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Abstract

In the restricted three-body problem (RTBP), if a small body and a planet stably orbit around a central star with
almost exactly the same semimajor axis, and thus almost the same mean motion, this phenomenon is called the co-
orbital motion, or equivalently, the 1:1 mean motion resonance. The classical expansion of the disturbing function
is divergent when the semimajor axis ratio of the small body to the planet is close to unity. Thus, most of the
previous studies on the co-orbital dynamics were carried out through numerical integrations or semi-analytical
approaches. In this work, we construct an analytical averaged model for the co-orbital motion in the framework of
the circular RTBP. This model is valid in the entire coorbital region except in the vicinity of the collision
singularity. The results of the analytical averaged model are in good agreement with the numerical averaged model
even for moderate eccentricities and inclinations. The analytical model can reproduce the tadpole, horseshoe and
quasi-satellite orbits common in the planar problem. Furthermore, the asymmetry of 1:1 resonance and the
compound orbits (Icarus 137:293–314) in the general spatial problem can also be obtained from the analytical
model.
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1. Introduction

The co-orbital motion or 1:1 mean motion resonance is one
of the most interesting topics of the three-body problem and
has been extensively studied for more than 100 yr. The history
of the co-orbital motion began with the work of Euler and
Lagrange in the 18th century. In 1767, Euler found that the
general three-body problem has three special solutions in which
the three masses are collinear at each instant. In 1772, Lagrange
found a second kind of special solutions to the general three-
body problem in which the three masses form an equilateral
triangle at each instant. In the circular restricted case, these
special solutions correspond to the well-known Lagrangian
equilibrium points: the collinear points L1, L2, L3; the triangular
points L4 and L5. The Lagrangian points L4 and L5 are linearly
stable to small displacements when ò< 0.0385, where
ò=m2/(m1+m2) is the mass ratio of the system
(Gascheau 1843). This implies that a small body can remain
near L4 or L5 and thus stably share the same orbit with a planet.
Such a small body is called a Trojan. The first Trojan asteroid,
588 Achilles, which is librating around Jupiter’s L4, was
discovered by Max Wolf of the Heidelberg Observatory
in 1906.

The 1:1 mean motion resonance manifests itself in a variety
of modes of motion. The different modes of motion can be

distinguished according to the librational behavior of the
resonant angle, l l l= - ¢, where λ and l¢ are the mean
longitudes of the small body and the planet respectively. There
are three elementary modes of co-orbital motion: (i) tadpole (T)
or Trojan orbits, where l librates around L4 or L5; (ii) horseshoe
(HS) orbits, where l librates around L3 with an amplitude larger
than 180° encompassing L4 and L5; (iii) quasi-satellite (QS)
orbits, associated with a libration of l around 0°. It is important
to point out that the Lagrangian points L4 and L5 (i.e., the
libration centers of the tadpole motion) are exactly located at
l 60 =   only when the small body’s orbit is circular and
planar; for eccentric and inclined orbits of the small body the
effective Lagrangian points L4 and L5 will be displaced
appreciably from l 60 =   (Namouni & Murray 2000). Apart
from these three elementary co-orbital orbit families, in the
spatial case the quasi-satellite orbits can merge with horseshoe
or tadpole orbits to form the stable compound orbits, H–QS, T–
QS and T–QS-T (Namouni 1999; Namouni et al. 1999;
Christou 2000). The compound T–QS orbits, which are also
called the large-amplitude tadpole orbits, librate around 0° with
amplitudes less than 180° and encompassing L4 or L5. In the
compound T–QS-T mode, l librates around 0° with an
amplitude larger than 180° encompassing L4 and L5. A
compound H–QS orbit corresponds to an asymmetric
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horseshoe-like libration around L3 with a narrow opening ahead
or behind the quasi-satellite domain.

A classical example of the tadpole motion is the Jovian
Trojan population containing several thousand members.
Trojan asteroids have also been found for Venus, Earth,
Uranus and Neptune (see Greenstreet et al. 2020, and
references therein). The horseshoe motion was first observed
in the Saturnian satellite pair Janus-Epimetheus during
Voyager 1 flyby of Saturn in 1980 (Synnott et al. 1981).
There are several confirmed horseshoe objects coorbiting with
the Earth (Kaplan & Cengiz 2020). The first known object
following a quasi-satellite path was asteroid 2002 VE68 which
is a companion to Venus (Mikkola et al. 2004). The Earth and
Jupiter host the largest known number of quasi-satellites with at
least eight in the solar system; while Venus, Saturn, Neptune
and dwarf planet Ceres have one each (de la Fuente Marcos &
de la Fuente Marcos 2016). Asteroid 3753 Cruithne, a co-
orbital of the Earth, is recognized to be moving in a compound
H–QS orbit (Wiegert et al. 1998; Namouni 1999). Another
example of a H–QS orbit is Venus’ co-orbital 2001 CK32

(Brasser et al. 2004). A probable candidate for the compound
T–QS-T orbit is asteroid 2013 LX28, locked in 1:1 resonance
with the Earth (de la Fuente Marcos & de la Fuente
Marcos 2014).

Dermott & Murray (1981a, 1981b) studied the fundamental
properties of quasi-circular tadpole and horseshoe orbits by
means of the Jacobi integral and numerical integration; for the
first time they gave a detailed description of the horseshoe
motion of Janus-Epimetheus system with comparable masses.
Yoder et al. (1983) derived an analytic approximation to the
tadpole and horseshoe motions, which includes the second-
order correction to the 1:1 resonance caused by eccentricities
and inclinations. A Hamiltonian secular theory for Trojan-type
motion was constructed in the framework of the elliptic
restricted three-body problem (RTBP) by Morais (1999, 2001).
Although these analytical theories presented in Yoder et al.
(1983) and Morais (1999, 2001) are enough to describe the
tadpole and horseshoe motions, they break down when l 0 = 
and thus are not applicable to the quasi-satellite motion.
Namouni (1999) investigated the co-orbital dynamics analyti-
cally using the Hill’s three-body problem and showed that in
the spatial case recurrent transitions between horseshoe,
tadpole and quasi-satellite orbits are possible. However, the
Hill’s three-body problem is accurate only for sufficiently small
mass ratios and small eccentricities and inclinations. Moreover,
the asymmetry of the spatial 1:1 resonance with respect to
l 0 = , resulting in the stable and asymmetric merger of
horseshoe or tadpole with quasi-satellite orbits, is absent in the
Hill’s problem. Thus, he reverted to the numerical integrations
of the full equations of motion and then found new types of co-
orbital orbits referred as “compound orbits” (see also Namouni
et al. 1999). Later, following Schubarts numerical averaging of

the Hamiltonian over the fast variable, Nesvorný et al. (2002)
studied the global structure of the phase space of 1:1 resonance,
and they replicated these new compound orbits in their semi-
analytical model. Such numerical averaging methods have been
used in many researches on the co-orbital motion (e.g., Beaugé
& Roig 2001; Giuppone et al. 2010; Sidorenko et al. 2014;
Pousse & Robutel 2017; Qi & de Ruiter 2020). In particular,
Robutel & Pousse (2013) as well as Giuppone & Leiva (2016)
derived an analytical Hamiltonian formalism adapted to the
study of the dynamics of two planets in 1:1 resonance.
However, since in their works the planetary Hamiltonian is
literally expanded in powers of eccentricity and inclination
with respect to zero eccentricity and zero inclination (i.e., the
circular and coplanar orbit), the expansion of the planetary
Hamiltonian is inherently singular at α= 1 and l 0 =  (where
α is the semimajor axis ratio of the two planets). This will give
rise to incorrect phase space structures of 1:1 resonance for
large/moderate eccentricities and inclinations.
In this paper, we develop an analytical averaged model

which is valid in the entire regular co-orbital region and is
applicable to both the planar and spatial problems. Using the
analytical model we can recover all known co-orbital orbit
families, including the tadpole, horseshoe, quasi-satellite, and
compound orbits. The analytical averaged model is in good
agreement with the numerical averaged model even for
moderate eccentricities (<0.3) and inclinations (<30°). The
paper is organized as follows. In Section 2, we introduce the
analytical averaged model for the co-orbital motion of the
circular RTBP. In Section 3, we study the phase space structure
of the co-orbital dynamics using the analytical model. A
comparison of the analytical averaged model with the
numerical averaged model is presented in Section 4. Finally,
we summarize the paper in Section 5.

2. The Analytical Model

We consider the circular restricted three-body problem
consisting of a small body of negligible mass, a central star
of mass Må and a planet of mass m¢ orbiting the star in a
circular orbit. We shall use the standard notations a, e, i, ω, Ω,
M and f for the semimajor axis, eccentricity, inclination,
argument of perihelion, longitude of ascending node, mean
anomaly, and true anomaly of the small body. We further
define λ=M+ ω+Ω and θ= f+ ω+Ω to be the mean
longitude and true longitude of the small body, respectively.
Similar primed quantities refer to the planet.
The Hamiltonian of the circular restricted three-body

problem is

( )F
a

R
2

, 1
m

= - -

2
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where μ=GMå and G is the gravitational constant. R is the
disturbing function given by

( )R Gm
r

a

1
cos , 2

2
⎛
⎝

⎞
⎠

y= ¢
D

-
¢

with

( )r a ra2 cos , 32 2 2 yD = + ¢ - ¢

where Δ is the distance of the small body from the planet;
( ) ( )r a e e f1 1 cos2= - + is the orbital radius of the small

body; and ψ is the angle between the position vectors of the
small body and the planet, given by

( )

( ) ( )

i
M

i
M

cos cos
2

cos

sin
2

cos 2 . 4

2

2

y q

q

= - ¢

+ + ¢ - W

The first term of the disturbing function R is called the direct
perturbation term which accounts for the gravitational interac-
tion between the planet and the small body. The second term is
called the indirect term which arises from the choice of the non-
inertial heliocentric frame.

It is convenient to describe the 1:1 mean motion resonance in
the circular RTBP using the following canonical conjugate
variables:

( )

( ) ( )

L a l M M

G a e a g

H a e i a h

,

1 ,

1 cos , . 5

2

2






 m w

m m w

m m

= = + + W - ¢

= - - =

= - - = W

~

~

Using the definition l M M w= + + W - ¢, cosy can be
written as

( )

( ) ( )

i
l f M

i
l f M

cos cos
2

cos

sin
2

cos 2 . 6

2

2





y

w

= + -

+ - - -

The Hamiltonian for the circular RTBP expressed in terms of
canonical variables in Equation (5) reads

( ) ( )F
L

n L R L G H l g M
2

, , , , , , 7
2

2
 


 m

= - - ¢ -
~ ~

where n¢ is the mean motion of the planet. Note that the
Hamiltonian in Equation (7) is independent of h, hence its
conjugate momentum H

~
remain constant.

In the 1:1 resonance, the resonant angle l varies slowly with
time compared to the mean motions of the small body and the
planet. In fact, there are three dynamical timescales which have
a hierarchical separation. The shortest timescale, associated
with the orbital motions of the small body and the planet, is of
order ( )T (where T is the orbital period of the small body).
The intermediate timescale associated with the libration of l is
of order ( )T  . The longest timescale associated with the

secular evolution of ω andΩ is of order ( )T  (Wisdom 1985;
Leleu et al. 2018). This separation ensures that the short-period
perturbations arising from the orbital motions do not affect the
evolution of resonant and secular phases because their
contributions tend to zero on average. Thus, the short-period
terms containing M can be eliminated from the Hamiltonian in
Equation (7) to simplify the problem, which is achieved by
averaging the Hamiltonian over M.
The averaged Hamiltonian over the mean anomaly M is

given by

( )F F M
1

2
d . 8

0

2

òp
=

p

The averaged Hamiltonian does not depend explicitly on time
and therefore is autonomous. In order to find an analytical
expression for the averaged Hamiltonian, first we expand the
Hamiltonian in Equation (7) to second order in e and ( )isin 2 .
Then, averaging the expansion of the Hamiltonian(7) with
respect to M, we obtain the analytical averaged Hamiltonian

( )F
L

n L Gm
r

a2

1 cos
, 9

2

2 2
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

m y
= - - ¢ - ¢

D
-

¢
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}
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( )

e a a a
i

e a a
i

l e a a
i

l

2 5 cos
2

4 cos
2

cos 3 cos
2

cos 2 . 14

01
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A detailed derivation of the Hamiltonian(9) is presented in
the Appendix. The averaged Hamiltonian can also be obtained
by numerically integrating Equation (8). This numerical
averaging treatment was first introduced by Schubart (1964)
as a semi-analytical approach to the mean motion resonance.
In this paper, we will call the numerical integration of the
averaged Hamiltonian(8) “the numerical averaged model”
and we call the Hamiltonian(9) “the analytical averaged
model”.

3. Phase Space of 1:1 Mean Motion Resonance

In this section, we explore the phase space of the 1:1 mean
motion resonance using the analytical averaged model. For the
sake of simplicity, we will chose a system of units such that
m= 1, a 1¢ = and G= 1. Without loss of generality we set
m 10 3¢ = - (a Jupiter-mass planet).

3.1. The Planar Case

In the planar (i= 0°) case, the Hamiltonian does not depend
on ω and thusG

~
is a constant. At this stage, the Hamiltonian has

been reduced to one degree of freedom related to the conjugate
pair (L l,  ), and is only parameterized by G

~
. The Hamiltonian is

now integrable. Given values of G
~
, we can obtain the phase-

space trajectories in the ( )a l,  plane (topologically equivalent to
the (L l,  ) plane) by computing the level curves of the analytical
averaged Hamiltonian in Equation (9). The value of G

~
is

determined by a pair of reference elements a0 and e0, that is,

( )G a e a10 0
2

0= - -
~

. Throughout this work we assume
a0= 1, then e0 is the value of eccentricity at the Lagrangian
point L4 (or L5). The greater e0 means more eccentric orbits of
the small body.

In Figure 1, we show the phase portraits of the planar 1:1
resonance obtained in the analytical averaged model for e0= 0,
0.1, 0.2 and 0.3. For e0= 0 (see Figure 1(a)), the phase space
morphology is similar to the classical zero-velocity curves of
the circular restricted three-body problem; the system has five
equilibrium points, corresponding to the five Lagrangian
points. L4 and L5 are exactly located at l 60 and 60 =  - 
respectively, and L3 at l 180 = . In Figure 1(a) there are
tadpole trajectories enclosing L4 (or L5) and horseshoe
trajectories enclosing L3, L4 and L5. For e0= 0.1, 0.2 and 0.3
(see Figures 1(b)–(d)), there is an equilibrium point at l 0 = ,
and the quasi-satellite trajectories librating around the equili-
brium point appear in the phase space. Moreover, as e0
increases the size of the quasi-satellite domain increases,
which is consistent with the previous works (see, e.g.,

Nesvorný et al. 2002; Pousse & Robutel 2017). It is clear in
Figure 1 that the structure of the phase space for the planar case
is symmetrical with respect to l 0 = .
When Δ= 0 the Hamiltonian(1) as well as(8) becomes

infinite, that is, the Hamiltonian(1)/(8) has a singularity that
corresponds to the collision between the small body and the
planet. However, the collision singularity has been removed
from the analytical averaged Hamiltonian in Equation (9)
(except for the case of e= 0 and i= 0°) due to the expanding
manipulation of the analytical Hamiltonian. Hence there are no
collision curves in Figures 1(b)–(d). This is a difference
difference between the analytical averaged model and the
numerical averaged model. In fact, the averaging method is not
applicable to the dynamics in the neighborhood of the collision
singularity (i.e., the Hill region of the planet) because the
hierarchical separation between the timescales of the different
variables breaks down in the Hill region (Robutel et al. 2016;
Pousse & Robutel 2017). Thus, the averaged model, whether
analytical or numerical, cannot give real phase trajectories in
the vicinity of the collision curves. This is an inherent
drawback of the averaged method.
We can write a= 1+Δa as the small body is coorbiting

with the planet. Moreover, in our case: m a 1 ¢ D . Thus,
according to Equation (9) the phase trajectories can be
approximately described by Wajer (2009)

( ) ( ( )) ( )a
m

C R a l
8

3
, , 152 D =

¢
- *

where R R m= ¢* and C is a constant that determines the type
of the trajectory. The time evolution of the semimajor axis, da/
dt, is given by

˜ ( )a

t
Lm

R

l

d

d
2 . 162= ¢

¶
¶

*

Hence the shape of R* is crucial because the extrema of R*

define the location of stable and unstable equilibrium points.
The minima of R* define the stable equilibrium points, i.e.,
libration centers around which there are the librating
trajectories; while the maxima define the unstable equilibrium
points (saddles) (Gallardo 2006). We define

( ) ( ) ( )S l R l1, . 17 *

( )S l corresponds to a curve formed by the intersection of the
surface ( )R a l, * with the plane a= 1. The curve gives the
location of the equilibrium points in the resonant angle l. The
behavior of S would help us to understand better the nature of
the different trajectories in 1:1 resonance.
Figure 2 shows two examples of the behavior of S as a

function of l for e0= 0 and 0.3. For e0= 0, S has two minima
at l 60 =   and a local maximum at l 180 = , which
correspond to the stable Lagrangian points L4 and L5 and the
unstable L3 (see left panel of Figure 2). The values of S at L3,
L4 and L5 are denoted by S S,L L3 4 and SL5, respectively. In the

4
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Figure 1. The phase portraits of the planar 1:1 resonance in the ( )a l,  plane for e0 = 0, 0.1, 0.2 and 0.3. The curves represent the level curves of the Hamiltonian(9),
and the background color maps represent the variation of the value of the Hamiltonian(9).

Figure 2. ( )S l as a function of l for e0 = 0 (left) and 0.3 (right) in the planar case. T, H and QS denote tadpole, horseshoe and quasi-satellite orbits, respectively. The
black horizontal lines correspond to the constant values of C.
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planar case we have S SL L4 5= . Orbits with the values of C
larger than SL4 and smaller than SL3 are tadpole; orbits with
C SL3> are horseshoe. For e0= 0.3 (left panel of Figure 2),
two sharp peaks (local maxima) of S appear near l 0 = . The
value of the peak to the right of l 0 = is denoted by S+, and to
the left S−. In the planar case S+= S−. Moreover, there is also
a local minimum at l 0 = denoted as S0, which corresponds to
the libration center of the quasi-satellite trajectories (see
Figure 1(d)). Orbits with S0< C< S+ are quasi-satellite. We
also see that for e0= 0.3 the Lagrangian points L4 and L5 are
displaced from l 60 =   toward ±180°.

3.2. The Spatial Case

In the spatial case, the Hamiltonian(9) is not independent of
ω, henceG

~
is not a constant. However, since ω andG

~
vary on a

timescale much longer than the period of 1:1 resonance, we
may assume ω, G

~
to be fixed parameters (adiabatic approx-

imation, see Beaugé & Roig 2001). As a result, the problem has

been reduced to a one degree of freedom system, and the
Hamiltonian(9) is now parameterized by ω, G

~
and H

~
. We

choose a set of reference elements a0, e0, i0 and ω0 which

determine the values of G
~

and H
~
, that is, ( )G e1 10

2= - -
~

and ( )H e i1 cos 10
2

0= - -
~

(note that we have assumed
a0= 1).
Figure 3 shows the phase portraits of the spatial 1:1

resonance obtained in the analytical averaged model for a
selection of reference elements. In Figure 3(a) the quasi-
satellite domain disappear and there are only tadpole and
horseshoe orbits. In this case the minimal angular separations
of the horseshoe orbits could reach very small value (∼0°).
However, these horseshoe orbits might be unstable because the
equilibrium point at l 0 = is a saddle (Figure 4(a)), near which
chaos occur. In Figure 3(b), the compound H–QS orbits appear
as a result of the merger of horseshoe orbits with quasi satellite
orbits. The H–QS orbit has a horseshoe-like trajectory but
enclosing the quasi-satellite domain and has a narrow opening

Figure 3. The phase portraits of the spatial 1:1 resonance in the ( )a l,  plane for a selection of values of e0, i0 and ω0. The curves are the level curves of the
Hamiltonian(9), and the background color maps represent the variation of the value of the Hamiltonian(9). The red lines in (b)–(d) denote the compound H–QS, T–
QS-T and T–QS orbits, respectively.

6
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to the left of l 0 =  (see the red line in Figure 3(b)). In
Figures 3(c) and (d), there are compound T–QS-T orbits
formed by the merger of the quasi-satellite orbits with the L4
and L5 tadpole orbits. The T–QS-T orbit makes the transfer of
the small body from L4 tadpole region to L5 tadpole region
possible, and vice versa. In Figure 3(d), we show an example of
the compound T–QS orbit which is formed by the merger of the
quasi-satellite and tadpole orbits. From the Hamiltonian in
Equation (9) we note that, in the spatial case, only when
cos 2 0w = and ±1 the following relationship holds

( ) ( ) ( )F l L G H F l L G H, , , , , , , , . 18  w w= -
~ ~~ ~

This implies that in the spatial case the structure of the phase
space is generally asymmetrical with respect to l 0 =  (for
instance, Figures 3(b) and (d)).

In the spatial case, the collision event occurs only when the
orbits of the small body and the planet interact at the ascending
or descending node of the small body’s orbit. This requires that

ω must satisfy (Nesvorný et al. 2002)

( ) ( )
e

a

a
ecos

1
1 1 . 192⎡

⎣
⎤
⎦

w = 
¢

- -

Thus, there is generally no collision singularity except for
specific values of ω. The collision singularity is replaced by the
local maxima of the Hamiltonian as well as ( )S l . The
existence of the local maxima and the asymmetry of the
Hamiltonian lead to the appearance of the compound orbits
(Figure 4).
Figure 4 shows the behavior of ( )S l for a selection of

reference elements same as in Figure 3. In Figures 4(b)–(d)
there are two peaks S− and S+ situated at the left and right of
l 0 =  respectively. We have S−> S+ for the asymmetrical
cases (Figures 4(b) and (d)). From Figure 4 we find that: if
S S SL3> >- + the asymmetrical H–QS orbits exist (see
Figures 4(b)); if S SL3 > - the T–QS-T orbits exist
(Figures 4(c) and (d)); and if S S S SL L3 4> > >- + we have
the T–QS orbits (Figure 4(d)).

Figure 4. ( )S l as a function of l for a selection of reference elements same as in Figure 3.
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4. Comparison with the Numerical Averaged Model

In this section we compare the analytical averaged model
with the numerical averaged model. Note that the only
difference of the two models is in the averaged disturbing
function R . Therefore, by comparing the behavior of S between
the two models we can evaluate how the analytical averaged
model agrees with the numerical averaged model.

A comparison of the behavior of S in the analytical and
numerical averaged models for the planar case is shown in
Figure 5. We see that the analytical averaged model is in
complete agreement with the numerical averaged model for
e0= 0 (Figure 5(a)). Both models give a collision singularity
at l 0 = .

For e0> 0, the collision singularity has been removed from
the analytical averaged model and is replaced by the local
maxima, while the numerical averaged model has two
singularities at both sides of l 0 =  (see Figures 5(b)–(d)).
However, as illustrated in Section 3.1, both the analytical and

Figure 5. A comparison of the behavior of S between the analytical averaged model (solid lines) and the numerical averaged model (dashed lines) for the planar case.

Figure 6. The location of the L4 Lagrangian point, lL4
 , as a function of e0. The

red line represents the result given by the numerical averaged model, and the
blue line given by the analytical model.
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numerical averaged models are not valid in the vicinity of the
collision singularity, and neither of them can reflect properly
the real dynamics in that region. Thus, this inconsistency
between the two models may be ignored. Except near the
collision singularity, the analytical averaged model agrees with
the numerical averaged model well even for e0= 0.3
(Figures 5(b)–(d)).

The minima of S define the location of the Lagrangian points
L4 and L5. Thus, by finding the root of the equation dS dl 0 = ,
we can determine the displacement of the location of the
Lagrangian point L4 (or L5) from l 60 =  (or l 300 = ) for
different values of e0. The result is shown in Figure 6. We can
see that the Lagrangian point L4 drifts outward from l 60 = 
with increasing e0 for both the numerical and analytical
averaged models. Importantly, for e0< 0.3 there is a quite
small deviation between the analytical model and the numerical
averaged model.

Figure 7 provides a comparison of the analytical averaged
model with the numerical averaged model for the spatial case

for a selection of reference elements, the same as that in
Figure 3. It is clear from Figure 7 that for the moderate
eccentricities and inclinations the behavior of S of the
analytical averaged model is basically consistent with that of
the numerical averaged model, although there are quantitative
differences especially in the peaks S− and S+ and the local
minimum S0.
In the numerical averaged model, the peak S− actually

corresponds to the minimum relative distance, minD , between
the small body and the planet. minD is a function of a, e, i and
ω. For a= 1, e= 0.3, from Equation (19) we get ω≈ 72°.5 for
which the collision singularity occurs. This means that as
ω→ 72°.5 the minimum relative distance minD tends to zero.
Figure 8 shows that for the case of e0= 0.3, i0= 30° there is
considerable disagreement between the analytical and numer-
ical models when ω0 is close to the value of 72°.5. In Figure 8,
the numerical averaged model gives a very high and sharp peak
S− to the left of l 0 =  for ω0= 60° and 72°, corresponding to
quite small values of ;minD and yet the analytical averaged

Figure 7. The same as Figure 5 but for the spatial case.
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model gives a low and soft peak S−. This is because in the
analytical averaged model the local maximum S− has been
softened as a result of the elimination of the collision
singularity. The softening maximum S− cannot reach a very
large value.

From the behavior of S shown in Figure 8 we see that the
analytical averaged model gives the compound T–QS-T orbits;
however, due to the existence of the sharp peak S−, there are
the compound H–QS orbits instead of the T–QS-T orbits in the
numerical averaged model. Consequently, the phase-space
structure of the numerical averaged model is now qualitatively
different from that of the analytical averaged model. This
indicates that in such cases the analytical averaged model is not
sufficient to describe the co-orbital dynamics especially for the
compound orbits. However, from Figures 5, 7 and 8 we note
that the analytical averaged model is always a good approx-
imation to the tadpole and horseshoe motions.

5. Conclusions

In this paper we focused on the co-orbital motion in the
circular restricted three-body problem, which consisted of a
massless small body moving around a central star and
perturbed by a planet in a circular orbit. We developed an
analytical model adapted to the planar and spatial 1:1 resonance
and valid in the entire con-orbital region. It takes two main
steps to construct the model: first, we expanded the
Hamiltonian of the circular restricted three-body problem to
the second order in the eccentricity and inclination of the small
body; then we averaged the result with respect to the mean
anomaly of the small body and we obtained an analytical
averaged Hamiltonian.

For the planar 1:1 resonance, our analytical averaged model
can recover three classical types of the co-orbital motion:
tadpole, horseshoe and quasi-satellite orbits. Moreover, the

analytical model shows that as the eccentricity increases the
quasi-satellite domain becomes larger and larger, which is
consistent with the previous works. The shift of the Lagrangian
points L4 and L5 was also observed in the analytical model. For
the spatial 1:1 resonance, the analytical model reveals that the
phase space structure is generally asymmetrical. There are the
compound H–QS, T–QS and T–QS-T orbits which are formed
by the merger of the quasi-satellite orbits with the horseshoe or
tadpole orbits. The appearance of these compound orbits is due
to the existence of the local maxima and the asymmetry of the
Hamiltonian.
Comparison with the numerical averaged model shows that

our analytical averaged model is valid even for the moderate
eccentricities (∼0.3) and inclinations (∼30°). However, the
analytical averaged model becomes a poor approximation to
the dynamics in the vicinity of the collision singularity, for two
reasons. First, the averaged method is not applicable to the
motion inside the Hill region in which the timescales of the
different degrees of freedom of the system are not separated
well. Second, in the the analytical averaged model the local
maxima of the Hamiltonian are softened as a consequence of
the fact that the collision singularity is removed from the
Hamiltonian. The softening maxima cannot reach a very large
value when the minimum relative distance approaches zero,
which would lead to the co-orbital dynamics qualitatively
different from that of the numerical averaged model.
This paper may be helpful for relevant researches. For

example, we can exploit the analytical model to calculate the
oscillation amplitude and period of the co-orbital orbits. The
averaged analytical model can be further used to study the
secular stability of the co-orbital motion (especially for the
tadpole and horseshoe orbits). Specifically, we can analytically
study the orbital stability of the Trojan asteroids in tadpole
orbits around the L4 and L5 Jovian Lagrangian points. We want

Figure 8. The behavior of S of the analytical averaged model (solid lines) and of the numerical averaged model (dashed lines) for small values of minD .
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to examine whether the number asymmetry of the L4 and L5
Jovian Trojans is related to the stability of the co-orbital motion
at the L4 and L5 points. Moreover, using the analytical model
we may provide a qualitative analysis of the secular stability of
some recent found asteroids co-orbiting with the Earth (Borisov
et al. 2023). According to the analytical Hamiltonian, we may
develop a secular formalism of the circular RTBP to study the
secular evolution of the eccentricity and inclination of the co-
orbital objects. Furthermore, the co-orbital motion in the
elliptic restricted three-body problem may also be approached
analytically by using the methods presented in the paper.
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Appendix
Analytical Expression for the Averaged Hamiltonian

The averaged Hamiltonian is given by
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To obtain an analytical expression for the averaged Hamilto-
nian, the first and most crucial step is to expand the direct term
of the disturbing function, Δ−1, written as
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Since we focus on the prograde orbits of the small body in this
paper, here ( )isin 22 is a small quantity. Therefore, Δ−1 can be
expanded in a Taylor series in ( )isin 22 . We have

( ) ( )

( )

ra i M

i

1 1 sin 2 cos 2

sin
2

, A4

0

2

0
3

4⎛
⎝

⎞
⎠

q
D

=
D

+
¢ + ¢ - W

D

+ 

where

( ) ( )r a ra
i

M2 cos
2

cos . A50
2 2 2

1 2
⎛
⎝

⎞
⎠

qD = + ¢ - ¢ - ¢

One can easily obtain the elliptic expansions to the second
order in e for ( )r r M, cos2 q - ¢ and ( )r Mcos 2q + ¢ - W . They

are

( )

( )

r a e e M e M e1
3

2
2 cos

1

2
cos 2 ,

A6

2 2 2 2 3⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

= + - - + 

( ) ( ) ( )

( ) ( )

( )
( )

r M a e l M e l M

e l

e l M e l M

e

cos
1

8
cos 2

3

2
cos

1
1

2
cos

1

2
cos

3

8
cos 2

,
A7

2

2

2

3

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

 



 

q - ¢ = - - -

+ -

+ + + +

+ 

( ) (˜ )

(˜ )

(˜ )

(˜ )

(˜ ) ( )

( )

r M a e l

e l M

e l M

e l M

e l M e

cos 2
1

8
cos 2

3

2
cos 2

1
1

2
cos 2 2

1

2
cos 2 3

3

8
cos 2 4 .

A8

2

2

2 3

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

q w

w

w

w

w

+ - W = -

- - -

+ - - -

+ - -

+ - - +

¢



By making use of the expansions Equation (A6) and
Equation (A7), 0
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Substituting Equations (A13) and (A14) into Equation (A4)
and averaging over the mean anomalyM (and keeping terms up
to order e2), we obtain
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which provides a better approximation for the 1:1 resonance
when the small body approaches the planet closely. From

Equations Equation (A7) and Equation (A8) it is easy to find
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