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Abstract

Learning the mapping of magnetograms and EUV images is important for understanding the solar eruption
mechanism and space weather forecasting. Previous works are mainly based on the pix2pix model for full-disk
magnetograms generation and obtain good performance. However, in general, we are more concerned with the
magnetic field distribution in the active regions where various solar storms such as the solar flare and coronal mass
ejection happen. In this paper, we fuse the self-attention mechanism with the pix2pix model which allows more
computation resource and greater weight for strong magnetic regions. In addition, the attention features are
concatenated by the Residual Hadamard Production (RHP) with the abstracted features after the encoder. We
named our model as RHP-attention pix2pix. From the experiments, we can find that the proposed model can
generate magnetograms with finer strong magnetic structures, such as sunspots. In addition, the polarity
distribution of generated magnetograms at strong magnetic regions is more consistent with observed ones.
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1. Introduction

With the development of satellite and electronic technology,
more and more space telescopes and equipment have been built
to obtain different kinds of observations of the Sun. Solar
Dynamics Observatory (SDO) (Pesnell et al. 2012), a near-
Earth space satellite, was launched in 2010 February. The
telescope Atmospheric Imaging Assembly (AIA) (Lemen et al.
2012) on board SDO can observe solar UV and EUV emissions
from the transition region to the corona. As a part of the SDO,
the Helioseismic and Magnetic Imager (HMI) (Scherrer et al.
2012) can provide components of the photospheric magnetic
field. NASA’s twin Solar TErrestrial RElationship Observatory
(STEREO) (Kaiser et al. 2008) space craft can only provide
EUV observations to monitor the far hemisphere from the
farside of the Earth’s orbit without magnetograms. However,
the magnetic field manipulates the variations of the Sun,
especially solar eruptions such as solar flares and CMEs. These
eruptions can cause disastrous space weather. Thus, Kim et al.
(2019) apply pix2pix (Isola et al. 2017) to generate the farside
magnetograms from STEREO EUVI 304 A images. In this
way, we can capture the global observation of magnetic fields
for space weather forecasting and the evolution of active
regions for the rotating of the Sun.

Conventionally, farside magnetograms can be constructed
from local helioseismology without any farside data, but their

quality is lower than that of typical frontside magnetograms
(Lindsey and Braun 2000). Kim et al. (2019) generate solar
farside magnetograms from the STEREO EUVI 304 A using
Generative Adversarial Networks(GAN) (Isola et al. 2017).
This model defines the task as an image translation problem
and learns the mapping between AIA EUV 304 A and HMI
LOS magnetograms. Then the trained model can generate
magnetograms from STEREO EUVI 304 A images. Liu et al.
(2021) analyze the reliability of this model and points out that
this method has problems of data leakage on the division of the
data set. Jeong et al. (2020) apply the pix2pixHD (Wang et al.
2018) for magnetogram generation with +3000 Gauss dynamic
range and multi-channel AIA EUV images of 171, 195 and
304 A. Alshehhi (2020) modifies the pix2pix model with
pyramid architecture for magnetograms generation from AIA
EUV 304 A images to magnetograms. This method can capture
internal distributions at different scales with a higher quality of
the magnetic structure. Recently, Jeong et al. (2022) have
upgraded the pix2pix. They apply a correlation coefficient-
based loss function. In addition, the input data applied to not
only farside STEREO EUYV images but also frontside data pairs
of SDO/AIA EUV images and the HMI magnetograms as
reference information. It is worth noting that these existing
works all concentrated on full-disk magnetogram generation.
From the above observation, we can find that the key point
of magnetogram generation is to learn a mapping between
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Figure 1. Overall Architecture.

magnetograms and EUV images. The full-disk magnetogram is
composed of invalid pixels around the disk and quiet region,
which is more vulnerable to noise. It is particularly noteworthy
that solar extreme events on the Sun, such as flares and coronal
mass ejections (CMESs), occur at the active regions (ARs) with
a stronger magnetic field relative to the quiet regions. Thus, in
this paper, our efforts mainly focus on magnetogram generation
of the active region. The baseline of our model is a pix2pix
model, which is a conditional generative adversarial network
(cGAN) (Mirza & Osindero 2014; Goodfellow et al. 2014),
consisting of a generator and a discriminator. The generator is a
U-Net (Ronneberger et al. 2015) which is a fully convolutional
network, so it can only calculate the correlation of the spatially
local points and treat each pixel equally. However, the stronger
magnetic field of the active region should be allocated more
computation resources and greater weights. In addition, the
magnetic field at a distance can be coupled, and an attention
mechanism can explore the correlation in distant positions. For
this purpose, the self-attention mechanism (Xu et al. 2017;
Wang et al. 2017; Zhang et al. 2018) should be employed in a
U-Net for our concerned task.

In this paper, we fuse a self-attention module with the
pix2pix for magnetogram generation of the active region from
local AIA 304 A images with its correspondent local HMI LOS
magnetograms as shown in Figure 3. The attention features are
concatenated by the Residual Hadamard Production (RHP)
(Mejjati et al. 2018) with the abstracted features after the
encoder. In Section 2, we introduce the proposed model in
detail. In Section 3, we give the data set processing and the
experimental analysis. In Section 4, we draw the conclusion.

2. Methods

Many computer vision problems, such as denoising (Park
et al. 2020) and super-resolution (Rahman et al. 2020), can be
viewed as image-to-image translation problem (Isola et al.
2017). Pix2pix was the first unified framework for this task.
However, the pix2pix is a fully convolutional neural network.
Convolution processes the information in a local neighborhood,

thus using the convolutional layer alone cannot explore the
non-local dependencies in an image. For AR magnetogram
generation, the strong magnetic field region as the most
informative region should be allocated more computation
resource. Thus, we fuse the self-attention module with pix2pix
for the AR magnetogram generation, named RHP-attention
pix2pix.

2.1. Pix2pix Baseline

Pix2pix is a conditional GAN which is consists of the
generator (G) and discriminator (D). The architecture of the
generator is a U-Net (Ronneberger et al. 2015). The
discriminator is a multi-layer convolutional network. The
generator is trained to fool the discriminator, and the
discriminator is trained to distinguish the generated image
from real ones. During the adversarial process, the generator
can generate real-like images. The adversarial loss is defined
as:

G* = argminmax E, ,[log D(x, y)]
G D

+ E,.[log(1 — D(x, G(x, 2))]
+ AEx,.:[lly — G(x, 2|11, (1)

where x is the real observed magnetogram while y is the
generated one, z is the input AIA 304 A image. We employ a
U-Net as the backbone of our proposed model. A U-Net is an
encoder-decoder architecture overall. The attention block is
inserted between the encoder and the decoder, as shown in
Figure 1. In this way, the abstracted features by the encoder are
weighted by the attention block, and the decoder uses these
processed features for magnetogram generation.

2.2. Attention Block

The detailed framework of the attention block can be found
in Figure 2 (Zhang et al. 2018). The features which are
abstracted from the previous layers, x € R°*N, are first
transformed into two feature spaces by f(x)= Wga,
g(x) = W,x, where W, € RCXC, W; € RCXC, Then, a weighted
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Figure 2. Attention block.

sum of the features is calculated for each location by
3, = exp (f (x)7g(x)))
YN exp (f ()T g (xy)
where (3;; indicate the extent of the model attends to the ith

location when synthesizing the jth location. The output of the
attention layer is computed by

N
0j = V(Z /Bj,ih(xi)), (3)

i=1

@)

where h(x;) = Wix;, v(x;) = Wox;, Wy, € REXC and W, € RE*C.
We can obtain the coefficients o = (01, 03 ,...,0; ,...,0n)
€ R * N from (3). Then, the output of the attention layer is
scaled by a scaling factor gamma, adding back to the input
feature map x;. Thus, the final output is given by,

Y, = Y0i + xi, 4

where ~y is a learnable parameter.

The self-attention feature maps should concatenate with the
abstracted feature maps of the encoder. We concatenate these
features by the Residual Hadmard Product (RHP) (Mejjati et al.

2018). The RHP is formulated by :

F=xx(+y) )

where F represents the concatenated features, x represents the
encoded features, and y is the attention feature maps.
Besides, we apply the spectral normalization method
(Miyato et al. 2018) to the learned weights, such as W,, Wy
W, and W,, which can stabilize the training process of the
GAN. The spectral normalization can be formulated as follows:

Wsn (W) = W /o (W) (6)

where W is the learned weight. o(W) is the spectral norm of the
matrix W and it is equivalent to the largest singular value of W.

3. Experiments

For evaluating the proposed model, namely RHP-attention
pix2pix, we compare it with the pix2pix backbone. The
configuration of the pix2pix and the RHP-attention pix2pix are
the same. We implement our model using the deep learning
platform of PyTorch (Paszke et al. 2019) and train our model
on a single NVIDIA Tesla P100 GPU. The conditions of
experiments are as follows. The model can converge after
training epoch of 200. The learning rate is 0.0002. Batch size is
32. Slope of LeakyReLu is 0.2 and Dropout (Srivastava et al.
2014) probability is 0.5.

3.1. Dataset

In this work, the data set consists of magnetograms from the
SDO/HMI and EUV 304 A images from SDO/AIA. We
downloaded these data with Sunpy (SunPy Community et al.
2015) from Virtual Solar Observatory (VSO). The observation
time of the data set is from 2012 January 1 to 2012 December
31 with a cadence of 12 minute. The data processing process is
as follows. First, the HMI LOS magnetograms and AIA 304 A
images are processed by calibrating, rotating and centering. In
addition, they are aligned. The saturation limits of magneto-
grams are 200 G, and the AIA 304 A images are normalized
by their corresponding exposure times. We extract a patch of
180° in east-west direction and 160° in north—south direction
centered on the equator from full-disk solar image. Then, we
interpolate the patch to the size of 1800 x 1600 pixels by the
CUBIC method (Fritsch & Carlson 1980) and crop the center
900 x 800 pixels to reduce the projection effect. For model
training, we randomly crop a bunch of image patch of
512 x 512 from each image patch of 900 x 800 mentioned
above for data augmentation. Thus, a data set with 20,099
samples in total is established. A sample of this data set is
shown in Figure 3. Finally, we split the data set into the
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Figure 3. Local AIA 304 A image with its correspondent local magnetogram.

training, validation and testing sets. The training set contains
samples from 2012 January 1 to 2012 August 30, validation set
from 2012 September 1 to 2012 September 30, and testing set
from 2012 October 1 to 2012 December 31. There is a time
interval of one month between training set and testing set.

3.2. Results and Analysis

In this paper, we propose a model based on the self-attention
mechanism called RHP-attention pix2pix, using pix2pix as a
benchmark network. The features provided by the attention
mechanism need to be combined with the features extracted by
the encoder to generate the corresponding magnetogram
through the decoder. We compare two schemes of feature
combination. The first one F; is to add the attention features
Fagen to the features x learned by the encoder, and then
concatenate them with x by channel. The second one F, is to
compute the RHP product of the attention features F., with
the encoder features x, and then concatenate them with x by
channel. These two feature concatenations are named cat-
attention pix2pix and RHP-attention pix2pix respectively.

For objective evaluation, two image quality measurements,
SSIM and PSNR, and pixel-to-pixel correlation coefficient are
employed. The PSNR and SSIM can be formulated as:

(2pxuy + ) 2oy + )

SSIM(x, y) = ) @)
(4 + 11 + ) (0% + 05 + )
MaxValue?
PSNR(x, y) = 10log;) ——88 —, 8
(x, y) 210 MSE (8)

where x and y represent observed magnetogram and generated
one respectively, g, and g, are the means of x and y
respectively, o> and ai are the variances of x and y
respectively, oy, is the covariance of x and y, ¢; and ¢, are

Table 1
Objective Comparisons between the Pix2pix Baseline and the Proposed Mode
Pix2pix-attention

Pixel-to-pixel CC

Model PSNR SSIM (2 x 2 binning)

pix2pix baseline 19.80 £ 1.65  0.59 £ 0.04 0.49 £ 0.11

cat-attention 2049 £1.35 0.64+0.04 0.58 +0.10
pix2pix

RHP-attention 21.03£1.71  0.65£0.03 0.59 £0.10
pix2pix

two constant parameters to stabilize the division with weak
denominator. Following the setting of original authors, ¢; and
cp are 2.55 and 7.65, respectively Wang et al. (2004). SSIM is
more likely to reflect the structural similarity of two images.
PSNR is defined by the mean squared error (MSE) and
maximum pixel value (MaxValue) of an image. It qualifies
pixel-to-pixel difference between generated image and ground-
truth.

In Table 1, peak signal-to-noise ratio (PSNR), feature
similarity measure (SSIM) and correlation coefficient (CC) of
magnetic field strength are calculated for the three models. It
can be observed that all of the metrics are improved by the two
proposed attention augmented models, especially the CC is
about 20% larger than that of the baseline. We also give the
standard deviation of PSNR, SSIM and CC in Table 1. It can be
observed that the standard deviations (STDs) are comparable
among the three models. Relative to pix2pix baseline, RHP-
attention pix2pix achieves PSNR, SSIM and CC improvements
of 6.21%, 10.17% and 20.41% respectively, proving the
effectiveness of RHP-attention module. Comparing the two
attention models, they are almost comparable in terms of
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Figure 4. Comparison of generated local magnetograms among different models. (2012-Dec-14 19:36UT).
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Figure 5. Comparison of generated local magnetograms among different models. (2012 October 17 08:00UT).

objective quality. However, in terms of subjective quality,
RHP-attention can generate more realistic and clearly struc-
tured results than cat-attention in strong magnetic fields.

In Figures 4-5, the observed magnetograms and the
magnetograms generated by the different models and the
corresponding color maps are shown. Observing Figure 4 with
the observed time of 2012 December 14 19:36 UT, we can

notice the presence of a sunspot at region (a) for the HMI
observed magnetogram. Comparing three generated magneto-
grams, the pix2pix and cat-attention pix2pix fail to generate the
corresponding sunspot structure, while RHP-attention pix2pix
can successfully generate the corresponding sunspot structure.
Observing Figure 5 with the observed time of 2012 October 17
8:00UT, there is a clear distinction between the positive and
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negative polarity of the magnetic field at region (c). The RHP-
attention pix2pix model can successfully generate this
distribution. While the pix2pix and cat-attention pix2pix
generate the positive polarity structure mixed with negative
polarity structure. For the small scale magnetic region (b) and
region (d), none of models can generate the right magnetic
polarity distribution.

It is still a big challenge to generate right magnetic polarities
at a fine scale for magnetogram generation currently. In fact,
we cannot guarantee absolutely consistent polarities between
generated magnetogram and observed one at small scale. They
are only morphologically similar on large scale magnetic
structures. This result can mostly satisfy qualitative analysis,
e.g., event analysis of solar burst.

From the above two experiments, we can further con-
clude that:

1. Compared to cat-attention, RHP-attention is not only
more sensitive to the strong magnetic field structure but
also more faithful to the magnetic polarities. This
phenomenon indicates that the RHP concatenation is
more efficient than channel concatenation when fusing
attention maps and feature maps;

2. By augmenting attention module to the pix2pix model,
more computational resources are allocated to stronger
magnetic field, so the generated magnetic field around
strong magnetic field has higher fidelity.

4. Conclusion

This paper proposes an RHP-attention pix2pix model for AR
magnetogram generation. The RHP-attention pix2pix model
augments the self-attention mechanism to the pix2pix. In
addition, it concatenates attention features through the RHP.
From the experiments, the proposed model can generate
magnetograms with finer strong magnetic structures, such as
sunspots. In addition, the proposed model can generate more
faithful strong magnetic polarity distribution.

Sun et al.
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