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Abstract

For high-precision pulsar timing analysis and low-frequency gravitational wave detection, it is essential to
accurately determine pulsar pulse times of arrival (ToAs) and associated uncertainties. To measure the ToAs and
their uncertainties, various cross-correlation-based techniques can be employed. We develop methodologies to
investigate the impact of the template-matching method, profile shape, signal-to-noise ratio of both template and
observation on ToA uncertainties. These methodologies are then applied to data from the International Pulsar
Timing Array. We demonstrate that the Fourier domain Markov chain Monte Carlo method is generally superior to
other methods, while the Gaussian interpolation shift method outperforms other methods in certain cases, such as
profiles with large duty cycles or smooth profiles without sharp features. However, it is important to note that our
study focuses solely on ToA uncertainty, and the optimal method for determining both ToA and ToA uncertainty
may differ.
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1. Introduction

The discovery of the first pulsar (Hewish et al. 1968) opened
up an entirely new domain in astronomy. Since then, more than
3300 pulsars have been discovered11 (Manchester et al. 2005).
Among the discovered pulsars, a subset, known as millisecond
pulsars (MSPs, Backer et al. 1982), has been discovered to
rotate with remarkable stability. By employing the pulsar
timing approach, which entails precise measurement of pulse
times of arrival (ToAs), MSPs can be utilized as tools for
various extreme experiments, such as testing the equation of
state of neutron stars (Lattimer & Prakash 2016), examining
general relativity (Zhu et al. 2015), and searching for low-
frequency gravitational waves (GWs, Antoniadis et al. 2022).

Among the manifold applications, the detection and
characterization of low-frequency GWs is one of the most
remarkable research directions. In order to accomplish this
goal, an ensemble of precisely timed MSPs distributed across
the sky (known as a pulsar timing array or PTA) is required to
be monitored and timed regularly (Foster & Backer 1990).

Present PTA experiments include the European Pulsar Timing
Array (EPTA, Chen et al. 2021), the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav,
Alam et al. 2021), the Parkes Pulsar Timing Array (PPTA Kerr
et al. 2020), and the Indian Pulsar Timing Array (InPTA, Joshi
et al. 2018). These four PTAs have also joined forces as the
International PTA (IPTA, Verbiest et al. 2016) to further
improve the sensitivity of PTAs. Also China and South Africa
are organizing themselves for PTA initiatives and may join the
IPTA community in the future.
In the specific pulsar timing operation, the precise measure-

ment of ToAs and their associated uncertainties is essential.
This process is typically achieved through cross-correlating
observed pulse profiles with a standard template, either in the
time domain or in the Fourier domain. However, when it comes
to handling processes, not only does the template-matching
method have a range of options, but also the creation of the
template can be done in several ways. Wang et al. (2022)
presented an overview and comparison of the different
templates and timing techniques. In summary, Wang et al.
(2022) examined template profiles derived from (a) the single
brightest observation, (b) a combination of all observations, (c)
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a smoothed version of (b), and (d) a fully analytic profile. In the
process of determining ToAs, three template-matching techni-
ques, specifically the Fourier phase gradient shift (PGS,
Taylor 1992), the Fourier domain Markov chain Monte Carlo
(FDM) and the Gaussian interpolation shift (GIS, Hotan et al.
2005) methods, were considered in that research.

As outlined in Taylor (1992), the profile of each observation
( )f can be modeled as a scaled and phase-shifted version of

the template ( )f , plus additional white noise ( )fn , as follows,

( ) ( ) ( ) ( )f f t f= + + + a b n . 1

Here, a and b represent arbitrary offset and scale factors,
respectively, f is the pulse phase, and τ is the phase offset
between observation and template. Through template-matching
approaches, ToAs and corresponding uncertainties can be
derived from τ and ( )fn .

Besides, the relationship between ToA uncertainty σToA and
signal-to-noise ratio (S/N) is give by Lorimer & Kramer
(2012),
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where W is the width of the profile, Ssys and Smean are the
system equivalent flux density and the pulsar’s mean flux
density, respectively. tobs is the integration time, Δf is the
observing bandwidth, P is the pulse period and δ=W/P is the
pulse duty cycle.

Once ToAs and their corresponding uncertainties have been
determined, least-squares fitting is typically performed to
estimate pulsar parameters. Ideally, a perfect fit would yield a
reduced chi-squared c ~ 1r

2 . However, the cr
2 value obtained

after the fit is often significantly different from unity. These
disparities are primarily due to the incorrect estimation of ToA
uncertainties, which could be caused by extra noise introduced
during the data collecting and processing process (Verbiest &
Shaifullah 2018).

If the fit of ToAs indicates that the fitted cr
2 value deviates

substantially from unity, a common practice is artificially
altering ToA uncertainties to correct the inaccurate ToA
uncertainties. To accomplish this, an EFAC (error factor, used
to account for miscalibration of radiometer noise), or an
EQUAD (error added in quadrature, accounting for additional
uncorrelated noise, caused by pulse phase jitter) or both are
usually introduced into the timing model to rescale the ToA
uncertainties (Verbiest et al. 2016). The revised ToA
uncertainties, ŝToA, can then be expressed as:

ˆ ( · ) ( )s s= +EFAC EQUAD . 3ToA ToA
2 2

The system-dependent factor EFAC serves as an overall
scaling factor to account for potential systematic errors in ToA
measurement uncertainties (Alam et al. 2021), while EQUAD
represents an additional time-independent white noise contrib-
ution, such as jitter noise arising from stochastic phase and

shape variations due to pulse-to-pulse fluctuations not fully
averaged out within a given observation (Shannon et al. 2014).
In principle, it could be rather simple to determine an EFAC

or EQUAD value for each instrument-pulsar-frequency combi-
nation in the pulsar-timing data set, thus restoring the cr

2 value
to unity. This approach has been widely employed in virtually
every pulsar-timing analysis (e.g., Desvignes et al. 2016).
However, the application of EFACs and/or EQUADs is
entirely ad hoc, as the reasons for these factors remain largely
undefined or even entirely unknown. For instance, the EQUAD
is often described as modeling pulse phase jitter, but when
EQUAD parameters are compared to those anticipated from
jitter studies, there is limited agreement (Verbiest et al. 2016).
Moreover, incorporating a substantial number of parameters
into the model significantly increases the complexity of the
noise analysis and consumes computational resources (Chen
et al. 2021). As a result, it is valuable to examine any possible
sources of ToA uncertainty underestimation in order to enhance
the dependability of ToA uncertainties and diminish the need
for these ad hoc correction factors.
In this paper, we investigate three of the most frequently

used methods for ToA determination and employ simulations
to examine how the ToA uncertainties derived from these
methods depend on the pulse profile shape and how they scale
with the S/N of the observations. Section 2 provides an
overview of the data set and simulations used. In Section 3 we
test these three template-matching techniques on simulated
pulse profiles and in Section 4 we present the results of
simulations carried out with 65 pulse profiles from IPTA
MSPs. Section 5 summarizes our findings.

2. Data Set and Template-matching Methods

The pulse profiles utilized in this study are sourced from the
IPTA data release 2,12 featuring pulse profiles of 65 MSPs
(Perera et al. 2019). The IPTA data set comprises ToAs and
profiles from three regional PTAs. Within this work, 42
templates generated with the Berkeley−Orléans−Nançay
backend at the L-band at the Nançay telescope are included
from the EPTA data. The central frequency and bandwidth for
these data are 1398 MHz and 64 MHz, respectively. For
NANOGrav, 16 profiles were utilized, taken at the L-band with
the Green Bank Ultimate Pulsar Processing Instrument
(GUPPI, DuPlain et al. 2008) at the Robert C. Byrd Green
Bank Telescope (GBT) of the National Radio Astronomy
Observatory. The remaining seven pulse profiles were acquired
from the PPTA data portal13 (Dai et al. 2015).
A summary of the pulse profiles used in this work is given in

Table 1. The table includes the pulse periods P, the mean pulse
widths for the L-band pulse profiles at 10% and 50% of the

12 https://ipta4gw.org/data-release/
13 https://data.csiro.au/collection/csiro:11812
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Table 1
Basic Parameters for the Pulsar Profiles in our Sample

PSR P(ms) W10 (ms) W10 (%) W50 (ms) W50 (%) Freq (Hz) Obs

J0023+0923 3.050 0.532 17.4 0.201 6.6 39 N
J0030+0451 4.865 1.535 31.5 0.520 10.7 63 E, N
J0034−0534 1.877 1.063 56.6 0.399 21.2 19 E
J0218+4232 2.323 1.438 61.9 0.929 40.0 29 E
J0340+4130 3.299 0.517 15.7 0.213 6.4 68 N
J0437−4715 5.757 0.447 7.8 0.073 1.3 28 P
J0610−2100 3.862 0.726 18.8 0.185 4.8 35 E
J0613−0200 3.062 0.933 30.5 0.356 11.6 73 E, N, P
J0621+1002 28.849 5.226 18.1 0.578 2.0 71 E
J0645+5158 8.854 0.450 5.1 0.121 1.4 134(76) N
J0711−6830 5.491 1.129 20.6 0.381 6.9 52 P
J0751+1807 3.479 0.849 24.4 0.236 6.8 42 E
J0900−3144 11.110 2.859 25.7 0.852 7.7 32 E
J0931−1902 4.638 1.694 36.5 0.439 9.5 41 N
J1012+5307 5.256 1.537 29.2 0.585 11.1 81 E, N
J1022+1001 16.453 1.960 11.9 0.940 5.7 74(43) E, P
J1024−0719 5.162 1.535 29.7 0.386 7.5 91(73) E, N, P
J1045−4509 7.474 0.361 4.8 0.190 2.5 20 P
J1455−3330 7.987 1.669 20.9 0.215 2.7 103 E, N
J1600−3053 3.598 0.399 11.1 0.076 2.1 92 E, N, P
J1603−7202 14.841 0.862 5.8 0.341 2.3 22 P
J1614−2230 3.151 0.405 12.8 0.083 2.6 67 N
J1640+2224 3.163 0.476 15.0 0.221 7.0 42(27) E, N
J1643−1224 4.621 0.925 20.0 0.314 6.8 31 E, N, P
J1713+0747 4.571 0.304 6.6 0.100 2.2 91 E, N, P
J1721−2457 3.497 1.260 36.0 0.683 19.5 13 E
J1730−2304 8.123 1.713 21.1 0.992 12.2 104 E, P
J1732−5049 5.313 0.405 7.6 0.073 1.4 23 P
J1738+0333 5.850 1.317 22.5 0.123 2.1 63 E, N
J1741+1351 3.748 0.320 8.5 0.088 2.3 88 N
J1744−1134 4.074 0.249 6.1 0.137 3.4 82 E, N, P
J1747−4036 1.645 0.788 47.9 0.099 6.0 26 N
J1751−2857 3.915 0.390 10.0 0.128 3.3 43 E
J1801−1417 3.625 0.878 24.2 0.274 7.6 18 E
J1802−2124 12.644 0.482 3.8 0.173 1.4 159 E
J1804−2717 9.342 2.208 23.6 0.602 6.4 106 E
J1824−2452 3.054 0.055 1.8 0.016 0.5 28 P
J1832−0836 2.719 0.604 22.2 0.126 4.6 70 N
J1843−1113 1.846 0.172 9.3 0.066 3.6 62 E
J1853+1303 4.092 0.825 20.2 0.236 5.8 134 E, N
J1857+0943 5.362 1.369 25.5 0.529 9.9 76 E, N, P
J1903+0327 2.150 0.407 18.9 0.195 9.1 16 N
J1909−3744 2.947 0.086 2.9 0.042 1.4 14 E, N, P
J1910+1256 4.983 0.409 8.2 0.139 2.8 54 E, N
J1911+1347 4.626 0.287 6.2 0.088 1.9 114(65) E
J1911−1114 3.625 1.271 35.1 0.435 12.0 39 E
J1918−0642 7.646 1.329 17.4 0.149 2.0 91 E, N
J1923+2515 3.788 0.659 17.4 0.146 3.9 39 N
J1939+2134 1.558 0.154 9.9 0.037 2.4 125 E, N, P
J1944+0907 5.185 3.187 61.5 0.803 15.5 34 N
J1949+3106 13.138 0.885 6.7 0.205 1.6 170 N
J1955+2908 6.133 1.997 32.6 0.386 6.3 66 E, N
J2010−1323 5.223 0.398 7.6 0.245 4.7 201 E, N
J2017+0603 2.896 0.741 25.6 0.064 2.2 45 N
J2019+2425 3.934 1.497 38.0 0.669 17.0 42 E
J2033+1734 5.949 0.688 11.6 0.241 4.1 63(37) E
J2043+1711 2.380 0.447 18.8 0.035 1.5 202 N
J2124−3358 4.931 2.714 55.0 0.518 10.5 42 E, P
J2129−5721 3.726 0.120 3.2 0.065 1.8 5 P
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profile peak (W10 and W50 respectively), and the corner
frequency14 of the profile’s power spectral density (PSD). For
some of the pulse profiles exhibiting complex PSD shapes, e.g.,
PSR J1911+1347, (see Figure 1), the higher frequency is listed
outside brackets and the lower value within brackets.

As a comprehensive set of tools for handling pulsar data,
PSRCHIVE currently supports eight different template-matching
methods (van Straten et al. 2012). Below, we briefly outline the
main characteristics of each method:

PGS: Fourier phase gradient shift. First described by Taylor
(1992), this popular algorithm leverages the “shift theorem”

of the Fourier shift, stating that the Fourier transform of a
profile and a shifted copy of the profile differ solely by a
linear phase gradient. The phase difference in the time
domain can be determined by fitting for the gradient in the
Fourier domain. A notable strength of this scheme is that the
measurement precision is independent of phase resolution
(Taylor 1992). However, its main weakness is the under-
estimation of TOA uncertainty in the low-S/N regime
(Arzoumanian et al. 2015).

FDM: Fourier domain Markov chain Monte Carlo. This scheme
is identical to the PGS method in determining phase shift, but
applies a one-dimensional Monte Carlo simulation when
determining uncertainty, rather than a χ2 minimization used
in PGS. Theoretically, FDM can provide more reliable
uncertainties for low S/N observations.

GIS: Gaussian interpolation shift. This method involves a
standard cross-correlation of two profiles in the time
domain. GIS fits a Gaussian curve to the discrete cross-
correlation function of two profiles and performs inter-
polation between each phase bin. The offset required to
double the χ2 is defined as the uncertainty (Hotan et al.
2005). The timing precision of the approach can exceed
10% of a phase bin and is less susceptible to noise
contamination (Hotan et al. 2005).

PIS: Parabolic interpolation shift. PIS fits a parabolic function to
the pulse profile and determines the location of the peak of
the parabola. Although it is a computationally efficient and
straightforward method, it is less accurate since it assumes
that the pulse profile has a symmetric, parabolic shape.

SIS: Sinc interpolation shift. Similar to PIS, SIS interpolates the
pulse profile using a sinc function and determines the
location of the peak of the interpolated profile as the ToA.
Theoretically, SIS is a more precise method for interpolat-
ing the pulse profile compared to PIS, but it necessitates
careful adjustment of parameters (such as the order of the
sinc function and the number of interpolation points).

ZPS: Zero padding interpolation shift. This technique involves
zero-padding the pulse profile in the time domain and then
carrying out a fast Fourier transform (FFT) to interpolate
the profile in the frequency domain. The location of the
maximum of the interpolated profile after the inversed FFT
is taken as the ToA. This method is computationally more

Table 1
(Continued)

PSR P(ms) W10 (ms) W10 (%) W50 (ms) W50 (%) Freq (Hz) Obs

J2145−0750 16.052 4.178 26.0 0.345 2.1 109 E, N, P
J2214+3000 3.119 0.646 20.7 0.181 5.8 34 N
J2229+2643 2.978 0.667 22.4 0.449 15.1 47 E
J2302+4442 5.193 2.792 53.8 0.598 11.5 64 N
J2317+1439 3.445 0.688 20.0 0.402 11.7 71 E, N
J2322+2057 4.808 0.991 20.6 0.423 8.8 90 E

Note. Pulse widths are derived from the standard pulse profile at 1.4 GHz and the 10% and 50% levels (W10 and W50, respectively) relative to the observed pulse peak
are listed, as well as the proportion of the corresponding width to the total period. The seventh column represents the corner frequency of PSD, while the last column
indicates the PTAs that observe the pulsar. Here E, N, and P represent EPTA, NANOGrav, and PPTA respectively, and the character in bold indicates the profile
source in this work.

Figure 1. Pulse profile and PSD plots for PSR J1911+1347. The upper panel
displays the averaged pulse profile, created using the EPTA data set, while the
lower panel presents the PSD of PSR J1911+1347, consisting of 1000
frequency bins. A pair of dashed lines in the lower panel mark the determined
corner frequencies.

14 The corner frequency is defined as the frequency at which the signal is
reduced to meet the noise.
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demanding than other interpolation methods and also
requires meticulous parameter selection.

COF: Center of flux. The COF method operates by measuring
the position of the center of the flux of a pulse profile. As it
is based on the assumption that the pulse profile shape
remains stable over time. This method may not yield
accurate ToAs if the pulse profile changes.

RVM: Rotating vector model magnetic meridian. RVM is a
geometric model employed to describe the polarization of
electromagnetic radiation (Radhakrishnan & Cooke 1969).
The RVM magnetic meridian is used to predict the position
angle of the linearly polarized radiation emitted by the pulsar
as a function of the pulse phase. By comparing the predicted
position angle with the observed position angle, RVM can be
utilized to determine the TOA of the pulse. RVM can provide
high-precision measurements of ToA for stable pulsars, but
can also introduce systematic errors due to inaccurate
prediction of the pulsar’s magnetic field geometry.

In this paper, we initially analyze seven of these methods,15

through simulations of two sets of template data. Specifically, we
begin with two noise-free templates: one is a simple narrow
Gaussian profile, and another is a broader Gaussian profile with a
shape feature. Varying levels of white noise are then injected to
form observations of diverse S/N. We investigate ToA
uncertainties as a function of the S/Ns for all seven template-
matching methods. The results are displayed in Figure 2. As
demonstrated, PIS consistently underestimates the uncertainty of
the ToAs compared to other methods, particularly in the high-S/N
regime, and the uncertainty obtained by the ZPS method is
independent of S/N and thus completely unreliable. Additionally,
SIS marginally performs better than ZPS and PIS, but its overall
performance is essentially the same as the results obtained by the
PGS algorithm. Consequently, in the subsequent detailed
investigation, we will only discuss the other four template-
matching methods, i.e., PGS, FDM, GIS, and COF.

3. Simple Gaussian Profiles

Before exploring the ToA uncertainties in various complex
pulse profiles derived from real data, we employ simple
Gaussian profiles, either with or without unique features in the
on-pulse and off-pulse regions. A noise-free PSRFITS-
formatted profile is generated using the paas plugin in the
PSRCHIVE software package. The corresponding Gaussian
white noise is subsequently introduced into the PSRFITS file
via the PSRCHIVE python interface and the numpy module, in
order to attain the specified S/Ns.

Initially, as depicted at the top of Figure 3, we examined
pulse profiles with only a single Gaussian component. The

PGS, COF and GIS timing algorithms are represented by
distinct colors and markers in each panel, while the FDM
timing algorithm is shown as red boxes. Outliers of the boxes
are also presented, as indicated in the legend. Each panel’s inset
depicts the standard profile of the template, all of which have
an S/N of 5000. The solid black line in each panel represents a
slope-fixed fit of FDM data at high S/N (>10), which has been
extrapolated to the low S/N region.
In Figure 3, we first investigated the impact of the overall

width of the profile: the top row of Figure 3 displays a simple
Gaussian pulse profile that is broad in the first column, average
in the second column and narrow in the third column.
Examining how the ToA uncertainties scale with the S/N of
the simulated observations (on the X-axis), we observe that
PGS does not scale as sharply as theoretically expected,
suggesting that this algorithm either overestimates ToA
uncertainties in the high-S/N regime or underestimates them

Figure 2. ToA uncertainties for two simulated Gaussian profile as a function of
observations’ S/N. In both panel, seven template-matching methods are shown
with distinct colors and markers, as outlined in the legends. The upper panel
displays the results obtained from a wide Gaussian profile with a notch,
whereas the lower panel shows results obtained from a narrow Gaussian
profile. The inset within each panel displays the corresponding template,
possessing an S/N of 5000.

15 The RVM method requires polarization information to determine ToAs.
Since our profiles obtained from the IPTA data set are all polarization-
averaged, RVM is not included in this study.
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in the low-S/N. It is worth noting that this behavior
considerably improves for narrower profiles, particularly in
the high-S/N regime. COF and GIS both seem to provide
reliable scaling relations, but the absolute size of the returned
ToA uncertainties are significantly affected by the width of the
profile: for the same S/N, COF returns a much larger
uncertainty if the profile is sharp, whereas GIS does the
opposite, returning smaller ToA uncertainties for narrow
profiles compared to wide profiles. In clear contrast to other
methods, ToA uncertainties returned by FDM generally adhere
to the expected scaling relationship and do not vary greatly
depending on the profile’s width.

For further study, we also investigate profiles with two
Gaussian components, as illustrated in the second row of
Figure 3. Two independent wide Gaussian components, one
narrow Gaussian component combined with a wide Gaussian
component, and a broad pulse with a narrow notch, are shown
from left to right. The profile with two broad Gaussian
components yields similar results as the profile with a single
broad component above, except that the COF method converges
to a constant ToA uncertainty at S/N of ∼100 and above. For
profiles with both broad and narrow components, GIS and PGS
produce similar ToA uncertainties for low-S/N observations, but
at high S/Ns, the ToA uncertainties determined with the GIS
method converge to a constant. Surprisingly, ToA uncertainties
determined by the PGS method at intermediate S/N for the profile
with a notch component do not display the improved scaling
evident for the single, narrow pulse profile on the top row. Instead,

the PGS results appear to be dominated by the broad pulse
component, remaining constant across the bottom row.
Subsequently, further simulations were conducted to exam-

ine the influence of the S/N of the template on the ToA
uncertainties. We selected two Gaussian pulse profiles, one
broad and one narrow, and then varied the S/N of the template
to analyze the effect on the four template-matching methods.
As depicted in Figure 4, we established the S/N ratios of the
templates at 500, 1000, and 10,000, respectively, and then
observed the variation of ToA uncertainty with the observa-
tions’ S/N and the different template-matching methods.
This comparison reveals that for the GIS method, the S/N of

the template profile has no bearing on the scaling of the returned
ToA uncertainties, but it does influence the absolute level of their
uncertainties if the template profile is broad. However, for narrow
template profiles the template S/N appears to have no effect. The
ToA uncertainties of COF are, by definition, not impacted by the
S/N of the template profile since this method does not utilize a
template profile but instead calculates the center of flux of the
observations. With regard to the third algorithm, PGS does not
exhibit any noticeable effect from the template S/N. The results
for FDM remain constant for sharp profile shapes, however for
broad profiles, the scaling of ToA uncertainty with observations’
S/N displays a break in the FDM case, suggesting an
underestimation of ToA uncertainties in the high-S/N regime.
The observational S/N at which this break transpires seems to rely
on the template S/N and is thus more problematic for templates
with low S/N. Specifically, it appears that the break occurs at an

Figure 3. ToA uncertainties for various simple Gaussian profiles as a function of observations’ S/N. In each panel, the PGS, COF, and GIS timing methods are shown
with different colors and markers, while the FDM timing algorithm is presented with box plots in red color. Outliers of the box plots are shown, as indicated in the
legend. The inset within each panel shows the profile of the standard template, which has an S/N of 5000. The solid black line in each panel represents a slope-fixed fit
of FDM with S/N > 10, and extended to the low S/N region.
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S/N approximately an order of magnitude lower than the template
S/N, implying that the FDM algorithm would necessitate a
template profile with S/N at least a factor of ten above the S/N of
any single observation.

4. EPTA Profiles

In this section, we start discussing the impact of diverse
template-matching algorithms on real data, and we find an
interesting phenomenon when choosing an appropriate S/N of the
templates. We noticed that FDM exhibits instability in some
specific cases. With certain pulsars, for instance, PSR J1721
−2457, we find that FDM exhibits a noticeable jump at the
junction between medium and high S/Ns (see Figure 5). This
jump is largely related to the duty cycle of the pulse profile, the
sharpness of the features and the S/N of the template. By
comparing with other pulsars, we can see that the jump becomes
pronounced when the duty cycle of the pulse profile is large and
there are no particularly sharp features. Moreover, by employing a
higher S/N of the template for these pulsars, we find that the jump
smooths out as the S/N of the template increases, and vanishes
when the S/N of the template is greater than approximately 5000.

For a more specific investigation, we present results for all
65 pulsars, with pulse profiles obtained from IPTA Data
Release 2 (Perera et al. 2019), we present results for all 65
pulsars in Figure A1. The captions are akin to Figure 3, except
that the S/N of the templates are all set to 10,000 here. The
plots were arranged in ascending order based on pulsar name.

It is evident that the pulse profile has a considerable impact
on the ToA uncertainties. In the majority of cases, such as

PSRs J0610−2100 and J1614−2230, FDM offers a substantial
advantage in determining ToA uncertainty, and accurately
reflects the theoretically anticipated scaling with observations’
S/N. Naturally, if the S/N of an observed profile with
extremely sharp features is very low, as in the case of
PSRs J1730−2304 and J2043+1711, FDM will also tend to
overestimate the ToA uncertainty, as demonstrated in the
previous simple Gaussian simulation.
In another case, PGS yields ToA uncertainties that progress

with observations’ S/N in a similar manner for all examined
pulsars: the gradient of this relationship is more gentle than
anticipated theoretically, implying that either low-S/N

Figure 4. The ToA uncertainties for two types of simple Gaussian profiles, as functions of template S/N and four selected template-matching methods. The top row
displays the results obtained using a broad template, while the bottom row displays results obtained using a narrow profile. In both rows, the S/N of each template was
set to 500, 1000, and 10,000, from left to right.

Figure 5. ToA uncertainties for PSR J1721−2457 as a function of observations’
S/N and template-matching method, S/N of the template in this plot is set to 1000.
A significant jump of ToA uncertainties appears in the median S/N region.
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observations have underestimated ToA uncertainties, or high-S/N
observations have overestimated them. The sole exception to this
pattern occurs with pulsars possessing very pronounced features:
for those pulsars, ToA uncertainties of high-S/N observations
exhibit the predicted trend, and in fact, align remarkably well with
the ToA uncertainties derived by FDM. Even within this specific
domain, however, ToA uncertainties variations are smaller for
FDM than for PGS, suggesting that the FDM algorithm delivers
even more dependable outcomes than PGS.

Regarding the third template-matching method, namely GIS,
circumstances become somewhat more intricate. First, GIS
generally appears to marginally underestimate ToA uncertainty
at low S/N, frequently positioning itself between the PGS and
FDM results. As the S/N progressively increases, the ToA
uncertainty calculated by GIS initially steepens toward the
theoretically expected scaling law, but subsequently plateaus
entirely for intermediate to high-S/N observations. Additional
simulations reveal that the S/N at which the GIS ToA
uncertainties level off is unaffected by the S/N of the template,
but is strongly influenced by the pulse profile shape.
Specifically, for shorter duty cycles and pulsars with sharper
features in the profile, ToA uncertainties plateau more swiftly.
Prime examples include PSRs J1802−2124 and J1022+1001.
In contrast, PSRs J1721−2457 and J0218+4232, for instance,
possess a larger duty cycle and lack pronounced features. For
this category of pulsar the ToA uncertainties produced by GIS
scale impressively with observations’ S/N and are comparable
to, or competitive with, those yielded by FDM.

The fourth template-matching method we investigated, COF,
consistently presents a ToA uncertainty greater than that
provided by any of the other techniques, though its scaling with
S/N closely aligns with the theoretical expectation. Another
case is that, for pulsars with substantial duty cycles, e.g.,
PSR J1721-2457, COF results closely approach FDM out-
comes. However, at low S/Ns, COF persistently exhibits a
more considerable scatter than FDM. In addition, in the context
of multi-peak profiles, such as PSRs J1832−0836 and J2124
−3358, it can be noticed that as observations’ S/N improves,
the ToA uncertainty tends to stabilize, leading to a reduced
linear correlation with the S/N of observations.

Lastly, we discovered no evident link between the template,
template-matching method and corner frequency. Nonetheless, we
observed a strong negative correlation between the PGS
performance and the pulse profile’s duty cycle. For example, as the
W50 proportion gradually increases, the discrepancy between the
ToAs obtained by PGS and the model prediction begins to grow,
and a larger deviation emerges at moderate S/Ns. The ToA
uncertainty also becomes more dispersed compared to the FDM
method. Consequently, we believe that PGS is unsuitable for
pulsars with a large duty cycle in the pulse profile.

5. Conclusions

High-precision pulsar timing experiments necessitate invest-
igation into the reliable estimation of ToA uncertainty. The
pulse profile’s shape, the template, the S/N of the observations,
and the choice of template-matching method all influence the
determined ToA uncertainty, and consequently, pulsar timing
precision and low-frequency GW detection sensitivity.
Through simulations, we assessed the impact of template shape,

the S/N of the observations, and the selection of template-
matching algorithms on the accuracy of ToA uncertainties. We
subsequently analyzed 65 real pulse profile shapes and conclude
that the ToA uncertainty can be more accurately obtained.
In general, the FDM is distinctly more dependable than the

other three timing algorithms when concentrating solely on
ToA uncertainty. Its evolution with observations’ S/N tends to
align more consistently with theoretical expectations, and the
ToA uncertainties acquired are less dispersed. Conversely, the
PGS, GIS, and COF approaches either deviate significantly
from the theoretical scaling or substantially scatter ToA
uncertainties.
However in a few instances, such as when the pulse duty

cycle is large, observations’ S/N is low or the pulse profile is
smooth, GIS may determine a more accurate ToA uncertainty.
Additionally, FDM encounters a ToA uncertainty jump in a
specific S/N region, which is likely related to the character-
istics of Markov chain Monte Carlo.
Crucially, we have demonstrated that FDM requires a

template with an S/N at least an order of magnitude greater
than the S/N of any of the observations. If this is not the case,
it either risks underestimating the ToA uncertainty of the
brightest observations or risks overestimating the ToA
uncertainties of fainter observations, or a combination thereof.
This is particularly relevant for pulse profiles with wide duty
cycles and few or no sharp features. In practical terms (for non-
scintillating pulsars), this means that FDM necessitates the
combination of at least 100 observations into the added
template.
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Figure A1. The ToA uncertainties for 65 MSP profiles were calculated as a function of the observation’s S/N and template-matching methods. Each panel displays
the PGS, COF, and GIS timing methods using different colors and markers, while the FDM timing algorithm is presented using red box plots. Outliers of the box plots
are shown in the legend. The inset within each panel displays the profile of the standard template, which has an S/N of 10,000. The solid black line in each panel
represents a slope-fixed fit of the FDM method, with S/N > 10, extended to the low S/N region.
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Figure A1. (Continued.)
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Figure A1. (Continued.)
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