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Abstract

We studied the properties of the main phases of 24 super geomagnetic storms (SGSs) (ΔSYM-H�−250 nT)
since 1981. We divided the SGSs into two subgroups: SGSs-I (−400 nT <Δ SYM-H�−250 nT) and
SGSs-II (ΔSYM-H�−400 nT). Of the 24 SGSs, 16 are SGSs-I and eight are SGSs-II. The source locations of
SGSs were distributed in the longitudinal scope of [E37, W66]. 95.8% of the SGSs were distributed in the
longitudinal scope of [E37, W20]. East and west hemispheres of the Sun had 14 and 10 SGSs, respectively. The
durations of the main phases for six SGSs ranged from 2 to 4 hr. The durations of the main phases for the rest 18
SGSs were longer than 6.5 hr. The duration of the SGSs with source locations in the west hemisphere varied from
2.22 to 19.58 hr. The duration for the SGSs with the source locations in the east hemisphere ranged from 2.1 to
31.88 hr. The averaged duration of the main phases of the SGSs in the west and east hemispheres are 8.3 hr and
13.98 hr, respectively. |ΔSYM−H/Δt| for six SGSs with source locations distributed in the longitudinal area
ranging from E15 to W20 was larger than 1.0 nT ·minute−1, while |ΔSYM−H/Δt| for the rest 18 SGSs was
lower than 1.0 nT ·minute−1.|ΔSYM−H/Δt| for SGSs-I varied from 0.18 to 3.0 nT ·minute−1. |ΔSYM−H/Δt|
for eight SGSs-II varied from 0.37 to 2.2 nT ·minute−1 with seven SGSs-II falling in the scope from 0.37 to
0.992 nT ·minute−1.
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1. Introduction

Both Dst index and SYM-H index can be used to describe the
intensity of a geomagnetic storm. However, the time resolution
of SYM-H index is much higher than that of Dst index and can
be treated as high time resolution of Dst index (Wanliss &
Showalter 2006). Hence, only the SYM-H index can describe
the rapid variation of the ring current although there is
some difference between Dst index and SYM-H index (Katus
& Liemohn 2013). It has been proved that the temporal
variation of the solar wind parameters correlates well with
that of the SYM-H index, but not with that of Dst index (Li
et al. 2022). The variation of the SYM-H index during the
main phase of a geomagnetic storm (hereafter ΔSYM-H) is
usually different from the minimum of SYM-H (SYM-Hmin). A
geomagnetic storm with Δ SYM-H�−250 nT is defined as a
super geomagnetic storm (SGS) in this study. SGSs are
the severe space weather phenomena because these kinds
of geomagnetic storms may lead to widespread interference
and damage to technological systems (Love 2021, and
references therein) and then lead to significant economic loss
(e.g., Council National Research 2008; Schulte in den Bäumen

et al. 2014; Eastwood et al. 2017; Ganushkina et al. 2017; Riley
& Love 2017).
Many articles have been devoted to the study of the solar

and interplanetary sources for single or many SGSs that
occurred during the period from 1957 to the present (e.g.,
Garcia & Dryer 1987; Allen et al. 1989; Cliver & Crooker 1993;
Smart & Shea 1996; Huttunen et al. 2002; Gopalswamy et al.
2005a, 2005b, 2022; Farrugia et al. 2005; Jadav et al. 2005;
Xue et al. 2005; Zhang et al. 2007; Kataoka & Miyoshi 2008;
Cliver et al. 2009, 2022; Liu et al. 2014; Lugaz et al. 2015;
Lefèvre et al. 2016; Vennerstrom et al. 2016; Wu et al. 2016;
Riley et al. 2018; Meng et al. 2019; Cheng et al. 2020; Le &
Zhao 2021a; Le et al. 2021b; Li et al. 2022). Many articles have
also been devoted to the estimation of the intensities of
geomagnetic storms (e.g., Burton et al. 1975; Murayama 1982;
Fenrich & Luhmann 1998; O’Brien & McPherron 2000;
Temerin & Li 2002; Wang et al. 2003b; Tsurutani et al. 2003;
Kumar et al. 2015; Gopalswamy 2018; Zhao et al. 2022).
Properties of the main phase of an SGS we concerned are the

time length of the main phase (Δt), the variation of the ring
current during the main phase of an SGS, and the averaged
increase speed of the ring current during the main phase of an
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SGS (ΔSYM−H/Δt). To investigate the properties of the
SGSs with different intensities, the SGSs were divided into two
subgroups: SGSs-I (−400 nT <Δ SYM-H�−250 nT) and
SGSs-II (ΔSYM-H�−400 nT). Are these properties related to
the source locations of the associated SGSs? Are the properties
of SGSs-I are different from those of SGSs-II? The motivation
of the present study is to answer these questions. The rest part
of the article is organized as below. Section 2 describes the data
analysis. Results and discussion are presented in Section 3. The
final section provides the summary.

2. Data and Calculations

2.1. Data Source

High time resolution geomagnetic index used in this study
was the SYM-H index, which was obtained from the website at
http://wdc.kugi.kyoto-u.ac.jp. The source locations of the
SGSs were obtained from the previous articles (e.g., Cliver &
Crooker 1993; Zhang et al. 2007; Lefèvre et al. 2016;
Vennerstrom et al. 2016; Meng et al. 2019).

2.2. The Calculation of the Properties of an SGS

Because of the data gap for many SGSs, it is difficult to
analyze the interplanetary sources of these SGSs. However, the
properties of the main phase of an SGS can be acquired from
SYM-H index. We use ts and te to indicate the start and the end
time of the main phase of an SGS. We use SYM-He and SYM-
Hs to represent the values of SYM-H index at the moments of te
and ts, respectively. The time duration of the main phase is
Δt= te− ts. The variation of SYM-H during the main phase of
an SGS is ΔSYM-H, which is calculated as below,

SYM H SYM H SYM H . 1e s ( )D - = - - -

The averaged increase speed of the ring current during the main
phase of an SGS is calculated as below,

tSYM H . 2( )D - D

Here we give an example to show how to analyze the
properties of the main phase of an SGS, which is shown in
Figure 1. It is an SGS that occurred on 1989 March 13–14.
The first and second red vertical solid lines indicated the start
and the end time of the main phase of the SGS. The derived
Δt, ΔSYM-H and |ΔSYM−H/Δt| were 1397 min, −790 nT
and 0.565 903 nT ·minute−1, respectively.

3. Results and Discussion

3.1. The Variation of ΔSYM-H with the Heliolongitudes

There were 24 SGSs from 1981 to 2018. The numbers of
SGSs-I and SGSs-II are 16 and 8, respectively. According to
the derived Δt, ΔSYM-H and ΔSYM−H/Δt for each SGS,
and according to the source locations of the SGSs, the variation
of ΔSYM-H with the heliolongitudes of the SGSs is analyzed
and shown in Figure 2. As shown in Figure 2, the source
locations of 14 SGSs were distributed in the east hemisphere of
the Sun, while the source locations of 10 SGSs were distributed
in the west hemisphere of the Sun, indicating that the east
hemisphere has more SGSs than the west hemisphere. In
addition, the source locations of 23 SGSs were distributed in
the longitudinal scope ranging from E40 to W20, indicating
that 95.8% of the SGSs were distributed in the longitudinal
scope of [E40, W20].

3.2. The Variation of Δt with the Heliolongitude

The variation of Δt with the heliolongitude of the SGSs is
shown in Figure 3. We can see from Figure 3 that the durations
of the main phases for six SGSs with source locations within
the longitudinal area ranging from E15 to W20 varied from 2 to
4 hr. The durations of the main phases for the rest 18 SGSs
were longer than 6.5 hr. The duration for the SGSs with source
locations in the west hemisphere ranged from 2.22 to 19.583 hr,
and the averaged duration of the main phases of these SGSs is
8.3 hr. The duration for the SGSs with source locations in the

Figure 1. The properties of the main phase of the SGS that occurred during 1989 March 13–14.
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Figure 2. The variation of ΔSYM-H with the heliolongitude.

Figure 3. The variation of Δt with the heliolongitude of the SGSs.
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east hemisphere ranged from 2.1 to 31.88 hr. The averaged
duration of the main phases of these SGSs is 13.98 hr.

3.3. The Variation of ΔSYM−H/Δt with the
Heliolongitude

According to the ΔSYM−H/Δt of an SGS, the derived
ΔSYM−H/Δt for each SGS is shown in Figure 4. As shown
in Figure 4, ΔSYM−H/Δt for six SGSs was larger than
1.0 nT ·minute−1, whileΔSYM−H/Δt for 18 SGSs was lower
than 1.0 nT ·minute−1. ΔSYM−H/Δt for SGSs-II varied from
0.37 to 2.2 nT ·minute−1, while ΔSYM−H/Δt for SGSs-I
varied from 0.18 to 3.0 nT ·minute−1.

3.4. Discussions

As shown in Figure 5, we use a geomagnetic storm that
occurred on 2005 May 15 to explain why we should use the
SYM-H index to describe the variation of the ring current of a
geomagnetic storm rather than the Dst index. The period
between the two vertical red solid lines in the second panel is
the main phase of the geomagnetic storm determined by the
SYM-H index. The period between the two vertical dashed
lines in the top panel is the interplanetary magnetic field
responsible for the main phase of the geomagnetic storm
described by the SYM-H index. The period between the two
vertical blue solid lines in the bottom panel is the main phase of
the geomagnetic storm determined by the Dst index. It is easy

to judge that, compared with that of the Dst, the evolution of
the SYM-H index is much more consistent with that of Bz. This
is the reason why we used the SYM-H index to describe the
ring current of a geomagnetic storm rather than the Dst index.
The difference between SYM-Hmin and ΔSYM-H may have

different physical meaning, and the difference between SYM-
Hmin and ΔSYM-H may be large. An example shown in
Figure 6 is used to explain this. The SYM-Hmin and ΔSYM-H
were −337 nT and −270 nT, respectively, for the SGS on 1989
October 21. The difference between SYM-Hmin and ΔSYM-H
is −67 nT. The reason is that the main phase of the SGS
occurred in the recovery phase of a previous geomagnetic
storm, leading to the value of the SYM-H index at the start time
of the main phase of the SGS much lower than 0 nT. Anyway,
the variation of the ring current should be described byΔSYM-
H rather than by SYM-Hmin. Hence, the averaged variation
speed of the ring current during the main phase of a
geomagnetic storm should be described by ΔSYM−H/Δt
rather than by tSYM Hmin- D . As shown in Figure 6, ΔSYM
−H/Δt was −1.68750 nT ·minute−1, indicating that the ring
current increased very quickly during the main phase of
the SGS.
The geomagnetic storm on 2004 November 10 is shown in

Figure 7. The first and the second vertical red solid lines are the
start and the end time of the main phase of the geomagnetic
storm, respectively. ΔSYM-H was equal to −219 nT, which
did not satisfy the condition ΔSYM-H�−250 nT. Therefore,

Figure 4. ΔSYM−H/Δt varied with the heliolongitude of the SGSs.
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this storm is not included in the present study although the
SYM-Hmin is −263 nT.

The duration of the main phase of the SGS on 2001 March
31 is 235 minutes, which is the shortest time for the main
phases of the SGSs-II. |ΔSYM−H/Δt| for the SGS on 2001
March 31 is nearly 2.23 nT ·minute−1, which is the fastest

speed for the SGSs-II. Previous study (Wang et al. 2003a)
showed that the SGS on 2001 March 31 was due to the multiple
magnetic clouds, which were formed by the overtaking of
successive magnetic clouds. Case studies (Cheng et al. 2020; Li
et al. 2022; Liu et al. 2022) found that the solar wind density or
dynamic pressure played an important role in the ring current

Figure 5. Interplanetary magnetic field (IMF) and the geomagnetic storm on 2005 May 15. From top to bottom, it shows interplanetary magnetic field (blue line for
total IMF, red line for z-component of the IMF), SYM-H index and Dst index, respectively. The two horizontal dashed lines in the top panel indicate the zero and
−10 nT. The first vertical dashed line indicates the moment 06:01 UT on 2005 May 15 when z-component of IMF started to become minus and decreased
continuously. The second vertical dashed line indicates the moment 08:06 UT on 2005 May 15. The first vertical red solid line indicates the moment 06:15 UT on
2005 May 15 when the SYM-H began to decrease continuously. The second vertical red solid line indicates the moment 20:00 UT on 2005 May 15 when the SYM-H
reached its minimum value. The first and second vertical blue solid lines in the bottom panel indicate the 03:00 UT and 08:00 UT on 2005 May 15, respectively.

Figure 6. The main phase of the SGS on 1989 October 21.
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increase speed in the SGS on 2001 March 31 and the great
geomagnetic storm on 1999 October 21–22. Statistical studies
(Le et al. 2020; Zhao et al. 2021; Gopalswamy et al. 2022;
Zhao et al. 2022) proved that solar wind dynamic pressure is an
important factor for the geomagnetic storm intensity besides the
solar wind speed and the southward component (hereafter Bs)
of interplanetary magnetic field.

The SGSs-II on 2003 October 29–30, 2003 November 20
and 2004 November 8 were caused by single magnetic cloud
(Zhang et al. 2007). The duration of the main phase of the SGS
on 2003 October is much longer than those of the two SGSs
that occurred on 2003 November 20 and 2004 November 8,
respectively, indicating that the properties of the main phase of
an SGS not only depend on the corresponding CME properties
including the source location and the initial speed of the CME,
but also depend on the CME propagation from the Sun to the
Earth. We can see from Figure 1 that the main phase of the
SGS on 1989 March 13-14 was constituted by multi-step,
indicating that the SGS may be caused by successive CMEs.
Anyway, the properties of the main phase of a SGS are
determined by a variety of factors.

4. Summary

We have studied the properties of the main phases of 24
SGSs with different heilongitudes. According to the above
analyses, the results can be summarized as below.

1. Of the 24 SGSs, the number of SGSs-I and SGSs-II were
16 and 8, respectively. 14 SGSs came from the east
hemisphere of the Sun and 10 SGSs came from the west
hemisphere of the Sun. Source locations of 23 SGSs were
distributed in the longitudinal scope ranging from E40 to
W20, indicating that 95.8% of the SGSs were distributed
in the longitudinal scope of [E40, W20]. The largest SGS
came from the east hemisphere of the Sun.

2. The duration of the main phases for six SGSs, with source
locations distributed in the longitudinal area scope of
[E15, W20], was 2–4 hr. The durations of the main phases
for the rest 18 SGSs were longer than 6.5 hr. The duration
of the SGSs with source locations in the west hemisphere
ranged from 2.22 to 19.583 hr, and the averaged duration
of the main phases of these SGSs is 8.3 hr. The duration
for the SGSs with source locations in the east hemisphere
ranged from 2.1 to 31.88 hr. The averaged duration of the
main phases of these SGSs is 13.98 hr.

3. |ΔSYM−H/Δt| for six SGSs with source locations
distributed in the longitudinal area ranging from E15 to
W20 was larger than 1.0 nT ·minute−1, while |ΔSYM
−H/Δt| for the rest 18 SGSs was lower than
1.0 nT ·minute−1. |ΔSYM−H/Δt| for SGSs-II varied
from 0.37 to 2.2 nT ·minute−1, while |ΔSYM−H/Δt|
for SGSs-I varied from 0.18 to 3.0 nT ·minute−1.
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