with slightly larger uncertainty than
observed photometry.
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Figure 9. From left to right, the panels display the distributions of the difference between the observed and the SSF-N predicted magnitudes in PS1 r and i bands,

respectively. The vertical axes are the star numbers.
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Figure 10. These panels are similar to Figure 9, but are compared with APASS r and i bands.

Since the number of M-type training stars is relatively small,
we select 106 samples with photometric information in APASS
g, r, and i bands from LAMOST DRS5 data for the validation of
SSF-gM and 108 samples with photometric information in PS1
g, r, and i bands from LAMOST DRS data for the validation of
SSF-dM. Figure 11 displays the distribution of the difference
between the observed and the SSF-gM predicted magnitudes in
APASS r and i bands, while Figure 12 displays the distribution

of the difference between the observed and the SSF-dM
predicted magnitudes in PS1 r and i bands. It is seen that the
systematic bias are —0.169 and —0.256 mag in the comparison
with APASS r and i band, respectively, with the random
uncertainties of less than 0.18 mag in Figure 11. The systematic
shifts are —0.05 and —0.07 mag in the comparison with PS1 r
and i band, respectively, with the random uncertainties of less
than 0.08 mag in Figure 12. The bias in APASS i band shown
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Figure 11. The histograms display the distributions of the difference between the observed and the SSF-gM predicted magnitudes in APASS r (left panel) and i (right
panel) bands.
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Figure 12. These panels are similar to Figure 9, but for SSF-dM. From left to right, the panels show the distributions of the difference between the observed and the
predicted magnitudes in PS1 r and i bands, respectively.

in Figure 11 is slightly large, which is probably due to the fact —0.003 mag in PS1 r and i band, respectively with the
that the parameters of the training samples do not sufficiently uncertainties are 0.018 and 0.015 mag, respectively.

fill in with the parameter space and the photometry of the red

stars may not be precise in APASS. 4.2. Caveats

We select 14 spectra with input parameters in the training

Th f t d to be noticed wh ing SSF.
samples of SSF-B to evaluate the difference between the efe ate a few caveals need fo be noliced When using

observed magnitude and the corresponding magnitude from the 1. With the exception of SSF-N, which adopts three
spectra predicted by SSF-B. Figure 13 shows the final parameters (Tsr, logg and [M/H]) as stellar labels, the
comparison result. The biases in the figure are —0.001 and rest of the libraries basically contain only two. However,
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Figure 13. These panels are similar to Figure 9, but for SSF-B. From left to right, the panels show the distributions of the difference between the observed and the

predicted magnitudes in PS1 r and i bands, respectively.

to minimize the change of the SLAM code, we adopt a
constant value 1 and O as the fixed third parameter for
SSF-gM and SSF-dM, respectively. The SSF-N covers
the spectral types from A to early-M, while the M type
stars here are only some of the early type M giants. And
the rest three libraries are only contain one specific class
of stellar spectra, so users need to pay attention before
applying these libraries.

2. According to the stellar parameters coverage in the
training samples, the spectral prediction at the edge of the
training sample may not be accurate. This mainly causes
that there are very few stars being located near the edge
of the training sample.

5. Conclusions

Based on ATLAS-A, an empirical stellar spectral library, we
use SLAM to build SSF, a tool that can get arbitrary empirical
spectra of stars given arbitrary stellar labels. According to the
parameters ranges, we obtain four sub-models, SSF-N, -gM,
-dM, and -B, with training data sets of different types of stars.

SSF-N mainly covers the parameter space such that 7 from
3700 to 8700 K, log g from 0 to 6 dex and [M/H] from —1.5 to
0.5 dex. SSF-gM covers M giant stars with T.¢ from 3520 to
4000 K and [M/H] from —1.5 to 0.5 dex. SSF-dM covers M
dwarf stars with T.gfrom 3295 to 4040 K and [M/H] from
—1.0 to 0.1 dex. SSF-B mainly covers the hot stars with
Tt from 9000 to 24,000 K and Mg from —5.2 to 1.5 mag.
These spectral libraries can not only provide help for stellar

11

population research, but also can be used to estimate stellar
parameters for all types of spectra.

We validate the four libraries by comparing with the known
empirical libraries: MILES and MaStar. The photometry can be
obtained by integrating the predicted spectra and is compared
with the observed photometric information in g, r and i bands
either from PS1 or from APASS. The predicted spectra well
agree with the corresponding spectra from the known libraries
and the magnitudes calculated from predicted spectra are also
well consistent with the corresponding observed ones.
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