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Abstract

A catalog of more than 43,000 M giant stars has been selected by Li et al. from the ninth data release of LAMOST.
Using the data-driven method SLAM, we obtain the stellar parameters (Teff, glog , [M/H], [α/M]) for all the M
giant stars with uncertainties of 57 K, 0.25 dex, 0.16 dex and 0.06 dex at SNR> 100, respectively. With those
stellar parameters, we constrain the absolute magnitude in the K− band, which brings distance with relative
uncertainties around 25% statistically. Radial velocities are also calculated by applying cross correlation on the
spectra between 8000 and 8950Å with synthetic spectra from ATLAS9, which covers the Ca II triplet.
Comparison between our radial velocities and those from APOGEE DR17 and Gaia DR3 shows that our radial
velocities have a system offset and dispersion around 1 and 4.6 km s−1, respectively. With the distances and radial
velocities combining with the astrometric data from Gaia DR3, we calculate the full 6D position and velocity
information, which are able to be used for further chemo-dynamic studies on the disk and substructures in the halo,
especially the Sagittarius Stream.
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1. Introduction

M giant stars are the kind of stars with high luminosity and
low temperature, such as the tip of the red giant branch stars
(tRGB stars), C-, O- and extreme asymptotic giant branch stars
(AGB stars) and red supergiant stars. On one hand, the
brightness means that they are able to be used to trace the
distant volumes, which makes them a good tracer to reveal the
accretion and merger events in the Milky Way by discovering
and identifying the remnants of the relatively metal-rich stellar
streams in the halo, especially for the Sagittarius system (Ibata
et al. 1994), which is still suffering tidal disruption (Newberg
et al. 2002; Belokurov et al. 2014; Koposov et al. 2015; Li et al.
2016, 2016b). Majewski et al. (2003) selected the M giant stars
from 2MASS. Those samples clearly represented the Galactic
disk and satellite galaxies, such as the Magellanic Clouds and
the Sagittarius dwarf spheroidal galaxy. Li et al. (2016) also
used the M giant stars to map the Sagittarius Stream and
revealed more distant structure. On the other hand, the low
temperatures indicate that most of the flux are distributed at the
long wavelength bands, such as the K-band in the 2MASS
system. Therefore, a further advantage is that the M giant stars
suffer less extinction. This provides the opportunity to study
the outer volumes of the disk with low latitude.

Though the M giant stars have significant advantages, they
are not widely used for the halo and disk studies, especially
comparing with the K giant stars (Liu et al. 2017; Xu et al.
2018; Tian et al. 2019, 2020; Xu et al. 2020). The first reason is
that there are much fewer M giant stars than the K giant stars.
The other one is that, because of the low temperature, there are
molecular absorption bands in their spectra, which bring
difficulties to constrain the stellar physical parameters, such as
the abundances and the radial velocities which are quite
important for further studies on the structures in the Milky
Way. In recent years, with the development of observation
equipment, many large surveys like Large sky Area Muliti-
Object fiber Spectroscopic Telescope (LAMOST; Wang et al.
1996; Su & Cui 2004; Cui et al. 2012; Deng et al. 2012; Luo
et al. 2012; Zhao et al. 2012; Yan et al. 2022), Sloan Digital
Sky Survey (SDSS; Ahumada et al. 2020), have collected a
large amount of photometric and low resolution spectral data of
M-type stars. Meanwhile kinds of stellar parameter pipelines
have been developed. However, the Stellar Parameter Pipe-
lines, like the LAMOST Stellar Parameter Pipelines (LASP;
Wu et al. 2014; Luo et al. 2015), which designed based on the
University of Lyon Spectroscopic Analysis Software (ULYSS;
Koleva et al. 2009), is unable to derive accurate stellar
parameters for these M giant with low resolution spectra
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because of those molecular bands. Special attention should be
paid on those low temperature stars, such as the pipeline for the
Apache Point Observatory Galactic Evolution Experiment
(APOGEE DR17; Abdurro’uf et al. 2022).

The most common and efficient method to determine the
stellar parameters is to fit the observed spectra with the
synthetic spectra, which has been successfully applied on the
RGB stars for decades. Bizyaev et al. (2006, 2010) determined
the stellar parameters of hundreds of red giants with high
resolution spectra by comparing the observed spectra to a
synthetic stellar spectra library ATLAS9 (Kurucz 1993),
including few low temperature stars. With a similar method,
Carlin et al. (2018) determined Teff, [Fe/H] and log g of 42 K/
M giants with high resolution (R∼ 67,500) spectra
from Gemini Remote Access to CFHT ESPaDOnS
Spectrograph (GRACES; Tollestrup et al. 2012; Chene et al.
2014), using a synthetic spectrum atmospheric model generated
with Castelli & Kurucz (2003) and Dartmouth isochrones
(Dotter et al. 2008). The typical uncertainties on Teff, [Fe/H]
and log g are 115 K, 0.09 dex and 0.18 dex, respectively. More
recently, Ding et al. (2022) derived stellar atmospheric
parameters of LAMOST M-type stars from MILES library
interpolator by applying the χ2 minimization performed by the
ULySS package. For M giants, the uncertainties of Teff, logg
and [Fe/H] are 58 K, 0.19 dex and 0.26 dex, respectively.

With rapid development, the machine learning has been
applied on deriving the stellar parameters frequently in recent
years (Howard 2017; Antoniadis-Karnavas et al. 2020;
Galgano et al. 2020; Zhang et al. 2020). More recently, Wang
et al. (2020) have designed a neural network model, named
SPCANet, to determined Teff, log g and 13 chemical abun-
dances for medium resolution spectroscopy from LAMOST
Medium Resolution Survey (MRS) data sets (R ∼ 7500) (Liu
et al. 2020), including many M giant spectra. The precision of
Teff, log g and [Fe/H] are 119 K, 0.17 dex and 0.06 dex,
respectively.

In this work, we use a data-driven method Stellar LAbel
Machine (SLAM), which is developed by Zhang et al. (2020)
to derive the stellar parameters of M giants from low resolution
(R ∼1800) spectra of LAMOST, including Teff, [M/H] and
log g. SLAM has shown good performance in deriving stellar
parameters. e.g., Zhang et al. (2020) used SLAM to determined
Teff, log g and [Fe/H] from low-resolution spectra for ∼1
million LAMOST DR5 K giants with random uncertainties are
50 K, 0.09 dex and 0.07 dex, respectively. Li et al. (2021)
measured Teff and [M/H] of M dwarfs by training SLAM with
LAMOST low-resolution spectra and APOGEE stellar labels,
Teff and [M/H] are in agreement to within 50 K and 0.12 dex
compare to the APOGEE observation. Guo et al. (2021)
adopted SLAM to predict Teff, log g, [M/H] and projected
rotational velocity (v isin ) for 3931 early-type stars from
LAMOST low-resolution survey. The uncertainties of Teff,
log g and v isin are 1642 K, 0.25 dex and 42 km s−1,

respectively. They also determined the above four parameters
by using SLAM for 578 early-type stars from LAMOST
medium-resolution survey (MRS). The uncertainties are 2185 K,
0.29 dex and 11 km s−1 for Teff, log g and v isin , respectively.
This paper is organized as follows: a brief description about

the sample will be presented in Section 2. In Section 3 we will
show the results of the radial velocities and the stellar
parameters. The validation of the parameters will also be
discussed in Section 3. Then the application of this value added
catalog will be shown in Section 4. Finally, the summary will
be given in Section 5.

2. Data

2.1. M Giants

Millions of spectra have been obtained by LAMOST in the
last 10 years (Cui et al. 2012; Deng et al. 2012; Zhao et al.
2012), including thousands of M giant stars. Though there
are many molecular absorption bands in the spectra, Zhong
et al. (2015) and Li et al. (2019) have successfully selected
the M giant stars using a similar method on the spectra from
LAMOST. Recently, using the similar method, Li et al.
(2023) have selected more than 43,000 reliable M giant stars
from LAMOST DR9. Those M giant stars are separated from
the M dwarf stars using the spectra index of TiO5 versus that
of CaH2+CaH3, which has been proved to be a quite
efficient way (Zhong et al. 2015). The M type giant and
dwarf stars are behaved at two different clumps in the color–
color diagram, (W1−W2)0 versus (J− K )0. Finally the
contamination of few white dwarf stars and those dwarf stars
located in the overlapped region with the M giant stars in the
spectra index diagram and the color–color diagram can be
further reduced by applying the distance provided by Gaia
DR3 (Zhong et al. 2019). After all those selections, more
than 43,000 M giant stars are left, which will be used in this
paper.
There are 28,610 M giant stars both in Li et al. (2023) and

LAMOST officially released M giant stars. We cross-match these
28,610 M giants with APOGEE DR17, and obtain 2123 common
stars with both signal-to-noise ratios (SNRs) from LAMOST and
APOGEE larger than 50. The SNR from LAMOST is defined as

= å *=( ) NSNR flux invvari
N

i i0 , where fluxi and invvari are
the flux and inverse variance of the ith pixel of a spectrum, N is
the number of pixels of the corresponding spectrum. In Figure 1,
we represent the comparison of metallicity, surface gravity and
temperature between LAMOST and APOGEE of those 2123
stars, respectively. It indicates that there are great differences in
these three stellar parameters between LAMOST and APOGEE,
especially for [M/H] and log g. 1840 of those common stars are
not provided available parameters, but the constants -1 or 0 for the
metallicity. That means the LAMOST pipeline cannot give
reliable metallicity and surface gravity for those low temperature
stars. Due to the low temperature, the parameters from APOGEE
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with near-infrared spectra are more reliable. Therefore, the results
from APOGEE are adopted during our constraint on the stellar
parameters.

2.2. Training Set

In this work, we train the SLAM model to predict the stellar
parameters of M giant stars. The training set is used to train the
model of the stellar labels versus the spectra. This requires that
the spectra of the training set should have high SNRs and the
accurate labels to each spectrum, e.g. [M/H], [α/M], Teff
and log g in this work. To this way, we cross-match the whole
sample of M giant stars with APOGEE DR17 (Abdurro’uf et al.
2022) and obtain a common catalog of 4473 M giant stars.
With following criteria, we further constrain the accuracy of the
stellar parameters Teff, log g, [M/H] and [α/M] , finally 3670
M giant stars are left for the training set, including the accurate
stellar parameters from APOGEE DR17 and high SNR spectra
from LAMOST DR9.

1. SNR> 50
2. σ[M/H]< 0.1
3. s < 20Teff

4. s < 0.1glog

5. σ[α/M] < 0.05

where SNR is the mean signal-to-noise ratio of LAMOST
spectra as described in Section 2.1, σ[M/H], sTeff , s glog and
σ[α/M] are the uncertainties of the metallicity [M/H], the
effective temperature Teff, the surface gravity glog and the
alpha abundance [α/M] of the M giant stars, which are
provided by APOGEE DR17.

The excluded 803 stars will be used in Section 3.2.4 to verify
the self consistency of the trained model in deriving the stellar
parameters. Figure 2 shows the Hertzsprung Russell diagram
(HRD) of the 3670 common M giants stars, which are color-
coded by the metallicity [M/H]. We find that all the training
samples are located in the ranges of −1.5 < [M/H] < 0.5 dex,
3200< Teff < 4300 k,−0.4 < log g < 2.5 dex. For comparison,

we also represent the isochrones from the PAdova and TRieste
Stellar Evolution Code (PARSEC; Bressan et al. 2012) with the
dashed lines of the same age of 3 Gyr and different metallicities
of 0.3, 0, −0.3 and −0.6 dex. As showed in the later results, this
is reasonable for our sample, majority of which are the thin disk
members. Statistically speaking, the distribution of the training
stellar labels are consistent with the stellar evolution model and
the M giant stars are mainly the metal-rich stars.

3. Method and Results

3.1. Radial Velocity

The radial velocity is derived by using cross correlation
based method laspec (Zhang et al. 2021). It is applied on the
spectra of M giant stars with wavelength between 8000 and
8950Å from LAMOST DR9, where Ca II triplet is included in
this band. The results can be evaluated by the following
equation,

=( ∣ ) ( ( ))
( ) ( ( ))

( )v F G
F G v

F G v
CCF ,

Cov ,

Var Var
1

where F is the normalized observed spectrum of the given M
giant star, while G is the synthetic spectra from ATLAS9
(Allende Prieto et al. 2018), also with wavelength between
8000 to 8950Å with a shift caused by the radial velocity. It is
noteworthy that the spectra used in Section 3.2 have been
shifted back to the rest frame by the radial velocity.
To evaluate the results, we cross match our sample with Gaia

DR3 (Gaia DR3; Gaia Collaboration 2022; Katz et al. 2022)
and APOGEE DR17 (Abdurro’uf et al. 2022) to obtain two
data sets of common stars. There are 32,787 and 4888 common
stars with Gaia DR3 and APOGEE DR17, respectively. Then
the comparison of our results with Gaia DR3 and APOGEE
DR17 are represented by the blue and red symbols in Figure 3,
respectively. It shows a good agreement between our results
with that from Gaia DR3 and APOGEE DR17. The histogram
of the radial velocity difference Δrv= rv− rvRef are shown in

Figure 1. The comparison of metallicity, surface gravity and effective temperature between LAMOST and APOGEE of 2123 M giant stars, respectively.
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the right panel. The system offset and scatter values of Δrv are
around ∼1 km s−1 and 4.6 km s−1, respectively, for both
comparison results. It indicates that the radial velocity of M
giants derived from Ca II Triplet lines is consistent with that of
Gaia DR3 and APOGEE DR17.

3.2. Stellar Parameter

The SLAM is a data-driven method based on support vector
regression (SVR) (Zhang et al. 2020). SVR is a robust
nonlinear regression which has been applied in many fields of
astronomy (Liu et al. 2012, 2015). SVR has been particularly
widely used in spectral data analysis (Li et al. 2014; Liu et al.

2014; Bu & Pan 2015). This method has been proved to have
good performance in determining stellar atmospheric para-
meters from spectra (Zhang et al. 2020; Guo et al. 2021; Li
et al. 2021). In this work, we also adopt SLAM to derive the
atmospheric parameters of the M giants.

3.2.1. Stellar Label Model Training

In SLAM, the radial basis function (RBF) is adopted as the
kernel of SVR. The hyperparameters C, ε and γ of SLAM
represent the penalty level, tube radius and the width of the
RBF kernel, respectively. These three hyperparameters can be

Figure 2. The distributions in the HR diagram of the training set and the prediction M giants with SNR > 50 are shown in the left and right panels, respectively. The
color is coded by the metallicity [M/H]. In the left panel, the stellar parameters of 3670 M giant stars are from APOGEE. In the right panel, the stellar parameters of
the M giant sample with SNR > 50 are predicted by SLAM. The dashed lines in both panels represent the isochrones from PARSEC model with the same age 3 Gyr
but different metallicities, i.e., −0.6, −0.3, 0 and 0.3 dex for the yellow, green, blue and red lines, respectively.

Figure 3. Compared the radial velocity from this work with that in Gaia DR3 (32,787 stars) and APOGEE DR17 (4888 stars), as displayed by the red and blue colors
in the left panel, respectively. The right panel displays the corresponding histograms of radial velocity difference Δrv, where rv is the radial velocity derived in this
work, and rvRef is the radial velocity from Gaia DR3 (blue) and APOGEE DR17 (red).
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automatically determined for each pixel through the train-
ing set.
qi is denoted as the stellar label vector of the ith star in the

training set. fj(

qi) and fi,j are defined as the jth pixel of the

training spectrum and model output spectrum corresponding to
the stars with stellar label vector


qi. The mean squared error

(MSE) and median deviation (MD) of the jth pixel can be
evaluated with a specific set of hyperparameters, described by
Equations (2) and (3)


å q= -
=

[ ( ) ] ( )
m

f fMSE
1

2j
i

m

j i i j
1

,
2


å q= -
=

[ ( ) ] ( )
m

f fMD
1

3j
i

m

j i i j
1

,

Theoretically, the smaller MSE and MD are, the better fitting
is. However, we probably obtain an overfitted model if we train
the SLAM model by whole training set, i.e., the MSEj and MDj

are all equal to 0. Zhang et al. (2020) used the k-fold cross-
validated MSE (CV MSE) and k-flod cross-validated MD (CV
MD) to measure MSEj and MDj to avoid obtaining an
overfitted trained model. Namely, the training set is randomly
divided into k subsets, where k is set to be 10 in this work. The
fj(

qi) is predicted by the model which trained by the other k− 1

subsets of the training set. After looping through all the
hyperparameters sets specified, the best set of hyperparameters
can be determined for the jth pixel by searching for the lowest
CV MSEj. The best model can be obtained for each pixel by
doing pixel-to-pixel. In this work, we train the SLAM model
with 3670 low-resolution spectra from LAMOST of the
training sample and their corresponding stellar labels from
APOGEE.

3.2.2. Prediction of Stellar Labels

Using the Bayesian formula, the posterior probability density
function of stellar label vector for a given observed spectrum is
displayed in Equation (4).

   
q q qµ
=

( ∣ ) ( ) ( ∣ ) ( )fp p p f 4
j

n

jobs
1

,obs

where

q is the stellar label vector, fobs and fj,obs represent the

normalized observed spectrum vector and the normalized flux
of the jth pixel of the observed spectrum, respectively.


q( )p is

the prior of stellar label vector

q,


q( ∣ )p fj,obs is the likelihood of

observed spectrum flux of the jth pixel with a given stellar label
vector


q. By maximizing the posterior probability

 
q( ∣ )fp obs , the

stellar labels can be easily measured with a Gaussian likelihood
adopted. Then the logarithmic form of likelihood is described

by the following equation,








å

å

q
q

q

q

s s

p s s

=- ´
-

+

- ´ +

=

=

( ∣ )
[ ( )]

( )

[ ( ( ) )] ( )

fp
f f

ln
1

2

1

2
ln 2 5

j

n
j j

j j

j

n

j j

obs
1

,obs
2

,obs
2 2

1
,obs

2 2

where

q( )fj and


qs ( )j are the model output spectrum and the

uncertainty of the jth pixel corresponding to stellar label

q,

respectively. fj,obs is the jth pixel of the normalized observed
spectrum, and σj,obs is the uncertainty of the jth pixel of
normalized observed spectrum.
The trained model as described in Section 3.2.1 is applied on

the spectra of all the M giant stars to obtain their atmospheric
parameters. The right panel of Figure 2 illustrates the
distribution of the effective temperature Teff versus surface
gravity glog of the prediction M giant stars with SNR > 50,
accounting for 80% of the whole M giant stars. The color is
coded by the metallicity [M/H]. It exhibits a similar pattern
with that of the training sample as showed in the left panel of
Figure 2. The same isochrones are also represented by the
dashed lines with those in the left panel of Figure 2.

3.2.3. Stellar Label Uncertainty

Similar to the CV MSE and CV MD of spectrum as
described in Section 3.2.1, Equations (6) and (7) describe the
cross-validate scatter (CV_scatter) and cross-validate bias
(CV_bias) of stellar labels, respectively. Obviously, if the
predicted stars have the known stellar label, the CV_scatter and
CV_bias can be measured. They can be regarded as the
standard deviation and average deviation of the stellar labels,
respectively, to describe the precision of the stellar parameters
determined from the SLAM model. In principle, the smaller
CV_bias and CV_scatter indicate a better trained model.

 
å q q= -
=

( ) ( )
m

CV_bias
1

6
i

m

i i
1

,SLAM

 
å q q= -
=

( ) ( )
m

CV_scatter
1

7
i

m

i i
1

,SLAM
2

where

qi,SLAM is the stellar label vector from the model

prediction, and

qi is the corresponding true stellar label vector.

Figure 4 shows the distributions of CV bias (blue) and
scatter (red) of the four parameters versus the SNR of spectra,
i.e., the metallicity [M/H], the effective temperature Teff, the
surface gravity glog and the alpha abundance [α/M]. It is
obvious that the CV scatters of these four parameters decrease
with increasing SNR, e.g., from 0.27 dex, 110 K, 0.39 dex,
0.12 dex at SNR= 17 to 0.16 dex, 57 K, 0.25 dex and 0.06 dex
at SNR=100 for [M/H], Teff, log g and [α/M], respectively. In
other words, the precision of these four parameters determined
from the SLAM model can reach to 0.16 dex, 57 K, 0.25 dex
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and 0.06 dex at SNR > 100, respectively. The mean values of
CV bias are −0.01 dex, −5 K, 0.02 dex and −0.01 dex for
these four parameters, respectively, which means that the
predicted parameters by SLAM are in good agreement with the
true stellar labels given by APOGEE.

3.2.4. Stellar Labels Self-consistent

In order to verify the self consistency of stellar labels
determined from the SLAM model. The training set is
randomly split into two subsets: a training set consists of
2770 M giants, the remaining 900 M giants are used as the test
set. Besides, the 803 M giant stars mentioned in Section 2.2 are
also used as the test set. Figure 5 displayed the comparison of
four stellar labels between the true values and the model
prediction values. In the left four panels, the black and red dots
display the XAP versus XSLAM of 900 stars with SNR > 50 and
803 stars with SNR < 50 in the test set, respectively, where X
can be [M/H], Teff, log g and [α/M], respectively. It is

obviously that the model prediction stellar labels are agreement
with the true stellar labels. However, the distribution between
XAP and XSLAM of stars with low SNR (red dots) is more
dispersed than that of stars with high SNR (black dots). As
shown in the four right panels, the red and black histograms
exhibit the distribution of ΔX= XAP-XSLAM of stars with
SNR > 50 and stars with SNR < 50. The mean values of ΔX
of two subsamples are close to 0, but the scatter values of stars
with low SNR is larger than that of stars with higher SNR. This
is because the spectra with low signal-to-noise ratio are more
difficult to obtain high-precision stellar parameters.

3.2.5. Stellar Labels Validation

We take a comparison of four stellar parameters with Li et al.
(2022). They designed a deep convolution neural network with
training stellar labels from APOGEE DR17 to derived Teff,
log g and other 12 chemical abundances of 1,210,145
LAMOST DR8 giants with low resolution spectra (R

Figure 4. Four panels exhibit the CV scatter and bias as a function of SNR for [M/H], Teff, log g and [α/M], respectively. The red and blue dotted lines indicate the
CV scatter and CV bias in different SNR bins, respectively.
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Figure 5. Four panels on the left display the comparison of stellar labels between the true values XAP and model prediction values XSLAM, where X can be [M/H], Teff,
log g and [α/M]. The black and red dots represent the stars with SNR > 50 and SNR < 50, respectively. The black dashed line is the one to one line in these four
panels. The histograms of ΔX (=XAP-XSLAM) as exhibited in the right four panels. The black and red histograms show the ΔX of stars with SNR > 50 and stars with
SNR < 50, respectively. The mean values of ΔX of two subsamples are marked by the black and red dashed lines.

7
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Figure 6. The comparison of [M/H], Teff, log g and [α/M] of 11,132 common stars in this work and Li et al. (2022). The left four panels from top to the bottom
display the distributions of XSLAM and XLi, where X can be [M/H], Teff, log g and [α/M], respectively. The subscript “SLAM” illustrates the parameters from this
work and subscript “Li” represents that from Li et al. (2022). The black dotted lines in the left four panels are the one-to-one line. The corresponding histograms of the
parameter difference ΔX=XSLAM-XLi as shown in the right four panels. The mean values of ΔX are marked by the black dotted lines in the right panels.
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∼1800). 11,132 common stars were obtained in our samples
and Li et al. (2022). The comparison of [M/H], Teff, log g and
[α/M] are displayed in the left four panels in Figure 6. It
obviously shows that the parameters in this work are consistent
with those in Li et al. (2022). The corresponding histograms of
ΔX=XSLAM-XLi are illustrated in the right four panels of
Figure 6. The systematic offset between Teff,SLAM and Teff,Li is
7 K with a scatter of 32 K. For [M/H], log g and [α/M], there
are very small biases (0.01 0.03 dex) between this work and Li
et al. (2022) with scatters of 0.16 dex, 0.31 dex and 0.05 dex,
respectively. It demonstrates that these four parameters in this
work are consistent with those of Li et al. (2022).

3.3. Distance

In the selected M giant stars, most of them are the red giant
branch stars and a few asymptotic giant branch stars. In order to
calculate the distance, we first constrain the absolute magnitude
for each M giant star. Here we assume the absolute magnitude
Kabs is a function D of the intrinsic color index c0 and
metallicity M, i.e., Kabs=D(c0, M). As shown by Majewski
et al. (2003), Li et al. (2016) and Figure 2, the M giant stars are
mainly tracing the metal-rich components, such as the disk or
the Sagittarius Stream, the J and K− band magnitudes are
adopted to determine the distance to reduce the extinction
effect from dust.

Assuming that the ith star has the apparent magnitudes Ji and
Ki and the distance di, and suffers the extinction ( )A di

K
i , where

AK(di) is a function of distance di, then we have the following
relation where both sides are the absolute magnitude Kabs,

- - ´ ´ =( ) ( ) ( ) ( )K A d d D c M5 log 100 , 8i i
K

i i 0

where c0 is the intrinsic color index, which can be calculated by

= - - -( ) ( ( ) ( )) ( )c J K A d A d 9J K
0

Then we can find that only the true distance d satisfies
Equations (8) and (9). Here the 3D dust map from Green et al.
(2019) is adopted, which has a median uncertainty around 30%.
Following Tian et al. (2020), we show the distributions of

the comparison of the predicted distance dMCM with that
obtained from parallax (Bailer-Jones et al. 2021), dgeo. The
subsample with reliable distances are selected with dgeo< 4 kpc
and the s >d 20dgeo geo . Meanwhile the metallicity is also
limited to be between −0.9 and 0.5. Then the distributions of
the relative distance difference Δ= (dMCM− dgeo)/dgeo of the
subsample are shown in Figure 7. The comparison shows a
median difference 0.2% and the 16% and 84% percentage
values of 21.2% and 27.5%., which indicate a very small
system offset and statistical dispersion smaller than 30%. In the
right panel, the relative distance difference is represented
versus the distance dgeo. There is not significant relation
between the system offset versus the distance.

4. Discussion

With the distances and radial velocity combining the
astrometric information from Gaia, we are able to calculate
the full 6D information, positions (X, Y, Z) and velocities (U, V,
W). Figure 8 shows the space distributions of the M giant stars.
The location of the Sun is represented by the dashed lines. We
can find that most of the M giant stars are located in the disk,
|Z|< 5 kpc, meanwhile, there are also few M giant stars of
larger heights, which are possible the member stars of the
Sagittarius Stream.

Figure 7. The distance comparison with rgeo from Bailer-Jones et al. (2021) is shown. The histogram distribution of the relative differenceΔ = (dMCM − dgeo)/dgeo is shown
in the left panel. The distribution of relative difference vs. the distance is shown in the right panel. In both panels, the gray symbols represent the distribution of all the samples
with predicted metallicity between −0.9 and 0.5. While the black ones represent the samples with distance dgeo < 4 kpc and its signal to noise ratio larger than 20.
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4.1. Disks

As shown in Figure 8, majority of our sample are the disk
stars, which are located with height smaller than 5 kpc.
Figure 9 shows the movements of disk traced by the M giant
stars with different heights. The five known spiral arms are
represented by the dashed curves from Chen et al. (2019). The
distributions of the line integral convolution show clear
streaming movements which are the rotation of the disk,

especially the thin disk represented by the subsample with |
Z|< 0.5 kpc.
Figure 10 shows the phase space distribution of the M giant

stars, Jf versus Jtot. The samples are color-coded by the height
Z to the disk plane and the action JZ in the left and right panels,
respectively. The action distributions also prove that the
majority of the M giant stars are concentrated in the thin cyan
and blue belt in the left and right panels, respectively, which
are the disk with low height |Z| and action JZ.

Figure 8. The space distributions are shown in different spaces. The velocities of the samples with larger height |Z| > 5 kpc in the corresponding space are represented
by arrows. The Sun is located at (X, Y, Z) = (0, 0, 0) kpc and (R, Z) = (8.34, 0) kpc.
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4.2. Sagittarius Stream

Another application for the M giant sample is to trace the
Sagittarius Stream (Majewski et al. 2003; Li et al. 2016). From
Figures 8 and 10, there are also a few stars with larger heights
|Z|> 5 kpc, whose movements are also represented by arrows.
From previous studies (Majewski et al. 2003; Li et al. 2016),
the Sagittarius Stream has a significant contribution to the M
giant stars with high latitude. In Figure 8, those M giant stars
with larger heights show significant bulk motions, especially
those stars with Z around 25 kpc and −10 kpc. That is more
clear in Figure 10, where those samples are of larger total
actions Jtot and small angular momentum Jf, which are
completely different with those belong to the disk. To further
illustration, we convert the coordinate (α, δ) to that based on

the Sagittarius Stream plane (Λ, B), where the north pole
B= 90° is set to the same direction of the normal of the orbit
plane of the Sagittarius Stream. Then Figure 11 shows the
distance variance versus the longitude Λ color-coded by the
latitude |B|. The mock data for the Sagittarius Stream from Law
& Majewski (2010) are also shown with gray dots. We find that
the distance distribution of those M giant stars fits the model
well. There are also few nearby stars offset the model which are
possible the flared disk stars with |Z|> 5 kpc. That can be
proved by the action distributions as shown in Figure 10.

5. Summary

With similar method with Zhong et al. (2015, 2019), Li et al.
(2023) select M giant stars from LAMOST DR9 with a very

Figure 9. Disk rotational velocity distribution after line integral convolution with different heights.
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high purity. Many of those low temperature M giant stars are
not given the stellar parameters and the radial velocities in the
official catalog. In this work, we revise the spectra of those M
giant stars and constrain the stellar parameters (Teff, glog , [M/
H]), the chemical abundance [α/M] and the radial velocities
with uncertainties of (57 K, 0.25 dex, 0.16 dex, 0.06 dex) and
4.6 km s−1, respectively. With the information, we are able to
calculate the full 6D information of M giants, and further to
study the Milky Way disk and the Sagittarius Stream.
Combining the geometric and phase space distributions, the
disk and the Sagittarius Stream can be well separated. This
value added sample will provide a pure sample for the chemical
and kinematic studies for the disk and the Sagittarius Stream.
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Appendix
Catalog Sample

Table A1 lists the information in our catalog, including the
observational ID (obsid) from LAMOST, the source id from
Gaia (gaia_source_id), the coordinates (ra, dec) from
LAMOST, the mean signal to noise ratio (SNR) of LAMOST
spectra, the stellar parameters,the radial velocities and their
uncertainties, the distance of M giants are also provided. The
whole catalog is available to download through the link
https://nadc.china-vo.org/res/r101196/.
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