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Abstract

Quasars can be used to measure baryon acoustic oscillations at high redshift, which are considered as direct tracers of the
most distant large-scale structures in the universe. It is fundamental to select quasars from observations before
implementing the above research. This work focuses on creating a catalog of quasar candidates based on photometric data
to provide primary priors for further object classification with spectroscopic data in the future, such as the Dark Energy
Spectroscopic Instrument (DESI) Survey. We adopt a machine learning algorithm (Random Forest, RF) for quasar
identification. The training set includes 651,073 positives and 1,227,172 negatives, in which the photometric information
are from DESI Legacy Imaging Surveys (DESI-LIS) and Wide-field Infrared Survey Explore (WISE), and the labels are
from a database of spectroscopically confirmed quasars based on Sloan Digital Sky Survey and the Set of Identifications
& Measurements and Bibliography for Astronomical Data. The trained RF model is applied to point-like sources in
DESI-LIS Data Release 9. To quantify the classifier’s performance, we also inject a testing set into the to-be-applied data.
Eventually, we obtained 1,953,932 Grade-A quasar candidates and 22,486,884 Grade-B quasar candidates out of
425,540,269 sources (∼5.7%). The catalog covers ∼99% of quasars in the to-be-applied data by evaluating the
completeness of the classification on the testing set. The statistical properties of the candidates agree with that given by
the method of color-cut selection. Our catalog can intensely decrease the workload for confirming quasars with the
upcoming DESI data by eliminating enormous non-quasars but remaining high completeness. All data in this paper are
publicly available online.
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1. Introduction

The discovery of quasars, also known as quasi-stellar objects
(QSOs), is one of the four significant findings that have been
made in astronomy in the 60 s of last century (Schmidt 1963;
Kellermann 2014). QSOs are extremely luminous active galactic
nuclei (Osterbrock 1989; Urry & Padovani 1995; Dunlop et al.
2003; Croton et al. 2006, AGN) powered by accretion onto
supermassive black holes at the centers of galaxies, and their
typical luminosity is 1042 to 1048 erg s−1 (Shen et al. 2020) at the
redshift from 0.1 to 7 (Antonucci 1993). The emission of QSOs
can significantly outshine their host galaxies, and their emitting
regions are too small to resolve even for the nearest ones. Hence,
QSOs are always considered point-like sources, which mimic
faint blue stars in optical bands. However, they are ∼2 mag
brighter in the near-infrared at all redshifts than stars of similar
optical magnitudes and colors, leading to a neat way to
discriminate QSOs from stars (Ross et al. 2012; Myers et al.
2015; Yèche et al. 2020).

The nature of QSOs has been investigated widely and
thoroughly in the past decades by using tons of corresponding
observations. Consequently, QSOs are used to study astrophysical
problems in various fields. For instance, the spectrum of QSOs is

a powerful tracer of the formation and evolution of black holes,
the spins of black holes, and the co-evolution of black holes and
host galaxies (Kormendy & Richstone 1995; Silk & Rees 1998;
Kaspi et al. 2000; Di Matteo et al. 2005; Springel et al. 2005;
Kormendy & Ho 2013; Chen 2021; Valentini et al. 2021); taking
advantage of microlensing, astronomers study the feature of
accretion disks with the light curves of QSOs (Agol &
Krolik 1999; Morgan et al. 2010; Blackburne et al. 2011; Dexter
& Agol 2011); the absorption lines of quasars are unique tracers
of the interstellar media along the line of sight (Scaringi et al.
2009; Hall et al. 2013; Chen et al. 2020; Mishra et al. 2021; Zabl
et al. 2021). Besides, high-redshift quasars are valuable for
understanding the reionization of the universe and the formation
of galaxies (McLure & Jarvis 2002; Wang et al. 2019; Lupi et al.
2021). Statistically, the spatial distribution of quasars reflects the
baryon acoustic oscillations (BAOs, e.g., Zhao et al. 2019, for an
introduction) and in turn the large-scale structure of the universe
(Dawson et al. 2013; Font-Ribera et al. 2014; Delubac et al. 2015;
Alam et al. 2021; Merz et al. 2021). Expectedly, with the next-
generation large-scale surveys coming, an unprecedented data set
of QSOs brings an unparalleled opportunity to trigger a revolution
in these fields.
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Mining QSOs from enormous data sets is crucial for carrying
out the studies mentioned above, and plenty of progress has
been made. The Palomar-Green Bright Quasar Survey (BQS,
Schmidt & Green 1983) discovered more than 100 quasars.
The Large Bright Quasar Survey (LBQS, Hewett et al. 1995)
discovered more than 1000. The 2° Field Quasar Redshift
Survey (2QZ, Croom et al. 2004) discovered about 23,000. The
Large Sky Area Multi-object Fiber Spectroscopic Telescope
(LAMOST, Dong et al. 2018) discovered more than 20,000. At
the moment, the largest confirmed quasar catalog is from Sloan
Digital Sky Survey Data Release 16 (SDSS DR16, Blanton
et al. 2017; Lyke et al. 2020), which contains 750,414
spectrally confirmed quasars. Nevertheless, to implement
confirming QSOs with spectrums, one must create a sample
of QSO candidates using or even combining various types of
data other than spectroscopy. For instance, photometry data can
be used to select QSO candidates according to the features of
QSOs, such as the ultraviolet excess, infrared excess, and the
light variation (Shen et al. 2011); astrometry data kicks out the
objects with high proper motion in the Milky Way (Fu et al.
2021); and radio and X-ray data are valuable complements
(Bisogni et al. 2021).

The Dark Energy Spectroscopic Instrument (DESI,3 Levi
et al. 2013; DESI Collaboration et al. 2016) is a spectral
telescope that is located at Kitt Peak National Observatory
(KNPO). It is a Mayall telescope with a four-meter-aperture
primary mirror. It will target about 30 million pre-selected
galaxies across ∼14,000 square degree sky. It is important for
the discovery of more quasar because of its large sky coverage,
good image quality and depth (compared to SDSS, York et al.
2000), and because it can provide spectrum. However, the QSO
candidates are needed for further conforming the QSOs. Hence,
we acquire the QSO candidates from the photometry catalog of
DESI Legacy Imaging Survey (DESI-LIS).

In this work, to create a catalog of QSO candidates for DESI,
we adopt a machine learning (ML) technology named Random
Forest (RF) and apply it to photometry data from DESI-LIS
because its efficiency, flexibility, and accuracy have been
intensively proved previously (e.g., Viquar et al. 2018; Bai
et al. 2019; Clarke et al. 2020; Guarneri et al. 2021), in
particular, Bai et al. (2019) demonstrates that RF is the most
efficient and reliable one among several methods in dealing
with quasar-star-galaxy classification. The training and valida-
tion sets are built upon the spectra data from SDSS eBOSS
(extended Baryon Oscillation Spectroscopic Survey, Dawson
et al. 2016) DR16 and the photometry data from WISE4 (Wide-
field Infrared Survey Explorer, Wrigh et al. 2010) and DESI-
LIS, labels are generated based on the database of SIMBAD5

(the Set of Identifications, Measurements and Bibliography for

Astronomical Data, Wenger et al. 2000). To evaluate the
completeness, accuracy, and purity of identifying QSOs
candidates from the photometry data of point-like sources in
DESI-LIS and WISE, we inject a testing set that mimics to-be-
applied data in magnitude and color space. Later, the trained
model is applied to point-like sources in DESI-LIS, and the
quasar candidate catalogs are acquired. Finally, we compare
our results to those of the color-cut selection approach for
cross-validation, and they match well. For the convenience of
other researchers, we make all the data in this paper publicly
available online.6

The paper is organized as follows. The construction of the
data sets used in this paper is presented in Section 2. Section 3
introduces the details of the methods for detecting QSOs
adopted in this study. We then show the results in Section 4.
Finally, Section 5 delivers the discussion and conclusions. In
this paper, a fiducial cosmological model with Ωm= 0.26,
ΩDE= 0.74, h= 0.72, w0=−1 and wa= 0 is adopted. The
cosmology is the same as the one adopted in Oguri & Marshall
(2010, OM10 hereafter).

2. Data sets

The data sets adopted in this work include DESI-LIS, WISE,
SDSS eBOSS DR16, and SIMBAD. The training set combines
photometry data from DESI-LIS and WISE, while the labels
are from the confirmed QSO catalog from SDSS eBOSS DR16
and SIMBAD. The validation set is extracted from training set.
To evaluate the performance of the classification of QSO
candidates, we also build a testing set with the SIMBAD
database and eBOSS data set. Introduction to the above data
sets and details of the construction of training and testing sets
are described below.

2.1. DESI-LIS, WISE, eBOSS, SIMBAD

DESI-LIS and WISE—DESI-LIS7 (Dey et al. 2019, DESI-
LIS) contains Dark Energy Camera Legacy Surveys (DEC-
aLS8), Beijing-Arizona Sky Survey (BASS9) and Mayall z-
band Legacy Survey (MzLS10), covering ∼14,000 deg2 of the
extra-galactic sky in three optical bands (g, r, and z). Notably,
DESI-LIS DR9 also includes four mid-infrared bands (at 3.4,
4.6, 12, and 22 μm, corresponding to W1, W2, W3 and W4
respectively) observed by WISE.11 We adopt the photometry
information in g, r, z, W1, W2 bands from the above data sets
to search for the quasar candidates from 425,540,269 point-like
sources in DESI-LIS DR9 catalog12).

3 https://www.desi.lbl.gov/
4 https://irsa.ipac.caltech.edu/Missions/wise.html
5 http://simbad.u-strasbg.fr/

6 https://github.com/EigenHermit/he-li2021
7 https://www.legacysurvey.org/
8 https://www.legacysurvey.org/decamls/
9 https://www.legacysurvey.org/bass/
10 https://www.legacysurvey.org/mzls/
11 http://wise.ssl.berkeley.edu/index.html
12 https://www.legacysurvey.org/dr9/
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SDSS eBOSS DR16—The Sloan Digital Sky Survey (SDSS,
see, e.g., York et al. 2000, for more details) is a major multi-
spectral imaging and spectroscopic redshift survey and has a
long-running history of more than 20 yr. The eBOSS
(grounded upon SDSS-IV, Blanton et al. 2017) is an extended
project of BOSS (Baryon Oscillation Spectroscopic Survey,
grounded upon SDSS-III, Eisenstein et al. 2011; Dawson et al.
2013), which maps the LRGs (luminous red galaxies, Zhou
et al. 2020; Fortuna et al. 2021) and quasars to determine the
characteristic scale of BAOs imprinted at the large-scale
structure. eBOSS covers a broader range of redshifts than that
of BOSS. Based on the Data Release 16 of eBOSS, Lyke et al.
(2020) publishes a catalog containing 750,414 quasars
(DR16Q, hereafter), which is the largest catalog of quasars
confirmed spectroscopically. We employ the classification
labels from eBOSS DR16 to construct the part of positives in
training and testing sets.

SIMBAD—SIMBAD is a comprehensive database that
collects information on astronomical objects, such as types,
fluxes, proper motion, etc., maintained by the Centre de
données astronomiques de Strasbourg (CDS). To date,
SIMBAD includes 11,953,504 objects, ∼50% of them are
stars (Paturel et al. 2003; Zuckerman et al. 2003; Cayrel et al.
2004), and the others are non-stellar objects like AGNs,
starburst galaxies, emission-line galaxies (Fu et al. 2021). The
types of astronomical objects13 in SIMBAD are derived from
physical characteristics (Mickaelian et al. 2006; Małek et al.
2010), and the astronomical objects with uncertain physical
types are marked as “XX_Candidate” or “Possible_XX”, e.g.,
“AGN_Candidate”. In addition, “main_type” and “other_
types” are given in SIMBAD to deal with the situations in
which different studies suggest different types of the same
object. We use the non-QSOs data in SIMBAD to build the part
of negatives in training and testing sets.

2.2. Training and Testing Data sets

The training and testing sets comprise photometry informa-
tion and labels, where the photometry is from DESI-LIS and
WISE, and the labels are from eBOSS DR16 and SIMBAD,
respectively. To avoid the problem of overfitting, we extract a
subset from the training set for creating a validation set.
Notably, the testing set is organized for mimicking the to-be-
applied data set to estimate the classification performance using
our method.

Parent Samples—We first make two parent samples (here-
after, S1 and S2) to separately prepare the positives and
negatives in training and testing sets. For S1, we first obtain
745,417 QSOs14 by combining the photometry in DESI-LIS
and labels in DR16Q via cross-matching the catalogs of

DESI-LIS and DR16Q. Then, we clean the cross-matched
catalog by selecting point-like sources in DESI-LIS (i.e.,
classified as PSFs) that having all five-bands (g, r, z, W1, W2)
detections. S1 holds 655,017 QSOs at last. Similarly, S2 is
acquired by combining photometry in DESI-LIS and the
classification labels in SIMBAD, and the cross-match between
SIMBAD and DESI-LIS PSFs is executed. Besides, we clean
the 1,993,373 sources obtained through the above procedure
according to the “main_type” in SIMBAD. Details are listed
below:

1. The sources labeled as quasars are abandoned.
2. The sources classified by their SEDs (Spectral Energy

Distributions, see e.g., Richards et al. (2006), for an
introduction), region, numbers, time-domain character-
istics and the ones with gravitational lensing effect are
eliminated. Therefore, the types listed in the first line of
Table 1 are excluded.

3. The sources that have uncertain physics types are
discarded, i.e., we exclude all the sources that have
“Candidate”, “Possible”, “?”, or “Unknown” in their
“main_type”.

4. The sources classified as AGN and the types that relate
to galaxies are excluded. Therefore, the sources have
the labels listed in the second line of Table 1 are
discarded. Although we only use point-like sources in
DESI, some galaxies are still involved in DESI-LIS
PSFs because extremely compact galaxies and the high-
density regions in large galaxies might be classified as
point sources.

5. The “LINER”, “Blazar”, “Seyfert” and “BLLac” are
cleaned because they mimic the color of the quasars
(Peters et al. 2015).

After these operations, we further take care of the
information given in “other_types”. We remove the sources
that have the labels listed in the third line of Table 1. At the
end, there are 1,363,030 non-QSOs left from 1,993,373
sources. Note that 99.85% of non-QSOs are stars, and the

Table 1
The Types of Objects that we Abandon when Build the Training and

Testing Set

SIMBAD Type

1 Radio/Region/Gravitation/lensedimage/Lensed/GravLens
Void/Transient/Maser/IR/Red/Blue/UV/X/gamma/multiple_object

2 SuperClG/ClG/GroupG/Compact_Gr_G/PairG/IG/OpCl
GinPair/LISB_G//H II_G/GinGroup/PartofG/EmG/GinCl/
Galaxy/AGN

3 Quasar/Q?/AGN/Galaxy/G/Gravitation/grv/Lev/LIS?/Le?/LI?/gLe?
gLIS/GWE/reg/vid/SCG/CIG/CrG/CGG/PaG/IG

Note. See more details at Section 2.1.

13 http://simbad.u-strasbg.fr/simbad/sim-display?data=otypes
14 https://www.legacysurvey.org/dr9/files/#survey-dr9-region-dr16q-
v4-fits
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rests have non-stellar features such as “H II (ionized) region”
(0.11%) and “Emission Object” (0.02%). Details of the catalog
of negatives are available online.15

Testing Set—The testing set are constructed by selecting
objects in S1 and S2 according to the distributions of
magnitudes of QSOs in DESI-LIS modeled by a typical
luminosity function (LF, hereafter) and an SED (Bianchini
et al. 2019) because the distributions of QSO and non-QSO in
testing set should be similar to the corresponding ones of
DESI-LIS if we plan to evaluate the classification performance
with the testing set. The LF is double power-law as is modeled
in OM10:

( )( )( ) ( )( )
F

=
F
+a b+ - + -
*

* *

d

dM 10 10
, 1

M M M M

QSO

0.4 1 0.4 1

where M stands for the absolute i-band magnitude of quasars.
M* indicate the change of LF with redshift, which is given by

( ) ( )= - + -*M h f z20.90 5 log 2.5 log 2

( ) ( )
( )

( )=
+

+

z x

x x

*

*
f z

e e

e e

1
3

z z

z z 2

The parameter settings (ζ, ξ, α, β) are also taken from OM10.
On the other hand, the number of quasars in a redshift bin (z0,
z1) is

( ) ( )ò=
F

N z z V
d

dM
dM, , 4

M

M

0 1
QSO

2

1

where V is the comoving volume in (z0, z1),
Fd

dM
QSO is given by

Equation (1). M1 and M2 are the upper and lower boundary of
M. The comparison of the redshift distributions given by LF
and by observations is show in Figure 1 and they are in a good
agreement.

We further predict the magnitude distributions of g, r, z-
bands using a typical SED (Bianchini et al. 2019) based on the
i-band magnitude distribution of QSOs acquired above.
According to the predicted distributions of g, r, z-bands, the
W1, W2 is directly taken from 3944 quasars in S1. The W1,
W2 cannot be calculated merely based on SED because the
host galaxies of QSOs contribute to the total fluxes
considerably in W1, W2 bands (Li et al. 2021). Thus, the
10,000 mock quasars form the positives in the testing set, and
the distributions are shown in Figure 2.

Moreover, we select the non-QSOs from S2 to construct the
negative part of the testing set. The criterion is that we find
such non-QSOs to make the overall distributions (testing QSOs
+ non-QSOs) similar to the overall distributions of DESI-LIS
PSFs. The testing set contains 990,000 non-quasars (135,858
individual ones). The comparisons in magnitude and color
spaces between DESI-LIS PSFs and the testing set are shown
in Figure 3. In the space of all 15d colors, the twos show a good

agreement and are particularly good in the color space (the
mean and stranded deviation differences are less than 1%). In
magnitude space, however, the testing set is slightly brighter
than DESI-LIS PSFs due to the selection effect of SIMBAD.
Above all, the testing set contains 100,000 sources, 1%

(Page 2001) of them are quasars, built upon 3944 quasars in S1
and 135,858 non-quasars in S2.
Training Set—Except for the sources in the testing set, the

rests in S1 and S2 comprise the training set. Explicitly, there are
651,073 positives and 1,227,172 negatives in the training set,
and the distributions of quasars in the training set are shown in
Figure 4.

3. Methodology

The primary approach for identifying QSO candidates is
constructed upon RF in this work. The evaluation metrics for
the outcomes include completeness, accuracy, and area under
the receiver operating characteristic (ROC) curve (AUC). Also,
we create a baseline for the identification of QSO candidates
using the traditional color-cut selection method for cross-
validation.

3.1. Random Forest

RF is a mature ML algorithm and has been widely employed
in astronomy. RF was first proposed and named “random
decision forests” by Ho (1995), then improved and renamed
“random forests” by Breiman (2001). The basic workflow of
RF is that: (1) randomly segments the input data; (2) trains a
group of decision tree models (Dobra 2018) with the
segmented data separately; (3) gives the final judgments by
combining the outputs of all decision trees. Breiman (2001) has
suggested that RF compares favorably to AdaBoost (Freund &

Figure 1. The comparison of redshfit distributions. The orange one is
calculated by (1). The blue one is from DR16Q.

15 https://github.com/EigenHermit/he-li2021/blob/main/s2_types.csv
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Schapire 1996) but it is more robust on missing and unbalanced
data, and performs well on multi-dimension data.

In particular, when dealing with the classification of star-
galaxy-quasar with photometry, Bai et al. (2019) presents the
superiority of RF over K-Nearest Neighbor (Altman 1992) and
Support Vector Machine (Cristianini & Ricci 2008) by
implementing a comprehensively comparative investigation,
which inspires us to choose RF for our purpose.

In this study, we construct our classifier based on the
RF module in Scikit-learn package16 (Pedregosa et al.
2011). The parameters of the RF model are tweaked to achieve
the best completeness and purity (described at Section 3.3)
that evaluated by validation set, explicitly, =max depth_ 20,
n_estimators= 200, =oob score True_ , and random_state= 0.

3.2. Color-cut Selection

The color-cut selection (in g− z versus grz−W space,
following Yèche et al. 2020) is performed to validate the
candidates that selected by RF model, which is a widely used
method for selecting quasars with photometry data (see e.g.,
Warren et al. 1991; Croom et al. 2004; Richards et al. 2005;
Morganson et al. 2014, for the applications) because the
magnitude of quasars in the UV band is brighter than normal
stars and galaxies (Elvis et al. 1994) comparing to the stars that
have similar magnitudes in optical bands. QSOs are also
roughly two magnitudes brighter in the near-infrared bands
across a wide redshift range (Peters et al. 2015). Above all, we
slightly update the strategies of the color-cut selection
procedure in Yèche et al. (2020), and create a QSOs candidate
catalog for cross-validating with the results given by the RF

Figure 2. The distributions of g, r, z, W1, W2 of the quasars in the testing set. Figure 3. The comparisons between the testing set and DESI-LIS PSFs. The
upper is in color space while the lower is in magnitude space.

16 https://scikit-learn.org/stable/
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model. Details of selection criteria are listed in Table 2, and the
definitions are:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

=
+ ´ + ´

= ´ + ´

grz
g r z

flux
flux 0.8 flux 0.5 flux

2.3
flux W 0.75 flux W1 0.25 flux W2 5

The first four criteria in Table 2 are directly taken from Yèche
et al. (2020) while the last one is designed to further limit the
samples by taking advantage of the aforementioned infrared
excess. We note that we use depth limit (g= 22.7, similar with
Yèche et al. 2020) in this color-cut selection.

3.3. Evaluation Metrics

Completeness, accuracy, and AUC are quintessential
classification metrics, which measure the performance of
classification models from various angles. The three quantities
can be calculated by combining True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives (FN)
in different forms. Specifically, completeness is given by

( )=
+

completeness
TP

TP FN
, 6

meaning the percentage of quasars in the testing set that can be
correctly picked out; accuracy is given by

( )=
+

+ + +
accuracy

TP TN

TP TN FP FN
7

standing for how well the identification of quasars/non-quasars
is; purity is used to assess how much non-quasar contamination
in the quasar candidate catalogs, which is defined as

( )=
+

purity
TP

TP FP
; 8

AUC is the area under the ROC (Fawcett 2006), showing the
performance of the classification at all classification thresholds
by plotting False Positive Rate (FPR) versus True Positive Rate
(TPR), defined as

( )=
+

=
+

FPR
FP

FP TN
, TPR

TP

TP FN
. 9

AUC represents the overall performance of identification
results.

4. Results

In results of applying our classifier trained by the training set
given in Section 2.2 to DESI-LIS point-like sources
(Section 2.1), we accomplish a catalog of quasar candidates,
detailed in Section 4.1. Then, we cross-validate the catalog
with the results obtained via color-cut selection method (see
Section 3.2), and the details are shown in Section 4.2.

4.1. Quasar Candidate Catalogs

We acquire 24,440,816 quasar candidates, and the magni-
tude distributions are shown in Figure 5. To evaluate the

Figure 4. The distributions of g, r, z, W1, W2 of the quasars in the training set.
The g-band peak magnitude is shown by the vertical dashed line, which is
determined by a kernel density estimate plot (blue solid curve) that gotten by
kdeplot in seaborn package with the default Gaussian kernel and
binwidth = 0.5.

Table 2
The Selection Conditions that used in Color-cut Selection (Detailed at

Section 3.2)

Conditions

1 g-r > 1.3
2 −0.4 < r-z < 1.1
3 r > 17.5
4 grz > 17.0
5 −1 < grz-W < 4
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completeness, purity, accuracy, and AUC of the classification,
our RF model is applied to the testing set, and the result is
shown in Figure 6. The completeness remains stable while the
other metrics drop significantly at the faint end. The three bins
of the testing set are divided by g-band magnitudes given
below, and each bin contains similar amounts of unique
sources:

< <
< <
< <

g
g

g

bin1: 18 19.8
bin2: 19.8 21.18
bin3: 21.18 24.

We split the sample into Grade-A and Grade-B with a g band
magnitude of 21.18 because the purities of classifying the
objects below and above the magnitude are significantly
different. Grade-A and Grade-B contain 1,953,932 and
22,486,884 candidates separately.

The above classification is constructed by defining a
threshold of the probability given by our classifier, where
Pth= 0.5. Correspondingly, Grade-A has the purity ∼0.3 and
accuracy ∼0.99; Grade-B has the purity ∼0.15 and accuracy
∼0.90. Notably, the completeness remains high in all
magnitude bins (see the orange line in Figure 6). The errorbars
represent the uncertainties by bootstrapping the elements in
each bin (Efron 1982). Expressly, larger errorbars of purity in
brighter bins are due to the fewer quasars; larger errorbars of
accuracy in fainter bins are due to the decreasing capacity of
the RF model.
To further investigate the effects of the thresholds of the

probability of being a QSO on the performance of the
classification, we test 0.5, 0.6, 0.7, 0.8, 0.9 as Pth, and the
result is shown in Figure 7. In all cases, the completeness is
higher than 0.85, and the completeness is even higher than 0.99
(see the green filled region) when Pth= {0.5, 0.6, 0.7}, but it
decreases to 0.95 (see the purple filled region) when Pth= 0.8.
Therefore, Pth= 0.5 is for general purpose, and it gives high
completeness but low purity. However, one can change Pth for
a specific combination of completeness and purity according to
the tendency shown in Figure 7.
Considering the various setups of DECaLS and BASS

+MzLS, the corresponding QSO candidates in their footprints
have different statistical properties. As displayed in Figure 8,
the g-band magnitudes distribution and g− z distribution are
identical in DECaLS and BASS + MzLS footprints for Grade
A candidates due to their higher confidence. But for Grade B
candidates, the most significant difference between the
magnitude distributions of the candidates in DECaLS and

Figure 5. The distributions of g, r, z, W1, W2 of all quasar candidates.

Figure 6. The results when the RF model (solid lines) and color-cut selection
(dashed lines) are applied to the testing set. The testing set is divided into three
subsets according to their g-band magnitudes. The details are given in
Section 4.1. When testing the color-cut selection, a limit magnitude is used
(detailed at Section 3.2) and shown with the red dotted–dashed line.
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BASS + MzLS footprints is in the g-band because the most
notable difference is in the efficiency of the g-filter of DECaLS
and BASS. The Grade B candidates in DECaLS are shallower
than those in BASS + MzLS in the g-band and are slightly
bluer than those in BASS + MzLS when choosing g− z as the
color indicator. To quantify the influences of the above
differences on the identification of quasar candidates, we
explore the performance of the classification when the RF
models are individually trained by DECaLS (or BASS
+MzLS). As shown in Figure 9, the overall performances
(represented by the area under the ROC, a.k.a AUC) with the
new training strategy are slightly better than the earlier one
which ignores the different setups between DECaLS and BASS
+ MzLS. However, the differences in completeness (i.e., TPR)
are ∼1‰ when we choose 0.5 (the adopted value in this work)
as the classification threshold, while FPRs and Purity increase
10%–20% (see cross-marks and plus-marks in Figure 9, and
Table 3 for explicit values). For others’ convenience, we attach
catalogs of quasar candidates obtained by adopting the latter
training and classifying strategy as complementary to the
earlier results, which can be found in the same repository.17

4.2. Cross-validation

To cross-check the QSO candidates found by our classifier,
we identify QSO candidates using the color-cut selection
independently, and the selection criteria are listed in
Section 3.2. Consequently, 8,425,413 and 19,575,604 candi-
dates are found by the RF model and color-cut selection

separately. There are 6,909,375 candidates discovered using
both approaches, i.e., ∼82% RF candidates retrieved by the
color-cut selection, as shown in Figure 10. The red line
represents the hard edge of the color-cut selection, and the
color-cut selection discards the RF candidates below this line.
The hard-cut leads to ∼18% of the RF candidates missed by the
color-cut selection because the RF selection gives an irregular
shape in the color space. On the other hand, 12,666,119
(∼65%) of color-cut candidates are new compared to RF
candidates because the color-cut selection has lower purity than
the RF model (see the blue dashed line in Figure 6), bringing in
plenty of FP.
Furthermore, we test the Grade-A and B candidates in color-

cut space as shown in Figure 11. Quantitatively, ∼91%
(1,771,762/1,953,932) Grade-A candidates and ∼79%
(5,137,613/6,471,481) Grade-B candidates and can be re-
found by color-cut selection. This result is consistent with the
ones that could be read from Figure 6: the purity decrease at
fainter region.

5. Discussion and Summary

In this work, we have built a catalog of QSO candidates by
applying an approach based on RF to the data sets of DESI-LIS
and WISE. To train our method, we construct a training set by
cross-matching photometry data, including g,r,z from DESI-
LIS and W1, W2 from WISE, with spectroscopically confirmed
QSOs from eBOSS DR16Q for positives and the SIMBAD
database for negatives. A testing set mocking the statistical
properties of to-be-applied data in magnitude and color is also
created and injected to evaluate the completeness, accuracy,
and purity of the identification process. Finally, 24,440,816
QSO candidates are identified out of 425,540,269 point-like
objects in DESI-LIS. In addition, we validate our results with
those of the color-cut selection approach, and they match well.
The catalog can be considered the reference for further
observations of DESI and other spectrum surveys to identify
new quasars. Relevant data including Grade-A and Grade-B
catalogs, training and testing sets are available online.18

Furthermore, the Grade-B candidates in DECaLS are slightly
shallower and bluer than those in BASS + MzLS footprints
due to the difference in the efficiency of the g-band filters in
DECaLS and BASS (see Figuer 3 in Dey et al. 2019).
However, the gap disappears in Grade-A candidates because of
their high signal-to-noise ratios. The gaps lead to concerns
about the selection of training strategies, i.e., whether the
classifier should be trained with the data from the DESI-LIS
footprint or only from the DECaLS (or BASS + MzLS)
footprint. Our experiments present the completeness is
nonsensitive to training strategies when we choose Pth= 0.5
as the classification threshold (Table 3). Regardless, additional

Figure 7. The variety of completeness when different Pth are applied. The way
of splitting testing set is the same with the ones for Figure 6. The area where the
completeness higher than 0.99 is filled by green, while the ones higher than
0.95 is filled by purple.

17 https://github.com/EigenHermit/he-li2021 18 https://github.com/EigenHermit/he-li2021
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catalogs of quasar candidates obtained through the RF models
trained with the latter training strategy are also published along
with the primary catalogs for the others’ convenience.

According to the evaluations based on the testing set, the
overall purity is ∼0.25 while the completeness is higher than
0.99. We further define two grades for the candidates by
placing a demarcation in g-band magnitudes, i.e., the Grade-A
catalog contains 1,953,932 candidates that are brighter than
g= 21.18, while the Grade-B contains 22,486,884 candidates
that are fainter than g= 21.18. Besides, the accuracy, purity
and AUC of the Grade-A catalog are all higher than Grade-B
catalog’s, specifically, accuracy is ∼0.1 higher, purity is ∼0.15
higher and AUC is ∼0.05 higher. However, the completeness
of Grade-A is barely the same as Grade-B, which is above 0.85
under all test thresholds (0.5,0.6,0.7,0.8,0.9). The object is
considered as a quasar candidate when its RF score is higher
than thresholds. We select 0.5 as the identification threshold for
general purposes. With this threshold, ∼82% of the quasar

candidates found by our method could be rediscovered by the
color-cut selection method. Nevertheless, as is expected, a
higher threshold leads to lower completeness but higher purity.
Thus, one can tweak the threshold to satisfy the requirements of
their own scientific goal.
We implement the search for QSOs over the whole field of

view of DESI-LIS DR9, covering ∼14,000 square degrees of
the extragalactic sky visible from the northern hemisphere,
more extensive than previous work. Besides, by evaluating the
classification outcomes of the testing set, we find that the
completeness of the QSO candidate catalogs has high
completeness when selecting 0.5 as the identification threshold,
which means that the confirmation process with DESI
following our targets catalogs can achieve a QSO catalog with
both high completeness and purity. However, considering the
photometry data adopted in this work (g, r, z, W1, W2), the
performance of the identification can be further improved with
data in additional bands such as UV and radio. Moreover,

Figure 8. The g and g − z distributions of Grade-A (first line) and Grade-B (second line) candidates that been observed in BASS + MzLS and DECaLS footprints.
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blended objects contaminate the photometry catalog due to the
PSF size of DESI-LIS; for instance, the objects considered as
extended sources are excluded first in our work, which might
include blended QSOs or blended QSOs and galaxies. Thus, to
further increase the completeness of the targets catalog, one
needs to conduct a deblending operation over the whole data
sets of DESI-LIS before banning negatives, which is part of our
further work.
To summarize, this study provides the largest-ever catalog of

QSO candidates with high completeness, which can be used for
the target data set for confirming QSOs with DESI.
Furthermore, grounded on this QSO candidate catalog, we
are trying to find the candidates of strongly lensed QSOs with a
catalog-based algorithm. So far, ∼800 high-quality candidates
of new strongly lensed QSO systems have been found and will
be reported in a separate paper. Thorough follow-ups and

Figure 9. The ROC curves of the RF model that is trained in four different
cases. The four scatters explicitly indicate the FPR and TPR when Pth = 0.5.

Table 3
The Completeness, Purity, FPR of Four Cases when 0.5 is Adopted as

Threshold

Completeness (TPR) Purity FPR

A to A 1.000 0.168 0.119
B to B 1.000 0.133 0.187
AB to A 0.995 0.143 0.143
AB to B 0.998 0.129 0.213

Note. A represents BASS + MzLS while B represents DECaLS (same with
Figure 9).

Figure 10. Two-dimensional histogram for comparing the RF model and color-
cut selection. The definitions of grz and W can be found in Section 3.2 and the
red-line represents color-cut condition (Section 3.2), the points below the line
are discarded by color-cut selection.

Figure 11. Similar plots to Figure 10 but for comparing Grade-A candidates
(upper) and Grade-B candidates (lower) and the corresponding known quasars.
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analyses will be applied to the candidates. Next, we will
constrain the properties of the circumgalactic medium (Cai
et al. 2019; Lau et al. 2022), dark matter distribution in lens
galaxies (Oguri et al. 2014; Sonnenfeld & Cautun 2021),
Hubble constant (Suyu et al. 2017; Liao et al. 2019; Wong et al.
2020) with confirmed strongly lensed QSO systems.
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