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Abstract

A telecommunication network used for the transmission of astronomical observation data, telescope remote control
and other astronomical research purposes is a critical infrastructure. The monitoring and analysis of network traffic,
which help improve the network performance and the utilization of network resources, are a challenging task. The
accurate identification of the astronomical data traffic will effectively improve transmission efficiency. In this
paper, a classification method applied to types of traffic containing astronomical data using deep learning is
proposed. The advantages of a convolutional neural network model in image classification are exploited to classify
types of traffic containing astronomical data. The objective is to identify the mixed traffic in the network and
accurately identify types of traffic containing astronomical data. The effectiveness of the model in improving
classification accuracy is also discussed. Actual traffic data captured by Tcpdump and Wireshark are tested, and the
experimental results indicate that the proposed method can accurately classify types of traffic containing
astronomical data.
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1. Introduction

A transmission network is a critical infrastructure in
astronomical data transmission, data archiving, publishing
and network research. The Xinjiang Astronomical Observa-
tory (XAO) relies on the China Science and Technology
Network to ensure a stable Gigabit-bandwidth Zhang et al.
(2019). This network employs a data transmission fiber line
(b= 300 Mb s−1) between Nanshan Station and XAO head-
quarters (ΔD= 100 km). It serves the transmission of data
obtained from observation equipment, such as the Nanshan
26 m radio telescope (NSRT) and the Nanshan 1 m wide-field
optical telescope (NOWT). It also provides disaster backup of
the observation data using the data storage system of Nanshan
Station and XAO Zhang et al. (2022). To solve the data
transmission problems encountered in site monitoring and
optical telescope observation equipment, a data transmission
fiber line (b= 100 Mb s−1) has been established between the
Qitai Station and XAO headquarters (ΔD= 200 km).

The astronomical data transmission traffic in the XAO data
transmission network can be roughly divided into the
following two types Wang et al. (2022): (1) Bandwidth-
sensitive traffic generated by batch transmission and astro-
nomical data storage. (2) Delay-sensitive traffic generated by
high-performance computing, data retrieval and other

processes. Due to the rapid growth of high throughput
demand in the bandwidth-sensitive traffic and low-latency
demand in the delay-sensitive traffic, as well as the emergence
of new Internet applications and the interaction among
various terminals, the complexity and diversity of transmis-
sion networks have considerably increased, making the
classification of types of traffic containing astronomical data
a complex problem. Therefore, it is necessary to use network
resources reasonably and effectively to identify different types
of data transmission traffic.
The main contributions of this paper are as follows:
(i) By comparing the four main classification methods, we

propose a traffic classification method that employs deep
learning. This method can be applied to the data communica-
tion network of the XAO. As far as we know, this is the first
study on the classification of types of traffic containing
astronomical data.
(ii) In the absence of public astronomical traffic data sets,

and no studies on the classification of traffic containing
astronomical data, we capture real traffic data transmitted in an
astronomical network by Tcpdump and Wireshark using the
port mirroring mode in the core switch, and private
astronomical transmission traffic data sets are constructed for
conducting experiments.
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(iii) The four main traffic classification methods require
manual operation, especially the method based on machine
learning, which first requires manual extraction of network-
traffic-related features by experts. Therefore, we propose a
method that does not require manual extraction of network
traffic-related features, and apply the method to astronomical
data transmission. As a result, the cumbersome steps of feature
search and extraction are avoided, and the data processing
efficiency is improved.

The rest of this paper is organized as follows. In Section 2,
some basic theoretical knowledge related to network traffic
classification and deep learning is introduced. The proposed
classification method of data transmission traffics, including
data acquisition, data pre-processing and model training, which
is the core of this paper, is presented in detail in Section 3. In
Section 4, the hardware and software experimental parameters
and the selection of model evaluation indices are described.
Also, the experimental results are further discussed to
investigate the effectiveness of the model in improving the
accuracy of data transmission traffic classification. Finally,
Section 5 concludes the paper.

2. Theoretical Background

2.1. Network Traffic Classification

Due to the continuous development of network applications,
the identification of specific network traffic or applications has
become very important in network control and management.
Current network traffic classification methods can be classified
into the following four types according to the different
technologies used: (i) The method based on port matching
Wang et al. (2015); this method has the advantages of fast
detection time, high accuracy, low complexity and strong
practicability in a traditional network environment, it is known
to be among the fastest and simplest methods for classification
of network traffic. However, it also exhibits some limitations
due to its poor generality and high error rate Rezaei & Liu
(2018). Madhukar & Williamson (2006) proposed only 30%–

70% of the current Internet traffic can be classified using this
method. Thus, this method is not used because of the low

accuracy of traffic classification. (ii) The method based on deep
packet inspection Guo et al. (2017); this method has the
advantage of high recognition accuracy. It can recognize a
certain number of protocols by considering the port random-
ness. However, the extraction of traffic characteristics requires
packet capturing and consumes resources El-Maghraby et al.
(2017). Hence, this method is not used because it is time-
consuming and has limited traffic classification capability. (iii)
The method based on traffic-statistics characteristics Zhang
et al. (2012); this method does not need to obtain time or size
information for individual packets to identify specific applica-
tions. However, statistical features are difficult to select, a false
alarm can be caused, and the performance of the method is
relatively poor in real time Yang (2019). Accordingly, this
method is not used because it takes a lot of time to select
statistical features. (iv) The method based on machine learning
Shafiq et al. (2016); this method does not depend on
computational resources, is not greedy for training samples
and has few and well-defined model parameters. However, it
depends on large-scale correct training data and network flow
features Akinsola (2017). Consequently, this method is not
used because the feature extraction and feature selection phases
are essentially done with the assistance of the expert, and it is
time-consuming and prone to human mistakes. A comparison
of the advantages and disadvantages of the above four methods
is shown in Table 1. In summary, we will use deep learning
methods applied to astronomical data traffic classification for
reducing time-consuming and manual feature selection.

2.2. Deep Learning

Deep learning is a branch of machine learning. Compared
with traditional machine learning, deep learning does not
require experts to spend a large amount of time on feature
selection, thus, avoiding the subjectivity and incompleteness
caused by human feature selection. In addition, the deep
learning ability in large data sets far exceeds that of traditional
machine learning. The convolutional neural network (CNN)
used in this paper is a feedforward neural network involving
convolutional computation and has a deep structure. It is one of
the representative algorithms in deep learning. The classic

Table 1
Comparison of Network Traffic Classification Methods

Methods Classification Basis Advantages Disadvantages

Port matching port number fast detection time, high accuracy, low complexity, strong
practicability

poor generality, high error rate

Deep packet inspection payload of packets high recognition accuracy, considering the port randomness requires packet capturing, and consumes
resources

Statistics characteristics statistical features does not need to obtain time or size for individual packets difficult to select features a false alarm can be
caused

Machine learning feature selection does not depend on computational resources, has few model
parameters

depends on correct training data and network flow
features
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CNN model includes the following four types: (i) LeNet-5
Lecun et al. (1998); this model has the following advantages:
(a) feature extraction and pattern classification are performed
and generated simultaneously during training; (b) weight
sharing reduces the network training parameters; (c) its
structure is simpler than that of other network types. (ii)
AlexNet Krizhevsky et al. (2012); this model adds a rectified
linear unit (RELU) nonlinear activation function to enhance the
nonlinear expression of the model and a dropout layer to
prevent overfitting. (iii) ResNet He et al. (2016); this model
introduces a batch normalization layer to increase the training

speed and stability of the network during convergence as well
as to increase the depth of the network in order to improve the
feature extraction ability of the model. (iv) Xception Chollet
(2017); this model achieves full cross-channel correlation
decoupling, and spatial correlation can make full use of
hardware resources. One-dimensional-CNN (1D-CNN) is
commonly used in sequence models or natural language
processing and has achieved some results. We use 1D-CNN
to construct classification model for traffic containing astro-
nomical data, because a traffic packet is a sequence of data
bytes which is similar to a language sequence to some extent.

Figure 1. Flow chart of the proposed classification method for types of traffic containing astronomical data.
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Two-dimensional-CNN (2D-CNN) has been applied in the
computer vision and image processing. We also use 2D-CNN
to construct a classification model for traffic containing
astronomical data as a comparison experiment, because it is
possible to convert the traffic packet into a two-dimensional
image.

3. Classification Method for Types of Traffic
Containing Astronomical Data

The proposed classification method for types of traffic
containing astronomical data includes the following three steps:
(i) Data acquisition; traffic data are collected using port
mirroring in the XAO core switch by employing the network
traffic capture software to form the experimental data set. (ii)
Data pre-processing; the collected traffic data are segmented,
any invalid or duplicate traffic is removed, the IP is
anonymized, and grayscale images are generated according to
the CNN input. (iii) Model training; the generated images are
inserted into the CNN model for training, and the classification
results are finally obtained so that the data transmission traffic
and non-data transmission traffic can be effectively distin-
guished. The flow chart of the proposed method is shown in
Figure 1.

3.1. Data Acquisition

Tcpdump and Wireshark were used to capture the traffic data
in the XAO data transmission network (between 2022 May and
July). The captured data were stored in files (*.pcap format).
Pcap is a commonly used packet storage file starting with a
24 byte pcap header, followed by the information related to
each message (a 16 byte packet header records the message
information, and the packet data record the message data). The
captured packets were separated into different pcap files and
marked according to the packets generated by the application
(e.g., scp, rsync) and the type of astronomical data (e.g., pulsar
data, very long baseline interferometry data, optical data)
transmitted by the application during the traffic capture (e.g.,
“scp_vlbi.pcap,” “rsync_pulsar.pcap”). The specific data set
information is shown in Table 2. The total number of raw

stream entries is 9.12× 106, and the total data size is 11.16 GB.
The specific packet length empirical probability mass function
is shown in Figure 2.

3.2. Data Pre-processing

Network traffic data must be pre-processed to generate
images that match the model input before being fed into the
CNN model for training. Pre-processing mainly includes traffic
data segmentation, invalid or duplicate traffic cleaning, IP
address and MAC address anonymization, feature value
normalization and unified traffic data length. Initially, the pcap
file was segmented, as shown in Figure 3, into n files
containing a global header, packet headers and packet data.
Any traffic unrelated to data transmission traffic or invalid
traffic (e.g., packet re-transmission, out-of-order packets, etc.)
was removed.
On the Internet, the IP and MAC addresses can accept

different categories of network traffic without affecting the
classification results. However, the input to the neural network
model not only affects the classification accuracy but also
increases the model operation complexity and the training time.
The IP and MAC addresses were anonymized during data pre-
processing. To facilitate the model data, the traffic data were
normalized, as shown in Equation (1)

=
-

-
x

x x

x x
NORM

MIN

MAX MIN
1[ ] [ ]

[ ] [ ]
( )

where NORM[x] is the normalized eigenvalue of the flow data,
x is the original flow data, xMAX[ ] is the maximum value in
the original flow data, and xMIN[ ] is the minimum value in the
original flow data. The model input is kept in the interval of [0,
1] by applying a linear transformation to the original flow data.

3.3. Network Model

CNN is one of the representative algorithms of deep
learning, which belongs to deep feed-forward neural network,
including convolutional layer and pooling layer. Based on the
structural characteristics of traffic packets, and the advantages
of CNN hidden layer with shared convolutional kernel
parameters and sparsity of inter-layer connections, reducing
the manual judgment of features, this paper uses CNN model to
process the original packet data.
As shown in Figure 4, the input layer corresponds to the

original traffic data, and the first 784 bytes are obtained to
generate a grayscale map of 28× 28 pixels. The core of a CNN
is the convolution and pooling operation, where the convolu-
tion operation is based on convolutional kernels to extract pixel
features, as shown in Equation (2). A single convolutional
kernel extracts local features, and multiple convolutional
kernels can extract data from multiple angles to form a

Table 2
Traffic Data in the XAO Data Transmission Network

Type Wave Band Date Time Volume

Pulsar data-I Radio 2022-05-18 10:06:54 1.32 GB
Pulsar data-II Radio 2022-07-16 19:10:38 1.58 GB
VLBI data Radio 2022-05-26 12:30:50 3.78 GB

2022-05-26 17:34:36
Optical Data-I Optical 2022-06-25 09:04:01 1.17 GB
Optical Data-II Optical 2022-06-17 16:32:08 1.03 GB
Optical Data-III Optical 2022-05-31 19:07:24 2.28 GB

2022-06-17 16:11:29
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Figure 2. Visualization of the empirical probability mass function of packet length in astronomical data transmission traffic data sets.
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convolutional layer for extracting the overall features
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=
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where m is the number of network layers in the CNN, i is the
feature map, ω is the convolution kernel, bc is the bias, RN is
the set of feature vectors, and g(· ) is the activation function
RELU which injects nonlinear features into the model.

The pooling operation operates as a feature selection and
information filtering as well as downsampling of the convolu-
tional kernel output. The pooling layer converts point features
into area features according to the predefined pooling function
and further aggregates the features to reduce model overfitting.
In this paper, maximum pooling is used to perform feature
filtering in the convolutional layer output.

In the fully connected layer, the pooled feature vectors are
integrated. Finally, multiple classification results are presented
in the form of probabilities. The normalized exponential
function softmax was used to obtain the classification results,

as shown in Equation (3)

=
å

y
e

softmax . 3m
y

i
e

conv

m

xi
m

conv( ) ( )( )
( )

( )

4. Experimental Results

An Intel(R) Xeon(R) W-2145 CPU@3.70 GHz workstation
with 64 GB RAM was to perform the experiments. python 3.7
was used as the programming language and Tensorflow 1.14.0
was used as the deep learning model framework.

4.1. Evaluation Index

The classification performance of the proposed traffic
classification method applied to an astronomical data transmis-
sion network was validated using the commonly used
classification metrics, i.e., accuracy, precision, recall and F1-
score. Among them, the accuracy (i.e., the ratio of correctly
classified traffic containing astronomical data to the entire
network traffic in the experimental data set) was used to

Figure 3. Network traffic data splitting. (Note: GH denotes the global header, PH denotes the packet header, PD denotes the packet data, bm and bs denote the m byte
in the packet header and the s byte in the packet data, respectively, and n denotes the packet number.)
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Figure 4. Convolutional neural network model.
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evaluate the overall performance of the classification method,
as expressed in Equation (4)

= å
å +

Î
T

T F
iAccuracy , Class . 4i

i i( )
(·) ( )

The accuracy, recall and F1-score represent the ratio of
correctly classified traffic containing astronomical data to the
total number of the same type of traffic in the classification
result, the ratio of correctly classified traffic containing
astronomical data to the total number of the same type of
traffic in the test set, and the overall classification evaluation of
traffic containing astronomical data, respectively, as shown in
Equations (5)–(7)

=
+

Precision
TP

TP FP
5( )

=
+

Recall
TP

TP FN
6( )

=
´ ´

+
F1 score

2 Precision Recall

Precision Recall
7‐ ( )

where Ti is the correctly classified network traffic, Fi is the
incorrectly classified network traffic, TP is the correctly
classified astronomical traffic, FP is the incorrectly classified
astronomical data transmission traffic, FN is the incorrectly
classified non-astronomical data transmission traffic and i is the
number of classifications.

4.2. Two-class Experimental Results

Figures 5 and 6 show the confusion matrix for the two-class
test using 1D-CNN and 2D-CNN models, this is the result of
random testing. It can be observed that, the correct classifica-
tion of traffic containing astronomical data is above 90%, and
the correct classification of the other types of traffic is above
97% in the remaining tests. There was no significant difference
in the correct classification results of 1D-CNN and 2D-CNN
models, which are −2.22%, 0.41%, 0.58%, 0.48% in the traffic

Figure 5. Two-class confusion matrix(1D-CNN).
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containing astronomical data and 1.06%, 0.22%, −0.03%,
0.08% in the other types of traffic, respectively.

Random testing did not validate the results well. Then, we
used a ten-fold cross-validation averaging method to test the
accuracy of the classification model. A comparison between
1D-CNN and 2D-CNN models for various types of evaluation
metrics in binary classification is shown in Tables 3 and 4. The

Tables show that both groups of experiments achieve good
classification results with classification accuracy mostly above
96.00%. The accuracy, recall and F1-score of the classification
of traffic containing astronomical data are in the 90.65%–

94.05%, and other types of traffic classification are in the
97.72%–98.48%. Specifically, the total accuracy of 1D-CNN
are higher than 2D-CNN, as much as 0.34%, 0.13%, 0.16% and

Figure 6. Two-class confusion matrix (2D-CNN).

Table 3
Results of Two-class Experiments (1D-CNN)

Data Set Classes Results

Train Size Test Size Precision Recall F1-score Total Accuracy

90% 10% Astr 91.86% ± 1.43% 94.05% ± 1.07% 92.96% ± 0.54% 97.13% ± 0.22%
Non_Astr 98.48% ± 0.27% 97.87% ± 0.43% 98.20% ± 0.14%

80% 20% Astr 91.68% ± 0.79% 91.53% ± 1.41% 91.59% ± 0.63% 96.97% ± 0.21%
Non_Astr 98.14% ± 0.30% 98.18% ± 0.19% 98.15% ± 0.12%

70% 30% Astr 93.31% ± 0.68% 92.67% ± 1.01% 92.98% ± 0.29% 96.92% ± 0.12%
Non_Astr 97.94% ± 0.27% 98.13% ± 0.22% 98.03% ± 0.08%

60% 40% Astr 92.18% ± 0.85% 92.65% ± 0.61% 92.30% ± 0.28% 96.86% ± 0.13%
Non_Astr 98.12% ± 0.15% 98.00% ± 0.24% 98.03% ± 0.09%
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0.11%. For the classification of traffic containing astronomical
data, the precision of 1D-CNN are higher than 2D-CNN,
0.63%, 0.12%, 0.15% and 0.51% higher on average; the recall
of 1D-CNN are higher than 2D-CNN, 0.76%, 0.88%, 0.73%
and 0.19% higher on average; the F1-score of 1D-CNN are
higher than 2D-CNN, 0.76%, 0.38%, 0.41% and 0.28% higher
on average. For other types of traffic classification, the
precision of 1D-CNN are higher than 2D-CNN, 0.19%,
0.19%, 0.20% and 0.04% higher on average; the recall of
1D-CNN are higher than 2D-CNN, 0.15%, 0.02%, 0.05% and
0.16% higher on average; the F1-score of 1D-CNN are higher
than 2D-CNN, 0.22%, 0.08%, 0.10% and 0.08% higher on
average. In other words, 1D-CNN and 2D-CNN are suitable for
solving the classification problem of traffic containing
astronomical data, and 1D-CNN has better performance than
2D-CNN, because the traffic data is one-dimensional and 1D-
CNN is more suitable for these data.

4.3. Multi-class Experimental Results

The effectiveness of a CNN in classifying traffic containing
astronomical data was verified by conducting multiple
classification experiments using 1D-CNN and 2D-CNN
models. The results obtained from experiments using ten-fold

cross-validation to evaluate the classification results of 1D-
CNN and 2D-CNN models are shown in Figure 7. It can be
observed that the 1D-CNN model performs better than the 2D-
CNN model in terms of accuracy, recall and F1 score. For
comparison, the mean values of the above three indicators are
given in Tables 5 and 6. It can be observed that the 1D-CNN
model exhibits better performance than the 2D-CNN model,
with the Total Accuracy increase of 2.83%. Specifically, (i) for
the traffic containing pulsar data-I, the precision, recall and F1-
score of 1D-CNN are higher than 2D-CNN, 3.50%, 4.20% and
3.69% higher on average; (ii) for the traffic containing pulsar
data-II, the precision, recall and F1-score of 1D-CNN are
higher than 2D-CNN, 4.00%, 1.88% and 2.51% higher on
average; (iii) for the traffic containing VLBI data, the precision,
recall and F1-score of 1D-CNN are higher than 2D-CNN,
2.42%, 3.84% and 3.75% higher on average; (iv) for the traffic
containing optical data-I, the precision, recall and F1-score of
1D-CNN are higher than 2D-CNN, 4.89%, 0.93% and 2.34%
higher on average; (v) for the traffic containing optical data-II,
the precision, recall and F1-score of 1D-CNN are higher than
2D-CNN, 0.89%, 2.62% and 1.76% higher on average; (vi) for
the traffic containing optical data-III, the precision, recall and
F1-score of 1D-CNN are higher than 2D-CNN, 2.09%, 2.48%

Table 4
Results of Two-class Experiments (2D-CNN)

Data Set Classes Results

Train Size Test Size Precision Recall F1-score Total Accuracy

90% 10% Astr 91.23% ± 0.82% 93.29% ± 1.52% 92.20% ± 0.50% 96.79% ± 0.19%
Non_Astr 98.29% ± 0.38% 97.72% ± 0.27% 97.98% ± 0.11%

80% 20% Astr 91.56% ± 0.86% 90.65% ± 1.23% 91.21% ± 0.59% 96.84% ± 0.21%
Non_Astr 97.95% ± 0.26% 98.16% ± 0.21% 98.07% ± 0.13%

70% 30% Astr 93.16% ± 0.28% 91.94% ± 1.28% 92.57% ± 0.65% 96.76% ± 0.26%
Non_Astr 97.74% ± 0.35% 98.08% ± 0.09% 97.93% ± 0.16%

60% 40% Astr 91.67% ± 1.18% 92.46% ± 2.84% 92.02% ± 0.82% 96.75% ± 0.26%
Non_Astr 98.08% ± 0.71% 97.84% ± 0.40% 97.95% ± 0.16%

Table 5
Results of Multi-class Experiments (1D-CNN)

Classes Precision Recall F1-score

Pulsar Data-I 79.33% ± 9.50% 68.02% ± 3.12% 72.83% ± 2.35%
Pulsar Data-II 62.00% ± 9.50% 76.51% ± 5.95% 67.49% ± 3.54%
VLBI Data 79.75% ± 3.75% 90.61% ± 3.02% 84.65% ± 1.24%
Optical Data-I 99.18% ± 0.27% 95.57% ± 1.76% 97.21% ± 0.91%
Optical Data-II 98.85% ± 0.64% 96.75% ± 0.73% 97.61% ± 0.51%
Optical

Data-III
89.92% ± 3.42% 81.89% ± 2.23% 85.35% ± 0.65%

Total Accuracy: 81.79% ± 0.77%

Table 6
Results of Multi-class Experiments (2D-CNN)

Classes Precision Recall F1-score

Pulsar Data-I 75.83% ± 5.33% 63.82% ± 1.86% 69.14% ± 1.13%
Pulsar Data-II 58.00% ± 5.33% 74.63% ± 3.20% 64.98% ± 2.16%
VLBI Data 77.33% ± 3.00% 86.77% ± 3.23% 80.90% ± 1.00%
Optical Data-I 94.29% ± 1.90% 94.64% ± 2.05% 94.87% ± 1.07%
Optical Data-II 97.96% ± 0.76% 94.13% ± 1.13% 95.85% ± 0.43%
Optical
Data-III

87.83% ± 3.50% 79.41% ± 2.87% 83.47% ± 1.10%

Total Accuracy: 78.96% ± 0.55%
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Figure 7. Ten-fold cross-validation compares the precision, recall and F1-score of 1D-CNN and 2D-CNN models in multi-class experimental results.
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and 1.88% higher on average. That means, 1D-CNN has better
performance than 2D-CNN, because 1D-CNN directly learns
features from raw traffic automatically and directly outputs the
predicted labels.

5. Conclusions

This paper proposes a classification method using deep
learning for traffic containing astronomical data considering
some network traffic classification methods, such as the method
based on port matching, the depth packet detection method, the
stream statistical feature method and the machine learning
method. In this method, the identification problem of traffic
containing astronomical data was transformed into a typical
classification task by employing multiple deep feature learning
and using CNNs to design a classifier that fits the character-
istics of astronomical data transmission. The traffic containing
an astronomical data set was formed by capturing the network
traffic in the XAO data transmission network, whereas the non-
astronomical transmission traffic data set was formed using part
of the non-VPN data set in ISCX-2016 for classification
experiments. The experimental results indicated that the
proposed method can effectively distinguish the traffic contain-
ing mixed astronomical data from the traffic containing non-
astronomical data in the network and achieve accurate
identification of traffic containing astronomical data. In future
work, we plan to capture more and more detailed astronomical
data contained in transmission traffic in the XAO data
transmission network to verify the effectiveness of the
proposed method.
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