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Abstract

The space-borne gravitational wave detectors will observe a large population of double white dwarf binaries in the
Milky Way. However, the search for double white dwarfs in the gravitational wave data will be time-consuming
due to the large number of templates involved and antenna response calculation. In this paper, we implement an
iterative combinatorial algorithm to search for double white dwarfs in MLDC-3.1 data. To quickly determine the
rough parameters of the target sources, the following algorithms are adopted in a coarse search process: (1) using
the downsampling method to reduce the number of original data points; (2) using the undersampling method to
speed up the generation of a single waveform template; (3) using the stochastic template bank method to quickly
construct the waveform template bank while achieving high coverage of the parameter space; (4) combining the
FFT acceleration algorithm with the stochastic template bank to reduce the calculation time of a single template. A
fine search process is applied to further determine the parameters of the signals based on the coarse search, for
which we adopt the particle swarm optimization. Finally, we detect( )104 double white dwarf signals, validating
the feasibility of our method.
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1. Introduction

The first observation of a gravitational wave (GW) signal,
i.e., GW150914, was made by Advanced LIGO (Abbott et al.
2016), marking the beginning of a new era in observing the
universe with GW. So far, 90 compact binary mergers have
been reported by the LIGO-Virgo-KAGRA collaborations
(Abbott et al. 2019, 2021a, 2021b, 2021c). With the lower
frequency cut-off determined by the Earth’s large seismic and
gravity-gradient noises (Accadia et al. 2012; Aso et al. 2013;
Hall et al. 2019), ground-based GW detectors, such as
Advanced LIGO (Aasi et al. 2015), Advanced Virgo (Acernese
et al. 2015)and KAGRA (Somiya 2012), are operated in the
10–103 Hz frequency band. However, there are a large number
of GW sources in the millihertz (mHz) band, such as massive
black hole binaries (Wang et al. 2019; Katz et al. 2020),
extreme mass ratio inspirals (Calabrese et al. 2017; Fan et al.
2020), stellar-mass binary black holes (Kyutoku & Seto 2016;
Sesana 2016; Liu et al. 2020), double white dwarfs (DWDs)
(Nelemans et al. 2001a; Yu & Jeffery 2010; Breivik et al. 2020;
Huang et al. 2020) and stochastic backgrounds of astrophysical
and cosmological origin (Romano & Cornish 2017; Liang et al.
2021). All these sources can be detected by the proposed space-

borne GW detectors, e.g., TianQin (Luo et al. 2016) and LISA
(Amaro-Seoane et al. 2017).
In the mHz frequency range, binary star systems are mainly

composed of DWD binaries in the Milky Way (( )108 )
(Nelemans et al. 2001a). Due to their large number, DWDs
are expected to be the most numerous GW sources for space-
borne detectors, and about ten thousand DWD binaries will be
detected by LISA and TianQin (Nelemans et al. 2001a; Yu &
Jeffery 2010; Lamberts et al. 2018; Breivik et al. 2020; Huang
et al. 2020). The detection of GWs from DWDs will
significantly improve our understanding of stellar evolution,
Galactic compact binary systems, the distribution of stars in the
Milky Way, etc. More specifically, (1) DWD mergers are one of
the main candidate mechanisms for type Ia supernova explo-
sions. In addition, the near-infrared magnitudes of type Ia
supernovae are considered to be the best “standard candles”
(Barone-Nugent et al. 2012), which are of great importance for
the study of modern cosmology (Riess et al. 1998; Perlmutter
et al. 1999). (2) DWDs are the end products of the evolution of
stellar binaries, so the detection of GWs from DWDs can shed
light on the formation and evolution of stellar binaries
(Belczynski et al. 2001; Postnov & Yungelson 2014). (3) Due
to the mass-transfer, DWDs can form AM Canum Venaticorum
(AM CVn) systems, thus, using GW observations in combina-
tion with electromagnetic observations can probe the physics of
mass transfer processes (Nelemans et al. 2001b; Marsh et al.
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2004; Solheim 2010; Tauris 2018). (4) The detached DWDs
with short orbital periods (ranging from one hour to a few
minutes) are particularly suitable in studying the physics of tides
(Fuller & Lai 2012; Dall’Osso & Rossi 2014). (5) The overall
GW signals from DWDs imprint information about the entire
Galaxy’s stellar population, which is helpful in figuring out the
structural properties of the Milky Way (Benacquista & Holley-
Bockelmann 2006; Adams et al. 2012; Korol et al. 2019; Breivik
et al. 2020; Wilhelm et al. 2020).

Although the huge amount of DWDs could bring us a wealth
of information on GWs, its detection also poses great
challenges. First, the superposition of GW signals from DWDs
can form a confusion noise in space-borne detectors (Timpano
et al. 2006; Huang et al. 2020; Liang et al. 2021). That means
the received DWD signals can be confused with each other to
the point where individual binaries cannot be resolved
(Crowder & Cornish 2004). Second, about ten thousand
DWDs will be resolvable due to either their isolation in
frequency space or their relative brightness, and how to
effectively detect these DWD signals has become a big
challenge (Timpano et al. 2006; Yu & Jeffery 2010; Lamberts
et al. 2018; Breivik et al. 2020; Huang et al. 2020).

To solve this problem and develop LISA data analysis
algorithms, LISA organized four rounds of mock data
challenges from 2006 to 2010, called Mock LISA Data
Challenge (MLDC) (Arnaud et al. 2006, 2007a, 2007b;
MLDC 2006; Babak et al. 2008a, 2008b, 2010). Since 2019,
LISA has started a new round of data challenges, named LISA
Data Challenges (LDC) (LDC 2019). The amount of DWD
signals contained in different rounds of MLDC varies
enormously, e.g., MLDC-1.1 consists of three single source
data sets and four multiple source data sets (Arnaud et al.
2007b); MLDC-2.1 contains about 26 million DWD signals
(Arnaud et al. 2007a); MLDC-3.1 has about 60 million DWD
signals (Babak et al. 2008b); MLDC-4 is the “whole enchilada
challenge,” which includes all the sources of MLDC 3.1-3.5 in
one data set (Babak et al. 2010).

The majority of methods utilized to detect the DWD signals
in MLDC data set are based on the matched filtering technique,
which calculates the correlation between the data and the
expected waveform, and is an optimal strategy in detecting
signals in additive, Gaussian, stationary noise (Helström 1968).
Depending on whether a pre-set bank of templates is required,
the detection methods can be divided into two categories:
stochastic search and grid-based search (Błaut et al. 2010).

For the stochastic search, no template is used for the signal
search, and a typical implementation involves the Markov
Chain Monte Carlo (MCMC) algorithm. Applying an
F-MCMC algorithm, (Cornish & Crowder 2005) resulted in
correctly identifying the number and source parameters of GW
signals from multiple Galactic binaries within simulated LISA
data streams. Using an extension of the MCMC method named
blocked-annealed Metropolis-Hastings (BAM) proposed in

Crowder & Cornish (2007), Littenberg (2011) reported about
9000 sources in MLDC-4 data. Applying a Metropolis-
Hastings Monte Carlo (MHMC) code, the Montana State-JPL
(MTJPL) collaboration reported 19,324 sources2 in the MLDC-
2.1 data set (Babak et al. 2008a). Adopting the particle swarm
optimization (PSO) algorithm with the rejection of spurious
sources by cross-validating, Zhang et al. (2021) reported
12,270 sources in LDC 1-4 and 12,044 sources in MLDC-
3.1mod3.
Different from a stochastic search, which concentrates on the

regions with high likelihood (Błaut et al. 2010), a grid-based
search maps the whole parameter space by constructing grids in
parameter space. Constructing a template bank in the parameter
space needs to balance a number of conflicting constraints: too
dense templates will waste computing resources, and too loose
templates will easily miss signals. Template-based searches for
GWs are often limited by the computational cost associated
with searching a large parameter space. So, it is important to
study how to place templates effectively and concisely in the
parameter space (John & Neil Sloane 1999; Prix 2007). The
problem of constructing a grid is equivalent to the problem of
covering d-dimensional space with identical hyperellipsoids or
overlapping regular lattices (John & Neil Sloane 1999). For
example, the hypercubic n lattice and the *An lattice (John
Conway & Neil Sloane 1999; Messenger et al. 2009) are used
to construct an efficient template bank, which was widely
implement in searching for continuous GWs by LIGO (Babak
et al. 2006; Astone et al. 2010; Allen et al. 2012; Wette 2014;
Pisarski & Jaranowski 2015) and LISA (Brown et al. 2007;
Blaut et al. 2009). Using reduced Fisher matrices to build the
template grid, Błaut et al. (2010) reported 12,805 sources in
MLDC-3.1 data. Another more convenient method to place
templates is random or stochastic methods4, which are more
effective in high-dimensional parameter space and if the
parameter space metric5 is non-flat (Babak 2008; Harry et al.
2009; Messenger et al. 2009; Fehrmann & Pletsch 2014;
Allen 2022). To make the template coverage more effective,
numerous algorithms had been applied to prune the random
template bank, e.g., remove those which are “too close”
together, adjust their positions, etc. (Harry et al. 2009; Manca
& Vallisneri 2010; Fehrmann & Pletsch 2014). Throughout the
manuscript we call such method a “stochastic template bank”.
In this paper, we implement an iterative source subtraction

method to detect DWDs. For quick searches of all the expected
candidate signals injected in the “observation” data set, the

2 http://www.tapir.caltech.edu/~mldc/results2/MTJPL-writeup-070618-
161814.pdf
3 The authors add the GW signals used in MLDC-3.1 to the noise realizations
in LDC 1–4.
4 The largest difference between random and stochastic methods is whether
there are any additional pruning steps.
5 The metric is defined as a distance measure, which is related to the loss in
matched filter SNR for a given template and signal (Messenger et al. 2009).
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following methods will be adopted to speed up the calculation:
(1) the downsampling method is applied to reduce data points
(Błaut et al. 2010); (2) the undersampling method is utilized to
speed up the generation of waveforms in the template bank
(Zhang et al. 2021); (3) the “Fast Fourier Transform (FFT)”
algorithm is used to reduce the calculation time of each
detection statistic (Jaranowski & Krolak 2005; Błaut et al.
2010); (4) stochastic template bank method is implemented to
improve the coverage of parameter space. We call this process
coarse search. Some simplifications are removed in the fine
search procedure so that the parameters are more precisely
recovered. Based on the candidates provided by the coarse
search, we use the PSO algorithm to explore the parameter
space.

The paper is organized as follows. A brief review of relevant
background information is presented in Section 2. The method
of downsampling the original data and method of generating
waveforms with undersampling are introduced in Section 3.
Details about the search method and pipeline are discussed in
Section 4. Section 5 is the search results and discussions.
Section 6 is the conclusion.

2. Background

2.1. GW Signal of DWD

In the mHz frequency band, the DWDs are expected to
exhibit relatively little frequency evolution. Thus, the GW
strain emitted from a DWD can be safely approximated as (in
the source frame)

i
= F =

+
F+ +( ) ( ) ( ) ( )h t A t h tcos

1 cos

2
cos , 10

2

i= F = F´ ´( ) ( ) ( ) ( )h t A t h tsin cos sin , 20

p=
( ) ( ) ( )h

G

c D
f

4
, 3c

L
0

5 3

4
2 3

p p fF = + +( ) ( )t ft f t2 , 42
0

where +, × represent the two polarization modes of GWs, ι is
the inclination angle of the quadruple rotation axis with respect
to the line of sight (the direction is from the source to the Sun),

= + ( ) ( )m m m mc 1 2
3 5

1 2
1 5 (m1 and m2 are the individual

masses of the components of the binary) is the chirp mass of
the system, DL is the luminosity distance to the source, f0 is the
initial phase at the start of the observation, f and f are the
frequency of the source and its derivative with respect to time
respectively, and G and c are the gravitational constant and
speed of light respectively.

Considering the motion of the detectors moving around the
Sun, a Doppler modulation of the phase of the waveform
should be taken into account, i.e.,

F  F + F( ) ( ) ( ) ( )t t t , 5D

p b p lF = + -( ) ( ) ( ) ( )t f f t
R

c
f t2 cos cos 2 , 6D m

where ΦD(t) is the Doppler modulation, fm= 1 yr is the
modulation frequency, β and λ are the latitude and longitude
of the source in ecliptic coordinates respectively, and R= 1 au
is the semimajor axis of the guiding center of the satellite
constellation.
The measured scalar GW signal at time t by detector channel

 is denoted as  ( )h t . It is the response of the detector to the
GW tensor

å l b y i f=
=+ ´

  ( ) ( ) ( ) ( )h t F t h t f f h; , , ; , , , , , 7
a

a
a

,

,
0 0

where Fa, is antenna pattern functions of detector channel  ,
and ψ is the polarization angle that describes the wave frame
with respect to the equatorial coordinate system.
In the present paper, we will use the  –statistic method

(Jaranowski et al. 1998) for signal detection, with which the
measured signal can be decomposed into time-dependent and
time-independent parts

å i f y l b=
m

m
m

=

  ( ) ( ) ( ) ( )h t h h t f f, , , ; , , , , 8
1

4

0 0

where m is the signal-amplitudes, which depend only on the
four extrinsic parameters {h0, ι, f0, ψ}, and are independent of
the detector  ,
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f y f y
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2
0 0

3
0 0

4
0 0

The four basis waveforms m
h , which depend only on the four

intrinsic parameters l bQ = { }f f, , , , are related to the
specifics of the detectors and can be written as6

f f

f f

= =

= =

     

     

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

h t a t t h t b t t

h t a t t h t b t t

cos , cos ,

sin , sin , 10
1 2

3 4

where  ( )a t and  ( )b t are the antenna-pattern functions, which
depend on the sky position of the DWDs and the features of the
detector, and f f= F - ( ) ( )t t 0 is the signal phase at the
detector channel  .

2.2. The Noise Model

We will focus on the case when the instrumental noise n(t) is
assumed to be Gaussian stationary with a zero mean. Thus, the
ensemble average of the Fourier components of the noise n( f )

6 Note that we have suppressed the parameters except for t.
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can be written in the following form

dá ¢ ñ = - ¢*˜( ) ˜ ( ) ( ) ( ) ( )n f n f f f S f
1

2
, 11n

where ∗ denotes complex conjugate, and Sn( f ) is the single-
sided noise power spectral density (PSD).7

Space-borne GW detection suffers from laser phase noise,
which can be alleviated through Time-Delay Interferometry
(TDI) technology. TDI essentially constructs virtually equal-
arm interferometers so that the laser phase noise cancels out
exactly. The three symmetric Michelson channels for each
interferometer after TDI are named channels X, Y and Z, and
the MLDC data are expressed in such form (Armstrong et al.
1999; Krolak et al. 2004). However, different channels will use
the same link, then the instrumental noises in different channels
may be correlated with each other. Considering that all the
satellites are identical, we can get one “optimal” combination
by linear combinations of X, Y and Z (Prince et al. 2002)

=
-

=
- +

=
+ + ( )

A
Z X

E
X Y Z

T
X Y Z

2
,

2

6
,

3
. 12

In the A, E and T channels, the instrumental noise is
orthogonal, and consequently, the noise correlation matrix of
these three combinations is diagonal (Prince et al. 2002). Thus,
in the present paper, if there are no special instructions, the
detector channel  will iterate through A, E, or T. The details
of m ( )h tA E T, , can be found in Błaut et al. (2010).

For a space-borne GW detector with three satellites forming
an approximately equilateral triangle, the PSDs of noise for the
TDI A, E and T channels are (Estabrook et al. 2000; Błaut et al.
2010):

w w
w w

w
w w
w
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2 2
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2 4
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where ω= 2πf is the angular frequency, L is the arm-length
between the satellites, Sacc is the PSD of the proof-mass noises
and Sopt is the PSD of the optical-path noises (Babak et al.
2008b) (the parameters used in this article can be found in
Appendix A).

Apart from the instrumental noises, the waveforms of a large
number of DWD signals may overlap to create a confusion

foreground. One of the most challenging tasks for the DWD
search is to identify individual signals from the foreground.
The unresolved binary systems can form a non-stationary
confusion noise that should be added to the overall noise level
of space-borne detectors (Timpano et al. 2006). In the process
of our analysis, we have included the PSD of the foreground
noise, see Appendix B for more details.

2.3. Likelihood Function

Since the true parameters of a GW signal in the time series
data ( )x t are unknown, one can use a waveform ( )h t which
closely mimics the signal, and the residuals = - ( ) ( )n t x t
 ( )h t should be consistent with our model of the instrumental

noise. In the case of stationary Gaussian noise, ~ ( )n t
 ( )S0, n . Then, the likelihood function with only noise in data
can be written as (Finn 1992; Cutler & Schutz 2005; Prix 2007;
Allen et al. 2012; Babak et al. 2010)

k= -   ⎡
⎣

⎤
⎦

( ( )∣ ) ( ( )∣ ( )) ( )P n t S n t n texp
1

2
, 14n

where κ is the normalization constant, and the inner product
(·|·) is the scalar product which is defined as (Finn 1992; Cutler
& Flanagan 1994)

òº
+¥ * ( ( )∣ ( )) ( ) ( )

( )
( )x t y t

x f y f

S f
df4 Re , 15

n0

where ˜( )x f is the Fourier transform (FT) of x(t).
Using Equation (14), the likelihood of observing data  ( )x t

with a signal  ( )h t should be expressed as

k= - - -      ⎡
⎣

⎤
⎦

( ∣ ) ( ∣ ) ( )P x h S x h x h, exp
1

2
. 16n

Combining Equations (14) and (16), and to put information
from all channels into calculation, the optimal detection
statistic can be given by the likelihood ratio



å

L =

= -





   

  

 

( )( )( )∣ ( )) ( ( )∣ ( ) ( )

( ( ) ∣ ( ) )
( ( ) ∣ )

x t h t h t h t

log log

, 17

P x t h t S

P n t S

,

1

2

n

n

where the product/summation implies the assumption that the
noises between different channels are independent.
The GW signal produced by the DWD is approximately a

monochromatic source. Thus, over the narrow bandwidth of the
signal, we assume the spectral density of the noise can be
approximated by a constant, i.e., Sn( f )≈ Sn( f0), where f0 will
be some “central” frequency of the bandwidth or the frequency
of the signal (Błaut et al. 2010; Pisarski & Jaranowski 2015).
Employing Parseval’s theorem, Equation (15) can be

7 This is due to the fact that n(t) is real, = -*˜ ( ) ˜( )n f n f and therefore
Sn(−f ) = Sn( f ).
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approximated by Astone et al. (2010)

ò»( ( )∣ ( ))
( )

( ) ( ) ( )x t y t
S f

x t y t dt
2

, 18
n

T

0 0

0

where T0 is the observation time, and  ( )x t and  ( )y t are some
narrowband continuous wave signals at frequency f0 or the
measured data in the narrow bandwidth around f0.

Using Equation (18) the log likelihood ratio in Equation (17)
can be written as

åL = á ñ - á ñ
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⎝
⎞
⎠( )
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S f
x t h t h t h tlog

2 1

2
. 19

n

0

0

Due to the stationarity of the noise, here we replace the
ensemble average defined in Equation (11) with time average
(Astone et al. 2010; Błaut et al. 2010)

òá ñ =( ) ( ) ( )x t
T

x t dt
1

. 20
T

0 0

0

2.4.  –statistic

The  –statistic method is a matched-filtering detection
statistic for continuous GWs, which was first introduced by
Jaranowski et al. (1998), and subsequently generalized to the
multidetector case (Krolak et al. 2004; Cornish & Crowder
2005; Cutler & Schutz 2005). In the analysis of continuous
GWs, adopting this method can reduce the parameter space to
include only the parameters affecting the time evolution of the
signal phase (Jaranowski et al. 1998; Prix 2007). This method
has been widely utilized in continuous GW searches, e.g.,
searches for continuous GWs from spinning neutron stars
(Abbott et al. 2004, 2007) and DWD signals in MLDC (Babak
et al. 2008a, 2008b, 2010).

Assuming there is only one signal contained in the data,
then the parameters of a DWD signal can be estimated using
the maximum likelihood estimation method. Combining
Equation (8), the log likelihood ratio in Equation (19) can be
rewritten as

åL = -m
m

m
mn

n   
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where the Einstein summation convention is adopted for Greek
indices, μ, νä [1, 4] and

å
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Analytically utilizing the maximum log likelihood ratio (MLR)
over m yields the so called  –statistic (Jaranowski et al. 1998)

åº L = m
mn
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x xmax log , 23
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0
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where mn is the inverse of mn , i.e., d=ma
an

m
n  .

Moreover under the MLR condition, the estimator of mMLR is

å=m mn
n 



 ( )x . 24MLR

According to Equation (9), once the four values of m are
determined, the values of {h0, ι, f0, ψ} can be obtained
analytically (see Appendix C).
When the target intrinsic parameters are perfectly matched to

the signal, the expectation of the  –statistic (in Equation (23))
is (Cutler & Schutz 2005; Prix 2007)

r= +[ ] ( )E 2 4 , 252

where ρ is optimal signal-to-noise ratio (SNR), and
r = å

 ( ∣ )h h2 .

2.5. Acceleration algorithm

According to Błaut et al. (2010) for a grid-based search, the
FFT algorithm can be used to speed up calculation of the  –

statistic in detecting GW signals from DWDs in the MLDC
data set (Błaut et al. 2010). Just as in Błaut et al. (2010),
combining with Equation (22), after some mathematical
manipulation, Equation (23) can be rewritten in a more
compact form of expression
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are some components of the matrix mn defined in
Equation (22), W=Q+ iP and
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where m( u) and m( v) are complex modulation functions as
defined in Błaut et al. (2010). Splitting f(t) as p f+ft2 mod,
where f p= + F ( )f t tDmod

2 , from Equation (26) one can get a
general integral part
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This integral will be an FT if both the phase modulation
function fmod and the complex modulation function m are
independent of the frequency f.

In a narrow frequency band, e.g., 0.1 mHz, fmod and m can
be assumed to be constant and approximately represented with
the value at the middle frequency of the band, i.e., fc.
Consequently, the integral of Equation (29) can be approxi-
mated by

ò b l

f b l p´

 



( ) ( )

[ ( )] [ ] ( )

I x t m t f

i t f f i ft dt

; , ,

exp ; , , , exp 2 . 30

T

c

c

0

mod

0

Thus, one can construct the template bank with the nodes of the
grid coinciding with the Fourier frequencies, which allows us
to compute the  –statistic using the FFT algorithm.

3. Preparing the Data and GW Template

The challenge data set MLDC-3.1 (Prix & Whelan 2007) in
which about 6× 107 Galactic binaries are buried is used as the
target data set in the present paper. Among all the signals,
∼2.61× 107 are detached, which mean that the two compo-
nents are clearly delineated, separated stars, and ∼3.42× 107

are interacting Galactic binaries, which mean that the two
components interact in that there is a mass transfer. The data set
contains a two year long data set (222 samples with 15 s
sampling) with the first generation of TDI observables X, Y and
Z. We aim to detect as many as possible of the DWD GW
signals from the 40,628 “bright” signals.8

A given DWD system will rotate through a large number of
cycles during the two year period. This translates to a very
small volume in parameter space that any template can cover.
Combined with a large number of target sources, the
computational burden can be extraordinary. In this section,
we introduce tricks like downsampling and undersampling,
which can decrease the total search time by roughly two orders
of magnitude.

3.1. Downsampling

A large number of data points is a big challenge to the
calculation. In order to improve the efficiency of calculation,
we first apply downsampling to the data (Błaut et al. 2010).
Downsampling can be used to reduce the number of data points
under the condition of the Nyquist sampling theorem. (The
sampling rate or the Nyquist rate is equal to twice the upper
cutoff frequency of a given signal.) To obtain reasonable data,
the following four steps are used to process the data.

Dividing data into small bandwidth: during the mission time
of the space-borne GW detectors, the evolution of DWD is
expected to be small. Thus, the GW signals emitted from

DWDs are nearly monochromatic. Therefore, one can split the
MLDC-3.1 data into multiple frequency bands, each of which
can be analyzed independently. The segment of each band
chosen in this paper is 0.1 mHz. To reduce power leakage, the
third-order Butterworth bandpass filter is adopted to obtain
the narrowband data in the frequency band [f1, f2] ( f2− f1=
0.1mHz) (Abbott et al. 2020). The Butterworth filter is applied
twice, once forward and once backward. As shown in Figure 1,
which is a comparison of the phase of the original data and that
after the Butterworth filtering, the combined filter introduces
zero phase shift.
In Figure 2, we plot the frequency response of the third-order

Butterworth filter with passband [1.0, 1.1] mHz. One can see
that the frequency response in the passband or the stop band is
smooth without fluctuations, and the stop band attenuation
gradually drops to zero. The filter can minimize the impact of
the filter on the data as much as possible to preserve the
integrity of the filtered data.
Frequency shift: The bandpassed data can be further

downsampled if we heterodyne the data with a reference
monochromatic wave p= - ( ) ( ) ( ( ) )q t p t f tcos 2 1 . A signal
with original frequency of f0 will be shifted to lower frequency
( f0− ( f1− ò)) and higher frequency ( f0+ ( f1− ò)) compo-
nents. Here we have f0ä [f1, f2] and ò is some small number.
More details on the process can be found in Appendix D.
Lowpass filtering: We once again use Butterworth filtering

for lowpass filtering [0, f2− f1+ 2ò] to filter out the high-
frequency data. The lowpass filter frequency response is
displayed in Figure 3. The Butterworth filter is applied twice:
forward and backward in time.
Downsampling: After the above steps, the center frequency

moves from f0 to ( f0− ( f1− ò)), then we downsample the data

Figure 1. Comparison of signal phase before and after the Butterworth
filtering. The frequency of the signal is 1.0627 mHz, and other parameters of
the waveform are random. Here we adopt the Butterworth filter with bandpass
of [f1 − ò, f2 + ò], where ò = 5 × 10−6 Hz.

8 The “bright” signals are the Galactic binaries in the MLDC-3.1 data set,
whose SNR is greater than 10 in a single TDI-X channel (Babak et al. 2008b).
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under the Nyquist sampling theorem and increase the sampling
duration to reduce the amount of data.

The data processed through the above four steps are called
DS-data. To test the downsampling method, we applied it to the
MLDC-1.1.1a-blind data. In Figure 4, the top (bottom) panel
shows the data of MLDC-1.1.1a-blind (noise-free signal)
applying the downsampling method described above. In the
figure, the red line is the original data; the blue line is the data
after bandpass filtering, where the bandpass is [1 mHz− ò, 1.1
mHz+ ò], and one can find that the peak of the blue line is
coincident with the original data; the yellow line is the data
after frequency shift, and one can find that two peaks appear at
high and low frequencies, respectively; the black line is the
data after Butterworth lowpass filtering, and the peak at high
frequency is filtered out; the green line is the data after
downsampling. After the four steps, the number of data points
has been reduced by a factor of around md∼ 300 compared to
the original data.

3.2. Generate Undersampled Waveform Template

To match the frequencies and number of data points in DS-
data, the waveform templates should be processed in the same
way as the DS-data. However, applying exactly the same
procedures increases computational burden. The ideal scenario
would be process DS-data once, and match with templates
generated by downsampling. This aim can be achieved through
undersampled waveform generation.

Undersampling is a technique that samples a bandpass
filtered signal at a sampling rate lower than the Nyquist rate,
but is still able to reconstruct the signal (Kester 2003).
However, the undersample method may cause aliasing error
(Bracewell 1986; Kester 2003). To fully reproduce the original
signal, the undersampling rate needs to satisfy the following
conditions: let ¢ =f f ms s u be the undersampling rate; if

¢
-

f
f

n s
f

n

2 2

1
1 2  , where integer Î

-
( ]n 1,

f

f f
2

2 1
, fs is the original

sampling rate and mu is a positive integer, then the original
signal can be fully reproduced in [0, ¢f 2s ]. Also, a frequency
shift like in the previous subsection is used to shift the
waveform template to the location of the DS-data.
The data points of the templates obtained after under-

sampling should be the same as the data points of the data sets
that have been downsampled. Then, the total number of points
is reduced by a factor of = [ ]m m mmin ,d u . The reduced
number of data points can be different in different frequency
bands. In Figure 5, a comparison is made between the data set
after downsampling (i.e., DS-data) and the waveform template
generated with undersampling. To quantify the difference
between two signals, one can define the correlation or fitting
factor (FF)

=
( ∣ )

( ∣ ) ( ∣ )
( )h h

h h h h
FF . 311 2

1 1 2 2

After some calculation, we find that a typical signal would have
FF; 0.99996 between the DS-data and the waveform
generated with undersampling.

4. Search Method

Using the methods introduced in the previous section, now
we have a DS-data set. In this section, we describe the
construction of template banks. The search strategy is separated
into two parts: (1) coarse search, in which we adopt a stochastic
template bank method to quickly identify the signal candidates;
(2) fine search, in which we use a PSO algorithm to explore
small volumes in parameter space to determine the parameters
of the signals.

Figure 2. Frequency response of a third-order Butterworth filter for the
frequency band of [1.0, 1.1] mHz.

Figure 3. Frequency response of Butterworth filter for lowpass.
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4.1. Coarse Search

To generate the sample data points of the waveform, we need
to specify model parameters. In the present paper, we will
choose the template bank search method, thus a target template
bank with model parameters needs to be built first. The
template bank construction methods include regular lattice
template banks, stochastic banks and random template banks.
The latter two are expected to have less coverage than the
regular one (Harry et al. 2009; Messenger et al. 2009). For the
“random template bank,” the templates are placed randomly
with probability distribution determined by the metric. The
“stochastic template bank” is similar to the “random template
bank” but with some additional pruning steps.

The implementation of the random template bank method is
very simple, and can achieve surprisingly high levels of

efficiency compared to traditional template banks, especially at
higher dimensions (Messenger et al. 2009; Allen 2022). For a
given number of templates, compared with the random
template bank method, the stochastic template bank will
provide better coverage (Harry et al. 2009). The stochastic
template bank is based on the “random template bank,” but
subtracts those templates that are too close, or performs some
other operations (for example, adjusting the position according
to certain rules) (Babak 2008; Harry et al. 2009; Van Den
Broeck et al. 2009; Fehrmann & Pletsch 2014; Harry et al.
2016; Indik et al. 2017; Allen 2021).
In this work, we choose the stochastic template bank

approach proposed by Messenger et al. (2009). Nearly 100%
parameter space coverage is achieved by subtracting templates
that are too close together and then randomly populating some
templates, iteratively. The method can be divided into the
following three steps:

1. Randomly generating templates in the parameter space
n. If the coverage of the templates reaches η (ηä [0, 1))
and the mismatch is m*, the number of random templates
we need will be NR (Messenger et al. 2009)

h
h

»
-

- 

* *⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )N m
V

V
m, , ln

1

1
, 32R n

n

n 2n

where Vn is the volume enclosed by an n-dimensional
unit sphere, and the proper volume of the parameter space
is V n.

2. Removing templates that are too close together. The
distance between two templates at small separation is

= DQ DQ ( )d g , 33ij
i j2

where gij is the metric of the parameter space. Calculate
the distance dij between any two template points, and
when dij is less than *m , remove one of them.

Figure 4. The left panel is the relationship between the frequency and PSD of the original data of MLDC1.1.1a-blind (there is only one signal in the data) and the
original data after downsampling. The right is the same as the upper picture except that the data are noise-free.

Figure 5. Comparison of the power spectra of the signal downsampling and
template undersampling.
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Considering that the parameter space is curved, many
issues will become complicated, e.g., the distance
between widely separated points can no longer be easily
computed and the determinant of the metric may be non-
constant (Harry et al. 2009). There are also some efficient
stochastic template methods (Manca & Vallisneri 2010;
Fehrmann & Pletsch 2014). Since the efficiency is not
dramatically different and here we focus on the
implementation of the end-to-end data processing pipe-
line construction, we stick with the simpler realization of
assuming that the metric gij of two points close to each
other is flat (interested readers are referred to appendix A
of Błaut et al. (2010) for more details).

3. Use step 1 to randomly generate about NR new templates
and inject them into the template bank obtained in step 2.
Then, use step 2 to remove templates that are too close
together. Repeat the above steps until the total number of
templates no longer changes (Harry et al. 2009). At this
time, the coverage of the template bank will be close
to 100%.

To speed up the calculation of distances between every two
templates in the template bank, in our study, the KDTree
algorithm is utilized to speed up the calculation of the distance
between templates in steps 2 and 3. An illustration of our entire
calculation process of a simple example with two-dimensional
parameter space is illustrated in Figure 6. In this paper, we have
set the initial coverage as η= 0.99 and the mismatch m* = 0.3.
Using the Monte Carlo simulation method as in Messenger
et al. (2009), we computed the spatial coverage in the cases of
two-dimensional parameters and obtained a Gaussian distribu-
tion with a mean of η= 0.99. Following the above three steps,
the final coverages only get better, which suggest that the
stochastic method implemented in our work is helpful in
improving the coverage.

As mentioned in Section 2.5, the FFT algorithm can
accelerate the calculation while the frequency points of the
template bank match the Fourier frequencies. Thus, the
parameter points of f are picked at the Fourier frequencies,

and at any frequency point, using the stochastic bank method
described above, one can obtain a sub-template bank corresp-
onding to the three parameters, i.e., l b { }f, , . Then, the total
number of templates in the template bank for the i-th frequency
bin will be

= ( )N N N , 34i
R
i i

total FFT

where N i
R is the number of the sub-template banks, and NFFT is

the number of points for the FFT. Note that N i
R cannot be

calculated exactly by Equation (32), due to the fact that the
number of templates removed and added to the template bank
is not necessarily the same.
The target frequency band we search for in the MLDC-3.1

data is [1× 10−4, 1.5× 10−2] Hz, and we will separate this into
149 frequency bins. The number of signals above 1.5× 10−2

Hz is very small and a complete search is not cost-effective. For
the other parameters, we choose b Î - p p[ ],

2 2
, λä [0, 2π] and

Î - ´ ´- - [ ]f 3.8 10 , 1.1 1017 15 Hz2 for f< 4 mHz, and
Î - ´ ´- - [ ]f 2.3 10 , 7.7 1014 14 Hz2 for the rest.
Figure 7 plots the number of templates required for different

frequency bands. The number of templates increases with
frequency, and the total number of templates is about 6× 1010.
In the coarse search, we downsampled the original MLDC-

3.1 data to get the DS-data, used the undersampling method to
generate the waveform template and combined the FFT
algorithm with stochastic template bank. The combination of
these methods allows us to calculate the  –statistic at a rate of
about 105∼ 106 per second. Adopting the coarse search, a
3.0 GHz core can search for the [1× 10−4, 1.5× 10−2] Hz
signal within one day.

4.2. Fine Search

After the coarse search, the large number of candidate
signals obtained was clustered to eliminate redundancy. In
order to refine the determination of match parameters, we adopt
the fine search on top of the coarse search. In the fine search,
one needs to find the maximum of the  –statistic over the
parameter space around the clustered templates.

Figure 6. Schematic diagram of stochastic template bank generation in a two-dimensional parameter space, in which the initial coverage is η = 0.99 and the mismatch
criterion is m* = 0.3.
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Here we choose the PSO algorithm to do the fine search.
The PSO algorithm is an evolutionary algorithm that relies on
swarm dynamics to solve optimization problems. PSO
algorithms have been utilized in astrophysics, such as pulsar
timing (Taylor et al. 2012; Wang et al. 2014), ground-based
GW astronomy (Wang & Mohanty 2010) and cosmic
microwave background studies (Prasad & Souradeep 2012).
This algorithm is particularly useful when trying to find the
extrema of multimodal and nontrivial likelihood surfaces
(Bouffanais & Porter 2016). Although there exist faster
methods, we adopt the PSO method in the hope that this
implementation can serve as a fiducial reference, where we can
compare future quicker/smarter algorithms to assess their
abilities.

4.3. Pipeline

Figure 8 illustrates the entire search pipeline, including
coarse search and fine search. The details are described as
follows.

First, the coarse search method is adopted to search the TDI
channels (X, Y, Z), and the candidates with  above the
threshold  _th coarse are kept, where we have chosen

= + =2 _ SNR _ 4 30th coarse th coarse
2 corresponding to

SNRth_coarse; 5.1.
Second, the candidates that exceed the threshold at different

frequency points are clustered together. It is important to note
that due to the motion of the detector around the Sun, a Doppler
shift will be included within the data. A real signal of frequency
fo from sources nearly everywhere on the sky will be broadened
to the “double” Doppler window ±2× 10−4fo (Prix &
Itoh 2005; Prix & Whelan 2007). The process is as follows:

1. Picking the one with the largest  –statistic among all the
candidates and the corresponding frequency is marked as
fc.

2. Finding the candidates whose frequency is between
fc−Δf and fc+Δf, where Δf= 3× 10−4fc Hz.

3. Removing the candidates found in (2) and repeat the
previous steps until all candidates have been screened.

Third, after clustering, the PSO9 algorithm is used to do a “fine
search” with the priori provided by each cluster on the DS-data.
The TDI-A+E channel data are used in the fine search. The
parameters are searched in the full range, except for the frequency
which is based on the cluster size. In the fine search, we use the
threshold =2 _ 204th fine or equivalently SNRth_fine; 14.1 (the
SNR of the A+E channel is 2 times higher than that of the
single X, Y or Z channel). At the end of the fine search, we
calculate the SNR with search parameters (considered foreground
noise), and if the SNR of a single X channel is greater than 7, we
accept the candidate. Note that the relationship between  –

statistic and SNR is not strict, see Equation (25).
Finally, the signal is reconstructed in time domain and

removed from the data. Then, the previous steps are repeated
until there is no more signal whose  –statistic is greater
than  _th fine.

5. Results and Discussions

Using the pipeline mentioned above, from the MLDC-3.1
blind data set, we have detected 11,519 signals. In order to
remove the false alarms, we adopt the following rule:

Figure 7. Number of templates required for each frequency band. The total
number of template banks for all frequency bands ([1 × 10−4, 1.5 × 10−2] Hz)
is about 6.7 × 1010.

Figure 8. The pipeline we used.

9 We use the scikit-opt library.
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For two detected signals h1 and h2 with frequencies of f1 and
f2 respectively, if f1− f2< 1/T0=Δf and the FF between the
two signals is �0.99, the two signals are considered to be the
same, and only the signal with the larger  is kept.

Applying the above criteria, 10,092 signals from 11,521
detected signals were confirmed.

5.1. Detection of Signals in a Single Band

We first describe the search in a typical frequency band
between [2.5, 2.6] mHz. There are a total of 2342 bright
sources in this frequency band in the MLDC-3.1 data set. We
artificially stop the search when =2 _ 204th fine in the fine
search process. In this frequency band, we detected 266 signals,
and finally confirmed 209 signals. Each confirmed signal was
paired with all the key signals (40 628 bright Galactic binaries
that were injected in MLDC3.1) to verify. We only keep the
maximum corresponding to FF for each confirmed signal.
Among all the confirmed signals, there are 156 signals with
FF� 0.9, 28 signals with 0.8� FF< 0.9, and 25 signals
with FF< 0.8.

Figure 9 shows the spectrum of the detected signals and the
real signals injected in the MLDC-3.1 data set. One may note
that the residuals of the signals are very large. Continuing the
search in this frequency band until there are no detection
statistics having >2 102 (SNR = 7 corresponding to X
channel), we detected 357 additional signals. Among these 357
signals, there are 246 signals with FF< 0.9. This suggests that
the residuals are dominated by false signals. The ratio of the

real signal to the false signal is approximately 1:2. This
indicates that the signal residuals can have a great impact on the
detection of other signals, especially in the low-frequency
bands where the signal density is high. A better way to cope
with the effect of residuals may be using the global-fitting
method, e.g., Littenberg et al. (2020).

5.2. Performance of the Search Method

Using Equation (31), the correlations of the confirmed
signals with the injected signals in MLDC-3.1 blind data set are
depicted in Figure 10. In all the confirmed signals, there are
8600 signals with FF greater than 0.9 and 1492 signals with FF
less than 0.9. Among them, there are 573 signals whose FFs are
greater than 0.8 while less than 0.9, and 107 signals whose FFs
are greater than 0.7 while less than 0.8. From Figure 10, one
can also find that there is an excess of candidates having
correlations FF∼ 0. Moreover, most of the low FFs originate
from the low frequencies, which is consistent with Błaut et al.
(2010).
As described in Błaut et al. (2010), the excess of FF∼ 0

signals may be caused by: (1) the imprecise parameter
estimates for some low SNR signals; (2) many signals with
low SNRs interfere with each other causing biases in the
parameter estimation. Figure 11 shows the relationship between
the frequency of all the confirmed signals and the corresp-
onding SNRs. The color represents the value of the correlated
FF; note that these FFs are calculated between our confirmed
signals and the released keys of the MLDC-3.1 data set. In the

Figure 9. PSDs for the confirmed signals, the MLDC-3.1 real signals and the reduced data (removing signals) in the range of the [2.5, 2.6] mHz band. Solid red dots
represent the SNR of the confirmed signals.
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figure, most blue points are located at low SNRs, i.e., the
signals with smaller FFs have mostly smaller SNRs, which
indicate that the parameter estimation of signals with low SNRs
will be poorer.

One can find that in the low frequency range at about 1∼ 3
mHz, there is a blank area in the upper panel, which suggests
that in this low frequency region, even some signals with large

SNRs may not be detected. This is mainly due to the fact that
the SNRs displayed in the upper panel of Figure 11 are
calculated without the Galactic confusion noise. When the
Galactic confusion noise is taken into consideration, the block
will disappear, just as shown in the bottom panel of Figure 11.
This indicates that the Galactic confusion noise has a big
influence on the detection of the GW signals from DWDs, and

Figure 10. (Left) Histogram of the correlations between our confirmed signals and the injected signals of the MLDC-3.1 blind data set. (Right) Histogram of the
correlations with respect to frequency.

Figure 11. Relationship between the frequency of the confirmed signals and the SNR (top panel: no Galactic confusion noise; bottom panel: with Galactic confusion
noise). The color of the dots represents the size of FF.
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this also indicates that at the low frequency bands, the SNRs of
the signals will be reduced due to the presence of Galactic
confusion noise.

To verify this conclusion, the number of bright binaries of
MLDC-3.1 and the confirmed signals of this paper in different
frequency bands are plotted in Figure 12. One can find that the
peak value of the bright signals and detection number is not in
the same frequency band. The frequency band of the peak
value of the detection number is higher. There are thousands
of signals in each small frequency band around 2.6× 10−3

Hz, where only hundreds of signals are confirmed. This
suggests that a large number of signals at low frequencies can
interfere with each other and become indistinguishable.
Combining with Figure 11, one can see that these unresol-
vable bright signals form the Galactic confusion noise or
foreground noise.

Meanwhile, the black line shown in Figure 12 is the number
of the injected signals whose SNR >10 in the MLDC-3.1 data
set (here, the Galactic foreground noise has been considered).
One can find that the tendency of this line is similar with our
confirmed signals, especially at high frequency and low
frequency, which indicates that our method is trustworthy.
The largest deviation appears around f∼ 3 mHz, suggesting
that the removal of a large number of signals will leave large
residuals and have great impacts on the detection of the
remaining signals.

Due to the presence of the foreground, the small SNRs
prevent us from deepening the search sensitivity, and the
increasing fraction of false alarms makes further search
meaningless. At high frequencies, the aliasing of signals is
significantly reduced, and the detection results gradually
improve.

5.3. Performance of Parameter Estimation

Any systematic biases in the parameter estimation can be
revealed by displaying the distribution of errors for all the
confirmed signals (Littenberg 2011). We define the parameter
errors and the fractional parameter error as (Babak et al. 2008b)

l l lD = - ( ), 35rec key

l l l l lD = -( ) ( ), 36rec key key

where λrec is the parameter of the confirmed signals, and λkey
is the parameter of the injected signals of the MLDC-3.1
blind data. Histograms in Figure 13 depict the distribution of
errors for all the signals we confirmed. Most of the frequency
errors are within a small fraction of a Fourier bin (Δf= 1/T0),
while the errors in frequency derivative are within Δf 2, and
the errors in sky position are within ±0.05 radians. In
addition, the distributions of all the parameters have a strong
peak at zero bias, which indicates that our results are
reasonable.

5.4. Residuals

The ability of the signal search can be reflected in another
way by comparing the remaining residuals with the noise. In
Figure 14 we compared the smoothed spectrum of the MLDC-
3.1 data set with that of data with confirmed signals removed.
The two smoothed PSDs are compared with the PSD of the
LISA instrumental noise (yellow line) and the analytical PSD
of instrumental noise with the Galactic confusion noise (green
line). Similar to the results shown in Błaut et al. (2010), one can
also conclude that above the frequency of about 6 mHz, all the
DWD systems are resolved well.
Another noteworthy issue is that we use an analytical PSD of

instrumental noise plus the analytical PSD of Galactic
confusion noise (i.e., Equation (B.1)) as the total PSD of noise
when searching for a signal. As affirmed in Figure 14, in the
low frequency bands, the convex part of the analytical total
noise PSD matched well with the remaining residuals. This is
good evidence that our search method performs well for
searching signals in low frequencies.
In Figure 14, one may note that in the frequency bands

around 0.0135 Hz and 0.0105 Hz, the residuals have some
high peaks compared with the noise, which indicate that the
detection capacity is poor in these frequency bands. To figure
out why the residuals are still high, the injected signals’
parameters are used to generate the waveform applying the
analytical mathematical formula (i.e., Equation (1)–(4)), and
then they are subtracted from the original data. The results are
shown in Figure 15. One can find that the residuals are still
higher than noise, thus the search method is still trustworthy.

6. Conclusions

The detection of galaxy DWDs can recover a large amount
of information about the galaxy and remove a large amount of

Figure 12. The number of confirmed signals by our search method and the
number of signals in MLDC-3.1 bright binaries.
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foreground signal power to facilitate the search for signals at
cosmological distances, such as the GWs of massive black hole
binaries at high redshifts. However, the detection of DWDs
faces enormous challenges: (1) how to effectively confirm
signals in a huge number of DWDs (∼108); (2) how to reduce
calculation time while ensuring detection accuracy and
quantity.

To solve these two problems, in this paper, we implement
the detection process in two steps. The first step is the coarse
search, in which we use the matched filtering method to match
the data with the stochastic template bank, and can give a rough

estimation of the signals’ parameters. The second step is the
fine search, in which we adopt the PSO algorithm to accurately
confirm the signal parameters, using the results of the coarse
search as a priori.
For coverage of the template bank, we initially set it as

η= 0.99, and this had been demonstrated by a Monte Carlo
simulation method. By removing templates that are too close
together and continuing to populate templates randomly until
they could no longer be populated, our template bank coverage
ends up approaching 100%. In this way, the area not covered
by the template can be reduced to a minimum, e.g., Figure 6.

Figure 13. The error distribution between the source parameters we confirmed and the true source parameters in the MLDC-3.1 data set.

Figure 14. The red line is the smoothed PSD for the original MLDC-3.1 data, the blue line is that of reduced data after removing all confirmed signals, the yellow line
is that of the LISA instrumental noise and the green one is the analytical total noise PSD.
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In order to speed up the calculation in coarse search, we
downsampled the data set, undersampled the template and
adopted the FFT algorithm in calculating the  –statistic. The
combination of these methods allows us to calculate the
waveform template at about 105∼ 106 per second, and the
calculation of the whole frequency band with a normal core can
be done within 24 hr. After the coarse search, the results of the
coarse search are clustered, and then PSO algorithm is used to
perform an accurate search within each cluster. Finally, we
confirm 10,092 signals, and 8600 signals with FF greater than
0.9. The order of magnitude of our detected number of sources
is consistent with previous studies (Babak et al. 2008a; Błaut
et al. 2010; Littenberg 2011; Zhang et al. 2021), though a
different detection method was adopted.

By analyzing the SNRs and PSD of the confirmed signals,
error distribution of source parameters and PSD of residuals,
we find that the Galactic confusion noise has a great influence
on the detection of DWDs, especially at low frequencies. Our
analysis also suggests that our method performs well in
searching for signals in all frequency bands.

Last but not least, we used a PSO algorithm in the fine search
stage. The search results serve well as a reference, but in terms
of efficiency it is not the most efficient search algorithm. We
aim to implement a more efficient search algorithm in the fine
search stage and build the DWD analysis pipeline for TianQin
based on this work in the future.
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Appendix A
Some Parameters of the Instrument

For LISA, the PSDs of the proof-mass noise and the optical-
path noise are (Vallisneri 2005)
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The arm-length of LISA is L= 2.5× 106 km (Amaro-
Seoane et al. 2017), but one should note that the arm-length
that was used to generate MLDC-3.1 data is L= 5× 106 km.

Appendix B
The Galactic Confusion Noise

MLDC-3.1 data contain a Galactic GW confusion from ∼60
million compact binary systems (Babak et al. 2008b). When we
analyze MLDC-3.1 data we must add an estimate of the
confusion noise Sn,conf( f ) which is derived from data simula-
tions (Timpano et al. 2006):
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Appendix C
Analytical Derivation of the Extrinsic Parameters

The  –statistic depends only on l b { }f f, , , . Inverting the
four relations f y im ( )h, , ,0 0 defined in Equation (9), one can
obtain the extrinsic parameters analytically. First, we define
two new parameters Asum and Da as

åº = +
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=
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Using Equations (C1) and (C2), one has

=  -+ ´ ( )A A A D2 4 . C3a,
2
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2 2

As defined in Equations (1) and (2), one has |A+|� |A×|,
which means that the sign of A+ must be positive, while the

Figure 15. PSDs for different cases.
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sign of A× is determined by the sign of Da. Thus,

= + -+ /( ) ( )A A A D4 2 . C4asum sum
2 2

= - -´ /( ) ( )A A A D4 2 . C5asum sum
2 2

Combining the above equations, one can easily obtain

y =
-
+

+ ´

+ ´

 

 
⎜ ⎟
⎛
⎝

⎞
⎠

( )A A

A A

1

2
arctan . C6

4 1

3 2

f =
+
-

+ ´

´ +

 

 
⎜ ⎟
⎛
⎝

⎞
⎠

( )A A

A A
arctan . C70

3 2

4 1

= + -+ + ´ ( )h A A A . C80
2 2

i = ´
⎜ ⎟
⎛
⎝

⎞
⎠

( )A

h
arccos . C9

0

Appendix D
Principle of Data Frequency Mixing

The FT of the cosine function is

p p d d+ + -( ) [ ( ) ( )] ( )
⟷

f t f f f fcos 2 FT . D10 0 0

Assuming that p(t) and q(t) are different time domain data, and
both have FTs, namely ˜ ( )p f , ˜( )q f , multiplying two data in the
time domain is equal to their respective FT convolution, where
“
*
” means convolution,

p
*( ) ( ) ˜ ( ) ˜( ) ( )

⟷
p t q t p f q fFT

1

2
. D2

Let p=( ) ( ) ( )q t p t f tcos 2 0 , then according to Equations (D1)
and (D2) we get

p
p d d= * + + -
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Thus, one can find that we can get two peaks after the data are
shifted.
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