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Abstract

Quantitative and analytical analysis of the modulation process of the collimator is a great challenge, and is also of
great value to the design and development of Fourier transform imaging telescopes. The Hard X-ray Imager (HXI),
as one of the three payloads onboard the Advanced Space-based Solar Observatory (ASO-S) mission, adopts
modulating Fourier-Transformation imaging technique and will be used to explore the mechanism of energy
release and transmission in solar flare activities. As an important step to reconstruct the images of solar flares,
accurate modulation functions of HXI are needed. In this paper, a mathematical model is developed to analyze the
modulation function under a simplified condition first. Then its behavior under six degrees of freedom is calculated
after adding the rotation matrix and translation change to the model. In addition, unparalleled light and extended
sources are also considered so that our model can be used to analyze the X-ray beam experiment. Next, applied to
the practical HXI conditions, the model has been confirmed not only by Geant4 simulations but also by some
verification experiments. Furthermore, how this model helps to improve the image reconstruction process after the
launch of ASO-S is also presented.

Key words: instrumentation: detectors – Sun: X-rays – gamma-rays – techniques: image processing – methods:
analytical

1. Introduction

The imaging observation in the hard X-ray band is of great
significance for understanding the mechanism of energy release
and transmission in solar flare activities. The Hard X-ray
Imager (HXI) is a new hard X-ray telescope that applies the
Fourier-transform (FT) imaging technique. As one of the
indirect imaging instruments, it images the Sun by reconstruct-
ing from its pattern and measuring counting (Su et al. 2019).
So, an accurate pattern is a basis for high-quality imaging.
However, the current methods of calculating patterns are either
approximate or numerical, which affects the analyticity and
efficiency of the imaging algorithm to some extent. In order to
obtain a more accurate pattern, a mathematical model based on
the geometric structure of HXI is developed in this paper. The
necessity of the new method can be demonstrated by an in-
depth analysis of the imaging technique.

Direct imaging and indirect imaging are two major
techniques to observe the Sun in the hard X-ray band. But in
terms of a hard X-ray observation instrument, direct imaging as
that in the visible light band still faces many technological
difficulties, although it has been developed for many years (Mi
et al. 2019). In contrast, Fourier-transform imaging, as a kind of
typical indirect modulation imaging technique, has been
applied to solar X-ray imaging observation and achieved
fruitful results for several decades. The hard X-ray telescope

(HXT) onboard the Yohkoh mission (Sakao 1994), the Reuven
Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)
(Lin et al. 2003), and the Spectrometer/Telescope for Imaging
X-rays (STIX) onboard the Solar Orbiter mission (Krucker
et al. 2020) are three of the most well-known solar X-ray
imaging instruments using such FT imaging technique. The
new solar hard X-ray imaging instrument HXI also applies the
FT imaging technique.
To study the imaging process of HXI, it is first necessary to

state the imaging principle of FT-type telescopes. This kind of
instrument contains several groups of bi-grid sub-collimators
with different pitches, position angles, and phase angles. The
differences of each sub-collimator can reflect the spatial
information of the sources, which are called “modulation
modes.” Each sub-collimator modulates the photon flux
physically, and the detector right behind it records those
photons that pass through the sub-collimator as a result of the
modulation. By subtracting the particle background, results
containing only the original information component can be
obtained. The original image can be rebuilt by analyzing the
modulation modes with their results.
The most popular ways to achieve image reconstruction are

to go through its pattern or visibility. The pattern is formed by
the angle-transmittance response, or called the modulation
function of the corresponding sub-collimator, and the pattern is
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actually the final modulation function of the detector. The
reconstructed images can then be obtained by solving
the pattern matrix. Meanwhile, the visibility is formed by the
counting of a pair of sine and cosine sub-collimator with
the same modulation mode, each representing a two-dimen-
sional Fourier component of the source. After that, further
methods, like Clean, Pixons, and Forward-Fitting, can be used
to form them into reconstructed images (Hurford et al. 2003).
Although the mathematical details of those methods are totally
different, they all start with the analysis of the modulation
function. It is worth noting that the effect on the image quality
caused by observation errors during the modulation and
reconstruction process is independent of the effect caused by
using an inaccurate pattern, and the inaccurate pattern amplifies
errors from observation. The modulation function serves as the
basis of the entire reconstruction algorithm, a more precise
pattern can lead to a better-reconstructed image. Therefore, it is
beneficial to obtain knowledge about modulation functions as
much as possible.

The modulation function of a sub-collimator presents a
simple triangle waveform for the ideal instrument condition.
However, the modulation function takes on a more compli-
cated shape due to practical manufacturing techniques and
environmental effects. Prince and Hurford mentioned a
uniform way to analyze sub-collimators by convolving the
two layers of the grid in their review (Prince et al. 1988).
They also pointed out that in many cases, despite being a
triangle wave, the modulation function can be considered as a
cosine function. This was also used in the HXT data progress
(Kosugi et al. 1991). Because the widths of the slits and slats
of grids on RHESSI are unequal, the standard triangle wave
could not be used. To improve the accuracy of the
reconstruction, a Fourier cosine expansion was adapted as
the modulation function (Hurford et al. 2003). This method
of Fourier cosine expansion was also applied in STIX to form
its pattern (Benz et al. 2012).

However, the precision of these methods is limited for a
detailed analysis of actual engineering errors, such as
machining tolerance, and deformation of the instrument. So,

numerical simulation has been used as a complement to it, and
the modulation function in special cases can be solved by
performing Monte Carlo simulations. But anyway, this would
take more time to perform the simulation works, especially
under the condition that some parameters need to be changed
within a certain range. Although the numerical method is more
accurate, it is less resolvable and efficient. Consequently, since
HXI has been implemented, there is an urgent need to develop
a more detailed mathematical model of the collimator. During
the assembly and launch of the satellite, the collimator might
undergo some slight deformation. These deformations will
have a considerable impact on the imaging reconstruction
process, so each sub-collimator’s modulation function needs to
be modified according to its deformation. Traditional methods
of computing modulation functions are either inaccurate or
unanalytical, but our accurate mathematical model can do
better in terms of speed, accuracy, and analyticity, and will
certainly facilitate the evaluation of HXI’s test and data
process.
The new instrument HXI, as one of the payloads onboard the

Advanced Space-based Solar Observatory (ASO-S), is an FT-
type imaging telescope used to investigate the acceleration and
transmission of electrons in the solar atmosphere during
eruptions (Su et al. 2019; Zhang et al. 2019). ASO-S is
China’s first comprehensive solar mission, launched on 2022
October 9. Aiming for the 25th solar maximum, it focuses on
three major fields of solar activity: the photosphere magnetic
field, coronal mass ejections (CMEs), and solar flares (Gan
et al. 2019). This satellite has been sent to a 720 km Sun-
synchronous orbit and will have a lifetime of at least four years.
HXI employs a spatial modulation technique that is similar to
Yohkoh/HXT. Table 1 shows the configuration and character-
istics of Yohkoh/HXT, RHESSI and SO/STIX in comparison
to HXI.
The rest of this paper is structured as follows: In Section 2, a

new mathematical model for the transmission function of a
collimator which is based on the geometric relationship is
introduced the first step by step, and then put into a variety of
complex conditions to see how it works. Next, a brief

Table 1
Comparisons of Several Missions with HXI

YOHKOH/HXT RHESSI Solar Orbiter/STIX ASO-S/HXI

Launch time 1991 2002 2020 2022
Imaging method SMC RMC SMC SMC
Quantity of sub-coll. 64 9 32 91
Pitch of grids finest 105 μm 34 μm ∼ 2.75 mm 38 μm ∼ 1 mm 36 μm ∼ 1224 μm
Spatial resolution 5″ 2 3 @100 keV 7″ 3″
Detector NaI(Tl) Ge CdTe LaBr3
Energy range 20 keV ∼ 100 keV 3 keV ∼ 17 MeV 4 keV ∼ 150 keV 30 keV ∼ 200 keV
Temporal resolution 0.5 s 2 s up to 0.5 s up to 0.125 s

Note. sub-coll: sub-collimator, SMC: space modulation collimator, RMC: rotate modulation collimator.
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introduction to the structure of HXI is given in Section 3,
followed by the simulation and experimental works done with
the practical HXI collimator conditions in order to confirm the
mathematical model. Then it comes to a discussion about how
this model helps the data process in Section 4. Finally,
Section 5 gives a summary and a brief outlook on this work.

2. Calculation of Modulation Functions

In this section, we start to build a detailed model for sub-
collimators. First, a simple case with only a sub-collimator in
perfect condition is discussed. Next, the six degrees of freedom
for a rigid body are calculated on this basis, and then the
simplification of this model will be reported under some
particular conditions. Finally, extended sources and unparal-
leled light are considered to match the X-ray beam test. This
section contains a large number of symbolic operations, to
make it clearer, a table explaining the various symbols can be
found in the Appendix.

2.1. Basic Calculation

We need to work out the transmittance function for a single
grid in this part. In the center of the grid, a coordinate system is
built and the definition of the incidence angle of photons is
specified (see Figure 1). Notice that y and j can be ignored
when analyzing the grid because of the translational symmetry
in its y direction. Thus, the transmittance function can be
written as T(x, θ), where x is the photon’s incidence point and θ

is its incidence angle.

Here, this formula is applied to photons with an energy E to
work out T(x, θ):

T x
t x

, exp
,
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E
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q
q

l
= -( ) ( ) ( )

where t(x, θ) is the length of tungsten that photons with
incidence position x and incidence angle θ pass through. λE is
the photons’ radiation length in tungsten at energy E. Based on
the geometric relationship, when θ= 1, t(x, θ) can be written as:

Figure 1. In the definition of coordinate system and incident angles, notice that the point 0, 0( ) is defined in the middle of a slat. The arrows mark their positive
direction.
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Here, w(wire) is the width of the tungsten slat, s stands for the
width of the slit, p= s+w is the pitch of the grid and u for the
thickness of the grid. This equation only works when p

u
q∣ ∣ ,

which is met in most cases for a sub-collimator. So we have
T(x, θ) as:

Taking into account that the form of FT is favorable for
integration works, for T(x, θ) is a periodic and even function, a
Fourier cosine expansion can be performed to T(x, θ):

g
p

T x x
u w

p

w u u w

u s

p

u s u s

1
, d

2

exp
2

2

exp
2

, 4

p
E

E

E

E

0
0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

òq q
q q l

q q
q l

q q l

q q
q l

= =
- -

´ -
+ - -

+
- +

´ -
- + -

( ) ( ) [∣ ∣ ∣ ∣ ∣ ∣ ]

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

[∣ ∣ ∣ ∣ ∣ ∣ ]

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

( )

5

g
p

T x
n x

p
x

p

n p n

n u w

p

n

p

w u u w

n p u s

p

n

p

u s u s

2
, cos

2
d

2

4

sin tan
2

exp
2

sin tan
2

exp
2

n

p

E

E

E

E

E

0 2 2 2 2 2

1

1

⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

òq q
p

p p q l

p q p q l

q q
q l

p q p q l

q q
q l

= =
+

´
-

-

´ -
+ - -

-
- -

-

´ -
- + -

-

-

( )

( ) ( )

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

( ∣ ∣ ∣ ∣) ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

So, T(x, θ) can be written as:

T x g g
n x

p
, cos

2
. 6

n
n0

1
åq q q

p
= +

=

¥

( ) ( ) ( ) ( )

Here, g0(θ) is the direct-current (DC) component of T(x, θ), and
g cosn

n x

p

2q p( ) is the alternating-current (AC) component. They

are all the functions of θ. The modulation function of two
layers of grids is then discussed, here a sub-collimator in which
its front and rear grid share the same form of modulation

function is considered. According to Hurford’s article (Hurford
et al. 2003), it can be calculated as an integration of the
transmittance function T(x, θ) of the front grid and

T x L p,
2

0q q+ + q
p( ) of the rear grid, if no deformation exists.

Here, L is the distance between the front and rear grid, while θ0
is the collimator phase of this sub-collimator. In the case of
periodic grids, it can be solved in one pitch:
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Here, g0
2q( ) is the DC component of the modulation function.

Also, n ncos 2 L

p 0p q q+( ) acts as the modulation part of the AC

component, while
g

2
n

2q( )
is the modulus.

The modulation function of a 36 μm-pitch sub-collimator
with s= 20 μm, u= 1000 μm, L= 1190 mm, θ0= 0, and a
series summation of n= 20 is shown in Figure 2. It can be
obtained that the DC component drops as the angle becomes
larger, and the shape of the function changes near 0°.3 and 1°.3.
It also shows that a summation of only 20 series can effectively
handle the unequal of slit and slat.

2.2. Degrees of Freedom (DOFs): Rigid Body

The modulation function of an ideal sub-collimator has been
discussed above. However, it will not be perfect since
manufacturing errors and launching deformation in position
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and angle may occur. In this part, we consider the grid as a
rigid body, calculate its movements in six DOFs to investigate
their influence on modulation function, and then try to simplify
it under several conditions.

2.2.1. Rotation Matrix of a Single Layer of Grid

A rotation matrix is defined for the grid to help with the
analysis: First, the grid rotates clockwise by α degrees with its
z-axis (matrix A). Then it flips β degrees clockwise by a line on
the grid’s plane (matrix B), the line has a counterclockwise
angle γ from the grid’s x-axis (Figure 3).

The rotation matrix of the first rotating is matrix A:

A
c s
s c

0
0

0 0 1
. 9

⎛

⎝
⎜

⎞

⎠
⎟=

-a a

a a ( )

Here we use cθ to represent cos q and sθ for sin q. The flip’s
rotation matrix is matrix B:
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So here, matrix S is the rotation matrix of the whole
process:
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Figure 3. The definition of the rotations is described by rotation matrices A(left) and B(right). Here, α, β and γ can describe all the rotations in space.

Figure 2. The modulation function of a 36 μm-pitch sub-collimator with s = 20 μm, u= 1000 μm, L= 1190 mm, θ0 = 0, and a series summation of n= 20. The function
from −1°.5 to 1°.5 is shown on the left with the blue line, while the orange line represents its DC component. The right shows the detail of the center of the left curve.
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Compared with the Euler matrix E under z y z, , ¢( ) system of
Euler angles (a, b, c):

E
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the relationship between (α, β, γ) and (a, b, c) can be found as:
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Therefore, it is clear that the matrix S provides a complete
description of the three-dimension rotation.

2.2.2. The Projection of Incident Photon to the Detection Plane

We have already shown that incident photons with position x
and angle θ have a transmittance of T(x, θ) in the previous
section. Here, x and θ are defined in a coordinate system fixed
to the grid, which we refer to as “coordinate system g.” This
system follows the movement and rotation of the grid. The
subscript “g” will be used to describe parameters under this
system, so T(x, θ) will be written as T(xg, θg). The “coordinate
system f,” which moves with the grid but does not rotate with
it, is one of the coordinate systems defined. Parameters in it will
be described using the subscript “f.” Another is the “detection
plane system,” which is the coordinate system associated with
the detection plane and in which we will finally give out the
results of modulation functions. The definitions of these three
systems are shown in Figure 4.

Starting from here, due to the effect of rotation, we will
describe the incident photon using four parameters (x, y, θ, j)

for calculation. Here, (x, y) describes the position where the
photon hits the XOY plane of the coordinate system, and a
vector tan , tan , 1q j- - -( ) defines the coming position of the
photon. A vector (−θ, −j, −1) is used to describe the photon
in HXI because θ and j are =1. On the XOY plane of the g-
system, it has:

T x y T x, , , , . 14g g g g g gq j q=( ) ( ) ( )

Since we are calculating T(x, y, θ, j) under the detection
plane system, the first step is to determine T(xf, yf, θf, jf). Here,
from the system f to g, it has:
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x y z, ,g g g¢ ¢ ¢( ) needs to be projected to the XOY plane alone
incident photon’s vector (−θ, −j, −1), so it has:
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In the above formula, θg and jg are the functions of (θf, jf). By
calculating the direction vector of the incident photon in

Figure 4. The three coordinate systems are defined: the “detection plane system” is fixed on the detector; the “system f” only moves with the grid and keeps parallel
with the “detection plane system,” while the “system g” moves and also rotates with the grid.
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systems g and f, the relationship between them can be described
as:
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Here, S3 is the third row of S: S3= (sβsα−γ, sβcα−γ, cβ). Finally,
we get:
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Then, assuming that the translation offset of the grid is (x0, y0,
z0), and the distance of the grid to the detection plane before the
translation is Lg, so it has:
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After simplifying them, we can get:
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They are the transformation from the detector’s coordinate
system to the grid’s coordinate system we require.

2.2.3. Integration of Double Layer of Grids

Through the calculations above, T(x, y, θ, j) can now be
written as:

T x y T x x y x y

g
n x x y

p

, , , , , , , , , ,

, cos
2 , , ,

.
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The term g0 is inserted into the summation term to ease the
statement and now the series is summed up from zero. To solve
the modulation function of two layers of grids, we will
substitute the subscript g in the preceding equations with t(top)
and b(bottom) to identify the function of the front plane from
the rear plane:

T t
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The front grid has a set of parameters that are described by the
subscript t: (αt, βt, γt, x0t, y0t, z0t, Lt, st, wt, pt, ut), whereas the
back grid’s parameters are described by the subscript b: (αb, βb,
γb, x0b, y0b, z0b, Lb, sb, wb, pb, ub).
Assuming that the detection area is D, the modulation

function can be calculated as:
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For the calculation of the integration x ycos cos d d
D

m x

p

n x

p

2 2t

t

b

b

p p∬ ,

we write m x x y

p

2 , , ,t

t

p q j( ) as amx+ bmy+ cm, and
n x x y

p

2 , , ,b

b

p q j( ) as

anx+ bny+ cn. We define amn± = am± an, bmn±= bm± bn,
cmn±= cm± cn. Then the integration can be solved under
several conditions.
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First, to consider a rectangle detection area of length wa and
width wb, the result is:
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This result may have singular points in several values like
amn±= 0 or bmn±= 0, here their values are defined as
limitations:
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Then consider a round detection area with a radius r:

P P

t b c
J r a b

r a b

c
J r a b

r a b

, ,

cos

cos 30

m n
mn

m n
m t n b mn

mn mn

mn mn

mn
mn mn

mn mn

, 0

, 0

1
2 2

2 2

1
2 2

2 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥

å

å

q j q j

q q

=

=
+

+

+
+

+

=

¥

=

¥

+
+ +

+ +

-
- -

- -

( ) ( )

( ) ( ) ( )
( )

( )
( )

( )

Here, J1(x) is the Bessel-J function of the first order. Also, the
values of singular points are defined as limitations:
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2.2.4. Approximation Under Engineering Conditions

The rear grid and the front grid share the same parameter in
HXI for a specific sub-collimator, that is ut= ub= u,
wt=wb= w, st= sb= s, and pt= pb= p. The detection area
is limited by the diagram of the rear grid: a round area
with r= 11 mm. Then, taking engineering parameters
into consideration, it can be found that the item
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Next, we define h 2
t ba = a a+ , Δα= αt− αb, L= Lt− Lb,

Δx= x0t− x0b, Δy= y0t− y0b and Δz= z0t− z0b. In HXI Δα,
βt, βb are all satisfying small angle approximation (=1), so

Figure 5. The shape of the “Modulation Factor” F1(x) and its effects on modulation T F cos1

2

1

2 1 q= + .
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P(θ, j) can be approximated as:
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Here, g0(θt)g0(θb) is the DC component of P(θ, j),
n c x s y

p

2 h hp - D + Da a( )
is its phase angle, and g g J n r p
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2n b n t 1q q p a
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D
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the coefficient of the Fourier series. Here, we define
F xn
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2 1=( ) ( ) , it always has |Fn(x)|� 1, and F xlim 0x n =¥ ( ) .
So, it is called the “modulation factor,” and the series term
becomes an amplitude

g g

2
n t n bq q( ) ( )

times the modulation factor

F 2n
r

p
p aD( ). Figure 5 shows the shape of F1(x) with its effects on

a modulation:T F cos1

2

1

2 1 q= + . It can be seen that, as F(x) falls
below zero, the phase of the modulation function flips upside
down, contributing 180° to the phase angle.

Here, it can be found that, for the same x, the higher the
value of n, the faster Fn(x) tends to 0. For the same n, the larger
the value of a, the faster Fn(ax) decreases to zero. Because of
these, as long as the term Fn(ax) exists, the series’ higher-order
terms tend to converge quickly.

We can keep simplifying the function if some further
assumptions are made: When there is noincline angle, that is
βt= βb= 0, it has θb= θt= θg= θch−jsh. Then P(θ, j) can be
simplified as:
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Also, when there is no twist (but still can incline), Δα= 0,
c ch =a a, it has:
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2.3. Behavior Under Artificial X-Ray Sources

The behavior of the sub-collimator under artificial sources
will be described in this section. To verify this model, the HXI
needs to be characterized by an X-ray beam for its modulation
functions. However, the parallel X-ray beam is quite difficult to
get on the ground, so we normally produce the X-ray beam by
hitting a molybdenum target with accelerated electrons, then
limiting the beam’s divergence via pipe and diaphragms. So
here, we will discuss an X-ray source with a launch area of a
radius rs, a pipe length l, and a diaphragm of a radius R at the
pipe’s end. As shown in Figure 6, the collimator is put on a
rotatable platform so that the incident angle of the X-ray beam
can be changed step by step during the test.
Consider the situation where there is only non-parallel light.

The incident angles (θ, j) for parallel light do not change with
the incident position (x,y). However, with non-parallel light,
assuming an incidence angle of (θ, j) at the center (0, 0), as
shown in Figure 7, the incident angle of photons hitting point
(x,y) will be , ,x y

x

l

y

l
q j q j= + +( ) ( ). Then we can have the

integration:
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Figure 6. This scheme shows the placement of the ground X-ray beam instruments with the collimator and detector.

Figure 7. The definition of position and incident angle of non-parallel light and
extended source. Here we assume that the small angle approximation is met.

9

Research in Astronomy and Astrophysics, 23:025004 (20pp), 2023 February Jiang et al.



In this integration, the high-frequency terms are ignored and
superscript ¢ are used to indicate the terms that contain (θx, jy).
Notice that P0¢ here is an integration of:

P
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g x y
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, d d . 37
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g x x0 2 0
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2 2 2p
q q j¢ =

+
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Apply the mean value theorem to P(θ, j), and consider that in
the experiment angles (θx, jy) are quite small, P(θ, j) can be
estimated as:
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Then we start to consider the extended source. A source with
uniform intensity distribution can be treated as an integration of
point sources. Assuming that the center of a launch area of
radius rs has an incident angle of (θ, j). As a result, the incident
angle of the source with a position of (xs, ys) is

,x

l

y

l
s sq j- -( ), this is also shown in Figure 7. We can

approximate Ps(θ, j) while rs is not large 1r

l
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Because Δz is so small in the beaming experiment, we can let

L+Δz≈ L. Also, we can have L z

l

L

l
2

2

2 a+ D »+D ( )( ) when
L

l
aD . Thus, the modulation function can be written in a

more straightforward form:
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The name “modulation factor” is used to describe F R2n
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p l
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and F r2n
L

p l sp( ). In many cases, 2 L

pl
p is so large that Fn will

quickly decline to zero even when n is 2. So, we may utilize
this approximation to analyze them:
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Here, F R2 L

p l1 p( ) is referred to as the “factor of the diagram,”

while F r2 L

p l s1 p( ) as the “factor of the source.” Thus, by adding

the modulation factor, it allows non-parallel light to be treated
similarly to parallel light. The effect of non-parallel light is a
composite of the modulation function under parallel light with
the modulation factor. So, the modulation function under
parallel light can be obtained by simply measuring the
modulation function under non-parallel light and deducting
the effect of the modulation factor.

3. Simulations and Experiments for Collimator
of HXI

The structure of HXI with its collimator is described in this
part, followed by simulations using Geant4, a Monte Carlo
simulation software for high-energy physics. Then we present
the X-ray beam experiments with the results. To prove the
mathematical model, all of these works are compared to the
calculation results.

3.1. Structure of HXI

Figure 8 depicts the structure of HXI. It consists of three
major parts: a collimator (HXI-C) performs physical Fourier
transformation for incident photons, a spectrometer (HXI-S)
detects the spectrum of transmitted photons, and an electronics
control box (HXI-E) provides functions as a power supply, for
payload control and data management (Zhang et al. 2019).
The HXI-C (Figure 9), which modulates X-ray photons, is

made up of two plates mounted on a titanium (Ti) framework.
The plates have an array of 11× 9, however, only 91 sub-
collimators are set for modulation. The rest of the eight holes
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are reserved for the measurement of the collimator’s pointing
and particle background. The Solar Aspect System (SAS),
which is mounted on the rear plate, assists in locating the Sun’s
center and monitoring distortion between the front and rear
plates (Chen et al. 2021).

Each sub-collimator is comprised of two grids that are
arranged in the same position as the front and rear plates, with a
distance of 1190 mm between them. Different sub-collimators’

grids have different pitches and rotation angles, allowing them
to function as different u-v parameters in frequency space. The
grids, which are made of tungsten foils, are held together by
tungsten rings (see Figure 10). The rings set a limit on the
effective area of grids, which is 36 mm in diameter for front-
plate grids and 22 mm for rear-plate grids. The detectors
assembled in HXI-S have a round detection area with a
diameter of 25 mm.

Figure 8. The structure of HXI onboard ASO-S.

Figure 9. The structure of HXI-C.
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3.2. Simulation of Modulation Function in Geant4

In this section, we will go over several Geant4 simulation
results. We want to show that the mathematical model works
effectively in solving near-ideal situations.

First, we look at a situation of 36μm-pitch grids with
p= 36 μm, s= 20 μm, L= 35mm, l= 26m, d= 2rs= 0.4 mm,
α= β= 0 and θ0= 0. Here, the front grid of it is placed only
35mm away from the rear grid, allowing us to see the change of
the function with angle θ more clearly. Then we put it in the
beaming tube to see how it behaves under experiments. It is worth
noticing that the series in the modulation factor is not small
enough to exclude high-order terms. As a result, we still need to
compute the summary of the first two orders. We simulated it in
Geant4, and the computation and simulation results are shown in
Figure 11. All of the simulations below were run under 30 keV
energy.

We can see that, in this case, the function cannot be
represented as a simply cosine function, but must be treated as
a summary of terms. After that, we apply the inclination to it, as
shown in Figure 12. Compared to the functions without
inclination in Figure 11, it can be found that the inclination
effect lowers the function’s maximum value and brings a
platform to it, and the length of the platform is the inclination
angle β.
The twist angle α is then taken into account. We will look at

the situation in parallel light, for twist angle will be one of the
most affected parameters during launch. We want to evaluate
how big of an impact it has on the modulation factor

F 2n
r

p
p aD( ). Here in F 2n

r

p
p aD( ), those high-order terms

decay quickly, so we simply consider F 2 r

p1 p aD( ). We can

deduce from the form of F 2 r

p1 p aD( ) that, for the same Δα,

the smaller p is, the larger its effect would be. So, in Figure 13,

Figure 10. The slit array of grids and its outer rings. A front grid with a 36 mm diameter is shown on the left, with a rear grid with a 22 mm diameter on the right.

Figure 11. The modulation functions of grids with p = 36 μm, s = 20 μm, L = 35 mm, l = 26 m, d = 2rs = 0.4 mm, D = 2R = 10 mm (left)/20 mm (right),
α = β = 0, θ0 = 0 and a series summation of n = 2. The black points represent simulation results, while the blue line is the calculated curve.
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we analyze a 36 μm-pitch sub-collimator on HXI and plot its
F1∼Δα curve.

It can be noticed from the curve that the first zero-point of
the curve occurs at roughly 7′ for 36 μm-pitch grids. F1 is
around 0.96 for a 1′ twist. As a result, we can conclude that its
effect on the 36 μm-pitch can be ignored as long as the twist
angle Δα is kept under 1′.

We also want to check how the “factor of the diagram”

F R2 L

p l1 p( ) and “factor of the source” F r2 L

p l s1 p( ) behave under

X-ray beam experiments. We only show the curve of

F R2 L

p l1 p( ) in Figure 14 for they share the same form.

It can be seen from the above comparison of the math model
with Geant4 results that the model works well when only
considering the geometric relationship. However, in real-world
situations, a variety of environmental factors may play a role in
the outcome. To verify this model, more evidence from the
experiment is needed.

3.3. Verification Tests of X-Ray Beam Experiments

The verification test of HXI was performed after determining
the experimental parameters by simulation works. The
experimental device’s structure is depicted in Figure 15. An

Figure 12. The modulation functions of grids with p = 36 μm, s = 20 μm, L = 35 mm, l = 26 m, d = 2rs = 0.4 mm, D = 2R = 20 mm, α = 0,
2

g = p , β =15¢(left)/
30¢(right). The black points represent simulation results, while the blue line is the calculated curve.

Figure 13. F1 ∼ Δα curve for 36 μm-pitch sub-collimator with r = 11 mm.
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X-ray source with an emitting area which is a disk of diameter
d= 2rs= 0.4 mm was utilized in this experiment, and the
electronic beam’s energy was turned to 30 keV. Photons travel
the length of the tube, which is l= 26 m. A diaphragm with
D= 2R was placed at the end of this tube to limit the angle
distribution of photons. The size of the diaphragm could be
adjusted as needed. A monitor was also assembled nearby to
measure the intensity of the X-ray beam. The HXI-C and HXI-
S were mounted on a rotatable platform with high precision.
The HXI was rotated to change the incident angle θg of photons
in the experiment.

The platform could only be rotated horizontally during the
experiment due to the platform’s design. As a result, θg
becomes a function of the platform’s rotation angle θp and
rotation angle α: cosg pq q a= . So, the modulation function
P(θp) on rotation angle θp can approximately be written as:

P g
g
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L

p l
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Figure 14. Function F D DL

p l1 p ~( ) . Here, p = 36 μm, l = 26 m, and L = 1190 mm.

Figure 15. The structure of the experimental devices.
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Here, D= 2R, d= 2rs. Then it came to the measure of the
“factor of the diagram.” A 224 μm-pitch sub-collimator was
used in this experiment. We first found out the function’s peak
area to ensure that photons can nearly incident normally. The
diaphragm was then changed in size, and the platform was
rotated for each diagram to measure the peak and valley of the
modulation. After a series of analyses, we were able to obtain
the curve for the “factor of the diagram,” which is shown in
Figure 16.

After that came the measurement of the DC component for
the modulation function. Considering the form of the function,
if a suitable size for the diaphragm was chosen to make

F D 0L

p l1 p =( ) , the pure DC component could be obtained

from the experiment. But notice that, in the experiment, the
incident angle was changed by rotating the platform. Therefore,
when the angle is large, the front plane or the real plane might
shadow the detector. Under these situations, the effect of

Figure 16. The curve of F D DL

p l1 p ~( ) for a 224 μm-pitch sub-collimator with L = 1190 mm and l = 26 m. The value from the math model is shown by the blue

line, while the black points represent the results of the experiment. The top right diagram depicts the measurement region in this experiment.

Figure 17. The calculation curve of 344 μm-pitch sub-collimator with s = 172 μm, u = 2000 μm, D = 9.1 mm, d = 0.4 mm, L = 1190 mm, l = 26 m, and a rotation
angle α = 31°. The diameter of the front grid is 36 mm, 22 mm for the rear grid, and 25 mm for the detector. The curve is a contour of modulation components.
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occluding might make the detection zoom far away from a
round area. So, the result of the integration on the round area
did not work this time, and the shape of the detection area even
changed with the rotation of the platform. We solved the
integration by applying a changeable area with the angle, and
the result can be seen in Figure 17. In this figure, the calculated
curve of a 344 μm-pitch sub-collimator is shown with a
rotation angle α= 31°. It can be seen that no occlude effect
works from −0°.6 to 0°.6 where the integration area is round

and F D 0L

p l1 p »( ) . It means that the curve shows the DC

component. As the rotation angle becomes larger, occlude
effect occurs, so the shape of the function starts to change. The
integration of the non-circular area and the amplitude of the
original AC component jointly contribute to the final
amplitude.

The modulation components in the diagram change at a
really high frequency. Due to the time limit, it was unable to
attain such a high sample frequency in the experiment. The
measured curve will be limited by the contour of Figure 17 if
the sampling frequency is not high enough. Figure 18 shows
the contrast between the calculated and experimental results.
The calculation and experiment were both done with the same
sampling frequency. These two experiments strongly show that
our math model works effectively even under complex
conditions.

4. Discussion: Data Process with the Model

In this section, it is discussed how to consider the effects of
the deformation of HXI-C in the data process, and to what
extent they may affect the modulation function. These results

will present the application of the model and its superiority
over other methods in calculating the pattern.
To correct the instrument deformation, the first step is to

monitor the state of HXI-C with the Displacement Monitor
(DM) after it is launched into space (Zhang et al. 2019). It can
measure the twists and shifts between the front and rear plates,
so the deviations in position and angle for each sub-collimator
can be calculated. Then the modulation function for each bi-
grid can be figured out, considering all its deformations. As a
result, the effect of the deformation of HXI-C in the image
reconstruction process could be weakened as much as possible
by using the new modulation functions. Notice that in
Section 2.2.4, an assumption of those deformation angles
always satisfying small angle approximation has been men-
tioned. Zhang’s article mentioned above has shown that during
the whole mission of the satellite, all the deformation angles
could be controlled within several arcseconds, and this has
been verified through environmental tests. However, as long as
those angles are kept below 1°, they are still satisfied with the
small angle approximation. So, the simplifications in
Section 2.2.4 can work during the whole life of ASO-S, since
there is a huge gap between error control and assumption
failure.
To show how this model works, here we suppose that the

imaging area lies near the edge of the Sun, while HXI-C points
to the center of the Sun. Under this condition, the thickness of
the grids is the item that affects most. To see its effect more
clearly, we approximate the DC component of the modulation

function when the energy is not high: g s u

p0
2

2
q » q-( )( ) ∣ ∣ ,

here we apply the assumption of λ= u. As shown with the
yellow curve in Figure 2, the DC component drops as the

Figure 18. The computed result of the “DC” curve (red) compared to the experiment result (blue) with the same sampling frequency.
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incident angle becomes large. Since the term u

p
q∣ ∣ appears in the

formula, this effect is more pronounced for grids with larger
thickness and smaller pitch.

As a test, in Figure 19, two point sources are placed at the
edge of the Sun to see how this model helps to improve the
results. The chosen area is the upper left edge of the Sun, 15′
away from its center. The two-point sources—one is twice
brighter than the other—are placed at a distance of 1.5×
resolution, with an energy of 30 keV. The counts for each sub-
collimator are calculated, then the image is reconstructed
without and with the consideration of the thickness effect.
Notice that in the reconstruction process, for grids with
different position angles, the incident angle θ from the same
source can be different. Therefore, each pattern needs to be
calculated and corrected separately and then recombined to

form the final image. It can be clearly seen that the shape and
the brightness of the sources go wrong if the thickness of the
grids is not calculated.
Then it comes to the affection of twist angle Δα. As

mentioned in Section 2.2.4, this effect contributes as a
modulation factor F 2n

r

p

J n r p

n r p

21p aD = p a
p a

D
D

( ) [ ( ) ]
( )

. So, as a

function of r

p
aD shown in Figure 13, for the same twist angle

Δα, its impact becomes bigger as the pitch of the grid goes
smaller. As Figure 13 shows, for the grid with the smallest
36 μm-pitch in HXI, as long as the twist angle is smaller than
1′, its effect on the modulation can be ignored. If the twist angle
is larger than that, the modulation function needs to be
corrected. In Figure 20, the same sources are used as in
Figure 19, but this time they are placed in the center of the Sun.
A twist angle 2.5aD = ¢ is added to the instrument, and it can

Figure 19. The reconstructed images of the test sources. The left one gives the ideal result as a reference, the middle one is done without considering the effect of
thickness, while the right one is considered.

Figure 20. In the reconstructed images of the test sources, the left one gives the ideal result as a reference, the middle one is done without considering the effect of
twist, while the right one is considered.
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be seen that the twist makes the sources darker, but does not
change the shape.

For the effect of inclination, as Figure 12 shows, it brings a
platform that has a length of the incline angle β to the center of
the modulation function. The incident angles θt and θb are the
terms that consist of the incline angle β, and the DC component
g0(θt)g0(θb) is the most affected part, especially when θt and θb
are of the same order of magnitude as β. As a result, the effect
of inclination mainly occurs when the incident angle is close to
zero. This affection mainly reduces the DC component of the
modulation function, and it can be solved just like the effect of
thickness.

Then, the case in which different types of effects are
combined would be discussed. As shown in Section 2.2.4, the
modulation function under engineering conditions has a form
of

P g g

g g J n r p

n r p

n c s L z c x s y

p

,

2

2

cos
2

.

44

t b

n

n t n b

0 0

1

1

h h h h

å

q j q q
q q p a
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´
- + D - D + Da a a a
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In this expression, the terms g0(θt)g0(θb) and gn(θt)gn(θb) are
affected both by thickness and inclination. Fortunately, they
can be distinguished more finely: g0(θ) and gn(θt) are only
affected by thickness, while θt and θb are only affected by
inclination. The effect of twist, which only appears in the term
J n r p

n r p

21 p a
p a

D
D

[ ( ) ]
( )

, can be easily corrected. So, both effects can be

modified independently. To visualize this process, a case
combining both effects in Figures 19 and 20 is discussed. The
sources are placed at the edge of the Sun, while a twist angle

2. 5aD = ¢ is added to the instrument. Figure 21 shows the

comparison before and after the corrections, it can be found
that sources without corrections are darker than that in
Figure 19. Since the effect of thickness and inclination are
independent of each other, we can correct them in any order: If
the effect of thickness is corrected first, we will get the image in
Figure 20, then the twist of the instrument is corrected to get
the final picture. Otherwise, the image in Figure 19 will be first
obtained if the effect of the twist is corrected first. These
corrections could be made at the same time and this will not
make any difference to the final result.
In these cases above, although the traditional method of

numerical simulation can do the same job in revising these
effects, applying the new model can be much faster. More
importantly, this model, which can give out the mathematical
form of those deformations, is much better in analyticity.

5. Summary

In this paper, a new mathematical model for HXI by digging
into the structure of the FT imaging telescope is given. This
model is formed by analyzing the geometric structure of the
sub-collimator, with different types of deformation taken into
consideration. The modulation functions under various condi-
tions are calculated, and Monte Carlo simulations are
performed to confirm the accuracy of the calculations. A series
of experiments are also designed to test this model, and the
model can match the experiment results really well. The ability
of this model in solving patterns under different types of
deformation is also shown. Notice that this model is not only
sufficient in analyzing the image reconstruction process of
HXI, but also quite useful with other telescopes as long as they
use a similar imaging theory as HXI. On the other hand, we can
use this model to analyze the deformation of HXI and its
influences on imaging ability after launch. By correcting the
deformations, a more accurate pattern will be provided to the

Figure 21. The reconstructed images of the test sources, the left one gives the ideal result as a reference, the middle one is done without considering the effect of
thickness and twist, while the right one is considered.
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imaging reconstruction process; we believe that it will be much
beneficial in observing solar flares.
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Appendix
Symbol Explanation

A list of symbols used in this paper has been summarized in
Table A1 for quick reference.

Table A1
Symbols Used in This Paper

Symbol(s) Meaning(s) Note(s)

x, y, z coordinate locations see Figure 1
θ, j direction angles of incident light see Figure 1
u the thickness of the grid see Figure 1
p the pitch of the grid see Figure 1
s the width of the slit in the grid see Figure 1
w the width of the slat in the gird see Figure 1
λE photon’s radiation length in tungsten under energy E /
L the distance between the front and rear grid 1190 mm for HXI-C
t the length of tungsten that photons pass through see Equation (2)
T the transmittance function for a single layer of grid see Equation (3)
gn the nth order coefficient of function T’s Fourier expansion see Equations (4)–(6)
P pattern, the modulation function of the sub-collimator /
α the twist angle with the z-axis see Figure 3
β the inclination angle by line cos sin,g g( ) see Figure 3
γ the angle used to define the line by which the grid inclines see Figure 3
subscriptt marks the parameter of the front(top) gird /
subscriptb marks the parameter of the rear(bottom) gird /
subscriptf marks the parameter under “system f” see Figure 4
subscriptg marks the parameter under “system g” see Figure 4
subscript0 the basic offset for the parameter /
cangle, sangle short for cos angle( ) and sin angle( ) /
amn±, bmn± intermediate quantities for simplifying expressions see Equation (27)
wa, wb the length wa and width wb of a rectangle detection area /
r the radius of a round detection area 11 mm for HXI-C
J x1( ) first-order Bessel J function /
F xn ( ) defined as an nth-order modulation factor J nx

nx

2 1( )

αh an average of the twist angle of the front and rear grid
2

t ba a+

Δα the relative twist angle of the front and rear grid αt − αb

Δx the relative offset in the x-axis between the front and rear grid x0t − x0b
Δy the relative offset in the y-axis between the front and rear grid y0t − y0b
Δz the relative offset in the z-axis between the front and rear grid z0t − z0b
rs the radius of the emission area of the X-ray source 0.2 mm in the experiment
d the diameter of the emission area of the X-ray source d = 2rs
l the length of the pipe 26 m in the experiment
R the radius of the diaphragm at the pipe’s end /
D the diameter of the diaphragm at the pipe‘s end D = 2R
θp the rotation angle of the platform in the experiment /
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