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Abstract

Spectral classification plays a crucial role in the analysis of astronomical data. Currently, stellar spectral
classification primarily relies on one-dimensional (1D) spectra and necessitates a sufficient signal-to-noise ratio
(S/N). However, in cases where the S/N is low, obtaining valuable information becomes impractical. In this paper,
we propose a novel model called DRC-Net (Double-branch celestial spectral classification network based on
residual mechanisms) for stellar classification, which operates solely on two-dimensional (2D) spectra. The model
consists of two branches that use 1D convolutions to reduce the dimensionality of the 2D spectral composed of
both blue and red arms. In the following, the features extracted from both branches are fused, and the fused result
undergoes further feature extraction before being fed into the classifier for final output generation. The data set is
from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, comprising 15,680 spectra of F, G, and K
types. The preprocessing process includes normalization and the early stopping mechanism. The experimental
results demonstrate that the proposed DRC-Net achieved remarkable classification precision of 93.0%, 83.5%, and
86.9% for F, G, and K types, respectively, surpassing the performance of 1D spectral classification methods.
Furthermore, different S/N intervals are tested to judge the classification ability of DRC-Net. The results reveal
that DRC-Net, as a 2D spectral classification model, can deliver superior classification outcomes for the spectra
with low S/Ns. These experimental findings not only validate the efficiency of DRC-Net but also confirm the
enhanced noise resistance ability exhibited by 2D spectra.
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1. Introduction

In recent years, there has been an exponential growth in
astronomical data due to the advancements in large-scale sky
surveys such as the Sloan Digital Sky Survey (Lyke et al. 2020),
the Large Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST) (Lu et al. 2021), the Five-hundred-meter Aperture
Spherical radio Telescope (Ching et al. 2022), and the Dark
Energy Survey (Lahav et al. 2020). Among the fundamental
tasks in astronomical data analysis, stellar spectral classification
is always an important task. The Morgan–Keenan system
(Morgan & Keenan 1973), based on template matching, is the
most widely used classification system. It categorizes stars into
seven classes (O, B, A, F, G, K, M) according to their
temperatures, with each class further divided into ten subclasses
ranging from 0 to 9.

With the continuous development of machine learning
theories, researchers have introduced machine learning into
astronomical research and proposed various spectral classifica-
tion algorithms (Schmidhuber 2015; Müller 2016; Hon et al.
2017; Fabbro et al. 2018). However, machine learning
algorithms are often limited by their feature extraction and
generalization capabilities, leading to suboptimal performance.
Deep learning algorithms, as a branch of machine learning

known for their powerful feature extraction capabilities, have
also achieved excellent results in the field of astronomy.
Sharma et al. (2020) were the pioneers in applying

Convolutional Neural Networks (CNNs) to spectral classification
tasks and comparing them with the Random Forest algorithm.
Their findings demonstrated that CNNs achieved higher
classification accuracy than the Random Forest algorithm.
Building on this work, Liu et al. (2019) introduced a supervised
algorithm for stellar spectra classification based on stellar spectra
convolutional neural network (SSCNN), an automatic celestial
spectral classification algorithm based on one-dimensional (1D)
CNNs. Experimental results showcased the superior perfor-
mance of SSCNN over classical machine learning algorithms
like Random Forest (Breiman 2001), Artificial Neural Network
(Zupan 1994), K-Nearest Neighbor (Abeywickrama et al. 2016),
and Support Vector Machines (Huang et al. 2018) in terms of
classification accuracy. Similarly, Zheng et al. (2020) proposed a
semi-supervised model composed of Semi-Supervised Learning
with Generative Adversarial Networks (SGAN)and CNN to
achieve the classification of O-type stars.
While 1D spectral-based classification algorithms have

shown good results, and astronomers continue to conduct
research based on 1D spectra, there remain challenges in the
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field of astronomy that cannot be fully addressed by 1D spectra
alone. In the latest release of the LAMOST DR8 data set,
approximately 20% of the spectral data had to be discarded due
to low signal-to-noise ratio (S/N), owing to them being unable
to generate valuable 1D spectra. Furthermore, two-dimensional
(2D) spectra, as the raw data of target objects, inherently
possess more features compared to their 1D counterparts.

Therefore, this study proposes the DRC-Net model, which
directly leverages 2D spectra for stellar subclass classification.
We compare its performance with that of 1D and 2D spectral
classification algorithms. Additionally, we investigate low-S/N
spectral data and analyze such spectra in the 2D domain,
aiming to study the noise resistance ability of 2D spectra.

2. Data Processing

2D spectra data set used in this paper is from LAMOST. The
telescope consists of 16 spectroscopes and 32 CCD cameras.
Each camera has 250 optical fibers and simultaneously images
the blue and red arms of the fibers to obtain the raw 2D spectra,
as shown in Figure 1.

Each of the original 2D spectral images, both from the blue
and red arms, contains 250 individual spectral stripes. The data
used in the experiment are the stripes obtained by segmenting
the original images. Due to the extreme imbalance in aspect
ratio, only a portion of a stripe is shown in Figure 2, with a size
of 15 × 150. The horizontal and vertical directions correspond
to the wavelength and spatial directions of a 2D spectrum,
respectively.

The data preprocessing stage in the early phase of the
experiment involves two main steps: slicing and normal-
ization. In the original images, the 2D spectra are densely
packed, which can lead to potential contamination between
adjacent spectra. Furthermore, as depicted in Figure 2, pixels
closer to the center of the 2D spectral image exhibit higher
brightness and contain more valuable information. Therefore,
in the spatial direction, only 11 pixels expanding outward
from the center pixel are selected for this experiment. In the
wavelength direction, 3000 pixels ranging from 500 to 3500
are chosen as input data, as this range is known to sufficiently
capture the characteristics of most stars. To include all pixels
as input would bring more noise rather than additional
features.
Normalization of 2D spectra is done to facilitate model

convergence. In this study, the widely used Z-score method in
machine learning is employed for data normalization. This
method transforms the data set into one having a mean of
0 and a standard deviation of 1, for ensuring proper contrast
between different 2D stripes. Equation (1) presents the
formula for the Z-score method, where mean and std represent
the mean and standard deviation of the batch of data
(11 × 3000 spectral data), respectively. x denotes the value
of a specific sample in the data, and z represents the
normalized result of the sample

=
- ( )z

x mean

std
. 1

2.1. Data Set

The main focus of this experiment is the star classification of
F, G, and K types, as well as the examination of the anti-noise
performance of 2D spectra. The complete data set consists of
4500, 6500, and 4680 2D spectra for the three types,
respectively. During the data set construction process, the
data are categorized into four intervals based on the S/N of
r-band (S/N_R): S/N_R > 30, 20 < S/N_R < 30, 10 <
S/N_R < 20, and S/N_R < 10. At first, the local 2D spectral
data undergo S/N analysis, and the outcomes are presented in
Figure 3. It can be observed that the subset of 2D spectra with
S/N_R > 30 contains the biggest number of spectra, and the
subset with the submaximal number falls into the S/N_R < 10
interval. Hence, in this experiment, the high-S/N data is
utilized for training, and the low-S/N spectra are used for
testing. The specific process of constructing the experimental
data set is depicted in Figure 4, which illustrates the steps.

Figure 1. Original 2D spectral image.

Figure 2. Example plot of a single 2D spectrum.
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1. A comparison is conducted between the local 2D spectra
and the stellar catalog to obtain information such as the
ID, class, and S/N of the 2D spectra.

2. The data is categorized and saved as a 2D spectral
data set.

3. Employing the aperture extraction method (Ritter et al.
2014), the corresponding 1D spectral data set is generated
based on the 2D spectral data set.

4. Based on the acquired S/N information, the data with
S/N_R> 30 is divided into training, validation, and testing
sets in an 8:1:1 ratio. In addition, in order to ensure fairness,
the training set, validation set, and test set used in all
experiments are the same. Then the data from other S/N
ranges are uniformly added into the testing set to evaluate
the model’s robustness. The specific division details of the
experimental data set are presented in Table 1.

3. Network Structure

This chapter introduces the 1D method (RC-Net) and the 2D
method (DRC-Net), and analyzes their network structures in
detail based on the structure diagrams.

3.1. RC-Net

RC-Net (Zou et al. 2020) is a highly effective 1D spectral
classification model in galaxy, quasar, and stellar classification.
The model architecture is depicted in Figure 5. It consists of eight
identical convolutional modules, each comprising a max pooling
layer and a residual module. The key aspect of the residual
module is the inclusion of skip connections between consecutive
convolutional layers, which facilitates feature reuse and effec-
tively addresses the issue of vanishing gradients in deep
networks. In Figure 5, each residual connection comprises a

Figure 3. Data distribution according to S/N_R.

Figure 4. Data set construction flowchart.
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1 × 1 convolutional layer and three 1 × 3 convolutional layers.
The three 1 × 3 convolutional layers focus on feature extraction,
while the 1 × 1 convolutional layer, referred to as the skip
connection layer, performs dimension transformation. The
dimensions of input and output are aligned to ensure that they
can be fused. Following each residual module, a max pooling
layer is employed to compress the feature dimensions, reducing
computational complexity and ensuring faster training speed.

3.2. DRC-Net

DRC-Net is proposed based on the backbone of RC-Net, and
its network structure is shown in Figure 6. Since the 2D
spectral data consists of images from the blue and red arms,
using only one part of the image would result in information
loss. Therefore, DRC-Net is designed as a dual-branch model.
It consists of two identical feature extraction units that process
the blue- and red-arm images of the 2D spectrum, respectively.
The extracted features from both branches are then mapped into
a high-dimensional space for feature fusion. In Figure 6, DRC-
Net is divided into four components: the data dimension

reduction module, the feature extraction module, the feature
fusion module, and the classifier.
The data dimension reduction module aims to decrease the

dimensionality of the input 2D spectral data, reducing
computational complexity and enhancing efficiency. The
feature extraction module employs identical feature extraction
units to extract representative features from the blue-arm and
red-arm images independently. The feature fusion module
combines these extracted features in a high-dimensional space
and further extracts features to capture complementary
information. Finally, the classifier utilizes the fused features
as input to perform the classification task.
Overall, DRC-Net capitalizes on the strengths of the RC-

Net’s backbone network while incorporating a dual-branch
architecture to effectively handle the information contained in
the blue- and red-arm images of 2D spectra. This approach
enables more comprehensive and accurate feature extraction,
leading to improved classification performance.
The data dimension reduction module plays a crucial role in

reducing the dimensionality of the 2D spectral image data to a

Table 1
Division of the Data Set

30 < S/N_R 20 < S/N_R < 30 10 < S/N_R < 20 S/N_R < 10

Train data set 4840 0 0 0
Value data set 605 0 0 0
Test data set 605 461 436 1042

Figure 5. RC-Net (Zou et al. 2020) backbone structure diagram.
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1D sequence that can be effectively processed by subsequent
modules. This module is composed of three sequential 1D
convolutional layers with kernel sizes of 5 × 1, 5 × 1, and
3 × 1. By passing the 11 × 3000 input 2D spectral image
through these convolutional layers, the module transforms it
into a 1D sequence output with a size of 1 × 3000.

The feature extraction module is responsible for extracting
meaningful features from the input data. In the experimental
setup, this module serves as the backbone network of RC-Net
to ensure fair comparison with other models. The output from
the data dimension reduction module is fed into the feature
extraction module, which produces a 1D vector output with a
size of 1 × 128. This vector represents the extracted features
that capture important characteristics of the input data.

The feature fusion module is designed to integrate the
features obtained from the preliminary feature extraction of the
blue-arm and red- arm spectra and further extract informative
features. The 2D vectors, representing the features from the
blue-arm and red-arm, are concatenated together. This
concatenated vector is then processed through two 1 × 3
convolutional layers, which perform additional feature extrac-
tion operations. The output of this module is the final feature
representation that incorporates complementary information
from both arms of the 2D spectra.

The classifier module consists of three fully connected layers
followed by a softmax activation function layer. The feature
representation output from the feature fusion module is first
transformed by the fully connected layers to a size of 1 × 3,
enabling the model to learn discriminative representations.

Then, the softmax activation function is applied to obtain the
final class outputs of the model, representing the predicted
probabilities for the F, G, and K types of stars. By combining
the functionalities of the data dimension reduction module,
feature extraction module, feature fusion module, and classifier
module, the DRC-Net model can effectively process 2D
spectral data, extract informative features, and make accurate
predictions for stellar classification.

4. Experiments and Analyses

Before training a neural network model, it is necessary to set
hyperparameters, such as batch size, learning rate, and number
of epochs. Table 2 presents the hyperparameter settings for
DRC-Net and the hardware environment used in this

Figure 6. DRC-Net network structure diagram.

Table 2
Hyperparameter Settings

Configuration DRC-Net

Optimizer AdaGrad
Batch size 4
Total-train-epoch 300
Learning rate 0.001
Loss function CrossEntropyLoss
Early-stop-patience 50
Operating system MS Windows 10
Graphics processing unit (GPU) Geforce 3070ti 8 GB
Programming language Python 3.7
Development environment configuration Pytorch 1.7 and CUDA 11.0
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experiment. To ensure a fair comparison, the same hyperpara-
meter settings were applied to all experiments. In the
experiment, an early stopping mechanism is introduced, which
automatically stops the training process if the validation loss
does not decrease for 50 consecutive epochs, to prevent
overfitting.

In order to evaluate the performance of the proposed model,
precision, recall, F1-score, and accuracy are introduced as
evaluation metrics. In the experiment, the model is first trained
using high-S/N data, and then predictions are made on the data
sets with four different S/N ranges. Table 3 presents the
classification performance of all the models in the S/N_R > 30
range. P, R, F1, and ACC represent the precision, recall, F1-
score, and overall accuracy of the test set, respectively.

The comparison with FFCNN (Ya-kun et al. 2022) high-
lights the advantage of DRC-Net’s data dimension reduction
module. By reducing the dimensionality of the 2D spectra and
obtaining 1D sequence data, DRC-Net allows for more
effective feature extraction. On the other hand, FFCNN directly
extracts features from the images using fixed-size convolutional
kernels (3 × 20), which limits the network’s depth and may
result in insufficient feature extraction and lower classification
performance. The difference in network architectures between
DRC-Net and RC-Net, specifically the input data, also
contributes to the improved performance of DRC-Net. By
using 1D sequence data obtained through dimensionality
reduction from 2D spectra, DRC-Net captures more spatial
information compared to RC-Net, which takes 1D spectra as
input. This suggests that the simulated “spectral extraction”
process with 1D convolution in DRC-Net provides valuable
spatial information for classification.

The performance of both DRC-Net and RC-Net in different
S/N ranges is illustrated in Figure 7. When S/N is greater than
30, the classification accuracy of the DRC-Net model exceeds
the RC-Net model by 0.6%. As the S/N decreases, in the range
of 20–30, RC-Net achieves a higher classification accuracy and
surpasses DRC-Net by 6.6%. When the S/N further decreases
to the range of 10–20, the classification accuracy of both
models becomes comparable again, with the DRC-Net model
leading by 0.4%. However, as the S/N continues to decrease to
values below 10, a significant difference in classification
accuracy between the two models emerges, with the DRC-Net
model leading RC-Net by 6.5%. In summary, the DRC-Net

achieves competitive results at lower S/N values and even
better results at lower S/N levels.
When the S/N is sufficiently high, the DRC-Net model

demonstrates higher classification accuracy. Comparing the
differences between the DRC-Net and RC-Net, it can be
concluded that the 1D sequence obtained by convolution of 2D
spectra contains more spatial directional information than the
1D spectra obtained directly through aperture spectra. Addi-
tionally, when the S/N is not significantly low (20–30), 2D
spectra do not outperform 1D spectra, indicating that 2D
spectra do not exhibit superiority within this S/N range.
Finally, when the S/N drops below 10, the performance of 2D
spectra becomes noticeably better. It can be inferred that strong
noise easily interferes with the waveform characteristics of 1D
spectra, while the image features of 2D spectra exhibit better
noise resistance. Therefore, the 2D spectral classification model
demonstrates better robustness against noise.
To present the experimental results more accurately, the

classification accuracy of the test set and the precision of each
stellar for DRC-Net and RC-Net at different S/N values are
separately presented in Tables 4 and 5.
The specific experimental results for the two sets of

experiments are shown in Tables 4 and 5. The data in columns
F, G, and K represent the precision of different stellar at various
S/N values. The best results are highlighted in bold in the
tables. Particularly at S/N levels below 10, the highest
precision is achieved for the K-type stars, and this holds true
for both 1D spectra and 2D spectra. This suggests that the
features of K-type stars are more robust against noise
interference and degradation, making them easier to classify
accurately even under challenging conditions.
Overall, the analysis of the experimental results highlights

the trade-off between the two models at different S/N levels.
DRC-Net performs better at higher S/N values (S/N_R > 30),
while RC-Net excels in lower S/N ranges (20–30). The
advantages of DRC-Net, such as better noise resistance and
more spatial directional information, become more apparent as
the S/N decreases. These findings provide valuable insights
into the performance and robustness of the models under
different S/N conditions and can help guide the selection of the
appropriate model based on the specific requirements and S/N
levels in practical applications.

Table 3
Comparison of Classification Results of Three Models

F G K

Model P R F1 P R F1 P R F1 ACC
DRC-Net 0.930 0.816 0.869 0.835 0.925 0.878 0.869 0.785 0.825 0.866
FFCNN 0.876 0.763 0.816 0.792 0.903 0.843 0.845 0.742 0.807 0.829
RC-Net 767 0.948 0.848 0.929 0.795 0.857 0.846 0.917 0.880 0.860

6

Research in Astronomy and Astrophysics, 23:125005 (8pp), 2023 December Zhang et al.



5. Conclusion

In this paper, a novel deep learning model named DRC-Net is
designed for classifying stars of F, G, and K types, which is based
on 2D spectral images. DRC-Net uses a dual-branch architecture
that incorporates both the red-arm and blue-arm of the 2D
spectra. By applying 1D convolution, the model simulates the
“spectral extraction” process and reduces the dimension of a 2D
spectrum into a 1D sequence for further analysis.

Experimental results demonstrate that DRC-Net outperforms
RC-Net, the 1D spectral classification network. Compared to RC-
Net, the precisions of F-type and K-type are improved by 16.3%
and 2.3%, respectively. Moreover, the overall classification
accuracy of the test data set increases by 0.6%. Additionally,

DRC-Net exhibits a significant performance over FFCNN,
another 2D spectral classification network (Ya-kun et al. 2022).
These results highlight the benefits of the sequential data

derived from dimensionality reduction of 2D spectra. The 1D
sequence captures more spatial directional features compared to
the 1D spectra obtained through aperture extraction and suggests
that the 2D spectra data provide richer spatial information,
explaining the good performance of DRC-Net. The study also
investigates the robustness of the model facing noises. When
S/N is relatively low (20–30), DRC-Net achieves competitive
results despite the lower data quality. Furthermore, when S/N is
very low (S/N_R < 20), the 2D spectra methods outperform 1D
spectra methods, indicating the superior ability for noise
resilience. This finding supports the feasibility of utilizing 2D
spectra methods for processing low-S/N spectra.
Overall, this study introduces DRC-Net as an effective model

for classifying stars using 2D spectra. The performance of the
model surpasses that of 1D networks and demonstrates the
advantages of leveraging spatial information in spectral data.
Additionally, the robustness of the 2D methods further enhances
its applicability in scenarios with complex data conditions.
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