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Abstract

Mars exploration has become a hot spot in recent years and is still advancing rapidly. However, Mars has massive dust
storms that may cover many areas of the planet and last for weeks or even months. The local/global dust storms are so
influential that they can significantly reduce visibility, and thereby the images captured by the cameras on the Mars
rover are degraded severely. This work presents an unsupervised Martian dust storm removal network via disentangled
representation learning (DRL). The core idea of the DRL framework is to use the content encoder and dust storm
encoder to disentangle the degraded images into content features (on domain-invariant space) and dust storm features
(on domain-specific space). The dust storm features carry the full dust storm-relevant prior knowledge from the dust
storm images. The “cleaned” content features can be effectively decoded to generate more natural, faithful, clear images.
The primary advantages of this framework are twofold. First, it is among the first to perform unsupervised training in
Martian dust storm removal with a single image, avoiding the synthetic data requirements. Second, the model can
implicitly learn the dust storm-relevant prior knowledge from the real-world dust storm data sets, avoiding the design of
the complicated handcrafted priors. Extensive experiments demonstrate the DRL framework’s effectiveness and show
the promising performance of our network for Martian dust storm removal.
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1. Introduction

The Zhurong rover, China’s first Mars rover, went into
hibernation mode on 2022 May 18, to cope with the reducing
solar power generation capacity caused by a dust storm which
was observed by the medium resolution images obtained from
the orbiter of the Tianwen-1 probe on 2022 March 16 and April
30. That is one case of the Martian dust storms posing a threat to
the scientific instruments (Alexandra Witze 2018). Unfortu-
nately, Martian dust storms are common, which may last for
weeks and cover many areas of the planet (Clarke 2018). These
dust storms are so influential that they can change the climate of
Mars (Leovy 2001; Liu et al. 2022) and degrade signal/image
qualities taken by cameras on the Mars rover. For example, as
shown in Figure 1, the images captured under the dust storm
weather suffer from contrast degradation, color attenuation, and
poor visibility. Therefore, removing the dust storm from a single
image becomes crucial for studying the Martian atmosphere
(Banfield et al. 2020) and Martian geology (Chaffin et al. 2021).

To this end, we have recalled many related studies on image
enhancement and restoration algorithms. Among them, we
focus on the haze removal task because it is very similar to dust

storm removal, where the main difference between them is the
suspended particles in the atmosphere. These image restoration
approaches are categorized into five groups as follows.
Conventional image enhancement techniques, such as Auto

Levels (AL), Retinex model (Jobson et al. 1997) or contrast
limited adaptive histogram equalization (CLAHE) (Reza 2004)
can improve the visual quality of the Martian dust storm
images. These methods have a lower computational cost, yet
some of their common drawbacks are that some parameters
should be manually configured. Thus, they cannot automati-
cally adapt to different images captured under different sizes of
dust storms.
Physical prior-based method is another kind of approach that

might work. For example, inspired by the success of the Earth’s
atmospheric scattering model (Narasimhan 2000) that has been
leveraged in natural image dehazing by introducing specific
priors (e.g., dark channel prior (DCP) (He et al. 2011), color-
lines prior (Fattal 2014), color attenuation prior (Zhu et al.
2015), and non-local prior (NLP) (Berman et al. 2018), Li et al.
(2018) directly utilized the DCP for Martian dust storm
removal. However, the sizes, types, and concentrations in the
space of the aerosol particles on Mars are very different from
the ones on Earth; therefore, the atmospheric scattering models
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of the two planets are different (Egan & Foreman 1971). For
example, typically, Rayleigh scattering occurs on Earth, while
Mie scattering on Mars (Collienne et al. 2013). That means the
existing priors proposed, especially for nature image dehazing
on Earth, are unable to fit all conditions on Mars and may
produce unwanted artifacts because the priors are invalid.

In contrast, supervised learning-based approaches can learn
the latent prior knowledge from masses of paired contaminated
images and their clear counterparts and produce visually
appealing results. For example, in the multi-scale CNNs
(MSCNN) (Ren et al. 2020) and enhanced pix2pix dehazing
networks (EPDN) (Qu et al. 2019), the hazy samples are often
synthesized by applying the atmospheric scattering model.
Despite their effectiveness on the open-access data sets,
supervised learning-based methods have suffered from the
domain shift issues of the synthetic data sets. Training on such
data sets, these methods are probably to overfit. Therefore, they
are less able to generalize well to real-world images.

To improve the performances in the real-world conditions,
some semi-supervised learning-based models, such as semi-
supervised dehazing network (SSDN) (Li et al. 2019) and
domain adaptation dehazing network (DADN) (Shao et al.
2020), have been exploited to use both synthetic and real-world
data sets. However, as to our task, such paired dust storm
images and clear images are impractical to collect under real-
world conditions on Mars.

Unlike the above learning-based models, unsupervised
learning-based models are solely trained on the real-world
data set, avoiding labor-intensive collecting data and dealing

with the domain shift problem. However, due to the lack of
prior knowledge, the existing unsupervised models inevitably
exploit the properties of clear images via predetermined prior
losses. For example, the performances of deep dark channel
prior (DDCP) (Golts et al. 2019) and zero-shot image dehazing
(ZID) (Li et al. 2020) are very dependent on the dark channel
prior (He et al. 2011) loss. Like the physical prior-based
methods, using the handcrafted priors as the objections may
lead to the networks being less robust to the conditions that the
priors are invalid.
By discussing the approaches above, we found that the

unsupervised learning-based method is more fit for the Martian
dust storm removal task for two reasons. First, this method
does not need paired clear and dust storm images. Second, it
can implicitly learn the dust storm-relevant prior knowledge
from real-world dust storm data sets. To this end, we develop
an unsupervised Martian dust storm removal framework that
learns the dust storm-relevant prior knowledge via disentangled
representation learning (DRL). The motivation of the DRL can
be succinctly illustrated in Figure 1, where the “disentangle-
ment” module aims to encode the input dust storm image into
intermediate representations, i.e., content features (domain-
invariant cues) and dust storm features (domain-specific cues).
Because the dust storm features are “taken away” from the
original image, the remained content features can be effectively
decoded into a clear image. The dust storm features carry the
full dust storm-relevant prior knowledge of the original image,
and they can be fused to another clear image’s content features
to generate a new dust storm image. Concretely, the proposed

Figure 1. The motivation of the DRL for unsupervised Martian dust storm removal.
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framework consists of two content encoders to extract content
features from unpaired clear and dust storm images, one dust
storm encoder to disentangle dust storm features, two generators
to reconstruct clear and dust storm images, and two discrimi-
nators to align the generated images into their corresponding
domains. We use the adversarial loss during the training to align
the content features to the ones of clear image. In addition, the
cross-cycle consistency loss is used to guarantee the content
consistency between the original and the reconstructed images.
Finally, we also use a latent reconstruction loss to encourage
bidirectional mapping of the intermediate representations.
Extensive experiments show the promising performance of our
Martian dust storm removal framework using DRL.

This paper is structured as follows. In Section 2, the details
of our unsupervised Martian dust storm removal network using
disentangled representation learning are introduced. We then
introduce our data sets in Section 3. We further report the
experimental results and the ablation studies in Section 4. In
Section 5, we summarize our approach.

2. Method

The DRL can be used to model one or more factors of
domain variations while the other factors remain relatively
invariant. Specifically, in the Martian dust storm removal task,
there are two domains: the clear image domain  and dust
storm image domain . The goal of the DRL for unsupervised
dust storm removal is to learn the domain-specific factors (i.e.,
dust storm features d) from domain and the domain-invariant
factors (content features cc and cd) from domain  and domain
, as depicted in Figure 2. To do so, the DRL model in our
work consists of one dust storm encoder Eds to extract the dust
storm features; two content encoders E c

ct and E d
ct to extract the

content features cc and cd from clear and dust storm images,
respectively; and two image generators Gc and Gd to map the

inputs onto clear and dust storm image domains, respectively.
Details on the network architectures and training objectives are
introduced in the following subsections.

2.1. Network Architecture

2.1.1. Overview

The overall disentangled representation learning-based
framework for the Martian dust storm removal consists of
three parts: forward translations, backward reconstructions, and
self-reconstructions, as shown in Figure 3. The notations in this
figure are summarized in Table 1.
Forward Translations: The forward translation contains two

branches: one for the forward dust storm image translation and
the other for the forward clear image translation.
For forward dust storm image translation, the content

encoder E c
ct maps clear image I c onto a shared, domain-

invariant content space, and the dust storm encoder Eds maps
dust storm image I d onto a domain-specific space—the named
dust storm space in this work. Then, the dust storm generator
Gd takes clear content features = ( )c E Ic c c

ct conditioned on
dust storm features d= Eds(I

d) to generate dust storm image
I d
fwd:

= =( ) ( ( ) ( )) ( )c dI G G E I E I, , . 1d d c d c c d
fwd ct ds

For forward clear image translation, the content encoder E d
ct

maps dust storm images I d onto the shared content space. The
dust storm removal generator Gc takes dust storm content
features =¯ ( )d E Id d

ct to generate clear image I c
fwd:

= =( ) ( ( )) ( )cI G G E I . 2c c d c d d
fwd ct

Backward Reconstructions: The stage of backward recon-
structions is similar to the forward translations, where the input
images are I d

fwd and I c
fwd.

Figure 2. The latent space assumption in the DRL. The clear and dust storm images belong in two different domains  and , respectively. They can be mapped to
content features cc/cd in domain-invariant space, while dust storm features d in domain-specific space can be disentangled from domain .
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For backward dust storm image reconstruction, we have:

= =(¯ ¯) ( ( ) ( )) ( )c dI G G E I E I, , , 3d d c d c c d
bwd ct fwd ds fwd

where I d
fwd and I c

fwd are the clear and dust storm images defined
in (1) and (2), respectively; the c̄c and d̄ are the content features
of image I c

fwd and the dust storm features of image I d
fwd,

respectively.

For backward clear image reconstruction, we have:

= =(¯ ) ( ( )) ( )cI G G E I . 4c c d c d d
bwd ct fwd

where the c̄d represents the content feature of image I d
fwd.

Self-Reconstructions: To facilitate the training process, we
apply self-reconstructions as illustrated in Figure 3(b). With
encoded content and dust storm features, the generators Gc and
Gd should decode them back to original inputs I c and I d,

Figure 3. Overview of the unsupervised Martian dust storm removal network using disentangled representation learning.
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respectively. They can be formulated by:

=

=

( ( ))
( ( ) ( )) ( )

I G E I

I G E I E I

;

, . 5

c c c c

d d d d d

self ct

self ct ds

2.1.2. Details

We adapt the above architecture for the unsupervised
framework with the following configurations.

Identity Shortcut Connection and Long Skip Connection:
The details of each layer in the encoder and generator are
illustrated in Figure 4. Each basic layer in the encoders/
generators consists of a convolutional/deconvolution for
down/up-sampling followed by a ResNet (He et al. 2016)
block to avoid the notorious exploding or vanishing gradients
that may occur during the training. One ResNet block is
realized by inserting shortcut connections into conventional
convolutional layers, as shown in Figure 4. Note that the
shortcut connections introduce neither extra parameter nor
computation complexity.

We also equip long skip connections between encoders and
generators, referred to as U-shape networks (U-Net) (Ronne-
berger et al. 2015), as shown in Figure 4. The long skip
connections allow the network to propagate structure (at low-
level) and semantic (at high-level) information of inputs to
deeper layers, preserving the spatial information lost during
downsampling in the encoders.

Sparse Switchable Normalization and Adaptive Instance
Normalization: We use the sparse switchable normalization
(SSN) (Shao et al. 2019) in the basic layer instead of the batch
normalization (BN) (Ioffe & Szegedy 2015) and instance
normalization (IN) (Ulyanov et al. 2017) that are widely used
in natural image generation networks. Our earlier explorations
found that using BN and IN alone would lead to “spot” artifacts
in the generated images, as illustrated in Figure 8. One reason
might stem from challenges inherent in the Martian dust storm
removal networks where different layers should behave
differently. SSN can address this issue by adaptively selecting

the optimal normalizers among BN, IN, and layer normal-
ization (LN) (Ba et al. 2016) at different convolutional layers.
In our model, the dust storm image generator Gd fuses the

content features and dust storm features via adaptive instance
normalization (AdaIN) (Huang & Belongie 2017). The clear
content features cc and dust storm features d are fed into the
AdaIN layer. The AdaIN layer aims to align the content
features’ mean and variance to the ones of dust storm features:

d
m

d
m=

-
+( ) · ( )

( )
( ) ( )f d

c c
c

d , 6
c c

c

where μ(·) and δ(·) are the mean and standard deviation
operations.

2.2. Training Objective

The overall loss function of the proposed network is:

l l
l l

= +
+ + ( ), 7

adv adv ccc ccc

src src lrc lrc

  
 

where adv , ccc , src and lrc are the adversarial loss, cross-
cycle consistency loss, self-reconstruction loss and latent
reconstruction loss, respectively. λadv, λccc, λsrc and λlrc are
the corresponding hyper-parameters to control the importance
of each term.
Adversarial Loss: Here, we apply the adversarial loss

(Goodfellow et al. 2014) between the generated images and
corresponding target domains to force them to have as similar
data distributions as possible. For the dust storm image domain,
we define the adversarial loss as:

=

+ -

( ) [ ( )]
[ ( ( ( ( ) ( ))))] ( )

E E G I

G E I E I

, , log

log 1 , , 8

c d
I

d d

I I
d d c c d

adv ct ds

, ct ds

d

c d




 D

D

where Dd is the discriminator for the dust storm image domain.
 represents the mean operation of training samples in a batch.
Our discriminator module is “PatchGAN” (Isola et al. 2017)
classifiers.

Table 1
A Summary of the Notations used in Our Unsupervised Martian Dust Storm Removal Framework

Notation Description Notation Description

E c
ct/E d

ct content encoder for the clear/dust storm image Dc/Dd discriminator for clear/dust storm domain

Eds dust storm encoder I c/I d input clear/dust storm image

Gc/Gd clear/dust storm image generator Ifwd
d /Ibwd

d dust storm image translated from the clear image I c/Ifwd
c

cc/cd content feature of the clear/dust storm image I c/I d

c̄c/c̄d content feature of the clear/dust storm image I c
fwd/Ibwd

d Ifwd
c /Ibwd

c clear image restored form the dust storm image I d/Ifwd
d

d dust storm feature of the dust storm image I d

d̄ dust storm feature of the dust storm image Ifwd
d Iself

c /Iself
d self-reconstructed clear/dust storm image
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Figure 4. Details of the encoders (E c
ct, Eds, and E d

ct) and generators (Gd and Gc) (taking the forward translation as an example). !: elemental-wise subtraction; %:
elemental-wise division; ⊗: elemental-wise multiplication; ⊕: elemental-wise addition.
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Similarly, for the clear image domain, the adversarial loss is
defined as:

=

+ -

( ) [ ( )]
[ ( ( ( ( ))))] ( )

E G I

G E I

, log

log 1 , 9

d c
I

c c

I
c c d d

adv ct

ct

c

d




 D

D

where Dc is the discriminator for clear image domain.
Cross-Cycle Consistency Loss: We use the cross-cycle

consistency loss to guarantee that the clear images I cfwd can
be reconstructed to the dust storm domain, and the dust storm
image I dfwd can be reconstructed back to the clear domain.
Specifically, the cross-cycle consistency loss is defined as:

=

- + -

( )
[ ( ( ) ( ))

( ( )) ] ( )

E E E G G

G E I E I

I G E I I

, , , ,

,

, 10

c d d c

I I
d c c d

d c d d c

ccc ct ds ct

, ct fwd ds fwd

2 ct fwd 2

d c 
  




where I dfwd and I cfwd are defined as (1) and (2), respectively.
Self-Reconstruction Loss: With encoded content and dust

storm features, the generators Gd and Gc should decode them
back to the corresponding domains. Thus, to facilitate the
training process, here we use a self-reconstruction loss as
illustrated in Figure 3(b):

=

´ - + -

( )
[ ( ( ) ( ))

( ( )) ] ( )

E E E G G

G E I E I

I G E I I

, , , ,

,

. 11

c d d c

I I
d d d d

d c c c c

src ct ds ct

, ct ds

2 ct 2

d c 
  




Latent Reconstruction Loss: To encourage the invariant
representation learning between the clear and the dust storm
space, we apply a latent reconstruction (including content and
dust storm features reconstruction) loss similar to Lin et al.
(2018) and Zhu et al. (2017) as follows:

w

w

w

= -

+ -

+ -

( )
[ · ( ) ( )

· ( ) ( )
· ( ) ( ) ] ( )

E E E G G

E I E I

E I E I

E I E I

, , , ,

, 12

c

c

d

c d d c

I I I I
c c d d

d d c c

d d

lrc ct ds ct

, , , ct ct fwd 1

ct ct fwd 1

ds ds fwd 1

c d c d
c

d

fwd fwd
 

 
 




where wcc
, wcd

and ω d are weights of the features for
corresponding reconstructions, respectively. Note that the
content features are more easily learned than the dust storm
features. It is because the formers can be aligned by the long skip
connections, delivering multi-scales of content information from
encoders to the corresponding generators. In contrast, the dust
storm features are only learned at the single high-level layer. To
address this discrepancy, the ω d is set larger than wcc

and wcd
.

3. Dataset

The Mars32k Dataset (Dominik Schmidt 2018) collects 32,368
560× 500 samples captured by the Curiosity rover between 2012
and 2018 on Mars. All samples are provided by NASA/JPL-
Caltech. This data set involves a variety of geographic features of
Mars, including rocky terrain, sand dunes, and mountains.
However, we found that the raw Mars32k data set cannot be
directly served as the training data for our task accounts for two
aspects. First, the raw data set is not curated, containing many
anomalous samples. Second, it is difficult for some scenes to
determine whether they have a dust storm or not. To build the
available data sets, we first artificially eliminate the anomalous
samples and select the available samples that are confirmed to have
dust storms or are clear. After going through the above procedures,
we obtain 1925 dust storm samples and 1432 clear samples, as
shown in Figure 5. Then, we randomly selected 65 dust storm
samples as the testing data sets and remained samples were used
for training data augmentation. We augment the samples by
flipping, randomly cropping, and randomly rotating. Finally, the
data set contains 13,016 dust storms and 8985 clear unpaired
samples for model training. Considering the limits of memory and
fast training, we resize the input samples to 256× 256. While
during the testing, the inputs are resized to 512× 512.

4. Experiments

4.1. Metrics

Because it is impractical to acquire Martian dust storm
images and their clear counterparts, we use the following three

Figure 5. Examples of the available samples in the data sets.
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no-reference image quality metrics (NRIQM) in our evaluation
experiments.

Geometric Mean of the Ratios of Visibility Level (GMRVL)
(Hautiere et al. 2008). The GMRVL is a function of the ratio
between the visibility levels of restored and original images. It
is used to measure the quality of the contrast restoration.

Blind/Referenceless Image Spatial Quality Evaluator (BRIS-
QUE) (Mittal et al. 2012). The BRISQUE is a natural scene
statistic-based NRIQM calculated in the spatial domain. It can
quantify the quality of distortion and naturalness using locally
normalized luminance. We use this metric to evaluate whether
the dust storm images have been satisfactorily restored with
good visual perception.

Perception-based Image Quality Evaluator (PIQE) (Venka-
tanath et al. 2015). The PIQE extracts local features for
measuring patch-wise restoration quality. It is an opinion-
unaware methodology and thus does not need any training data.
It can measure whether the images are satisfactorily restored:
insufficient restored or over-restored results would lead to a
higher PIQE score.

4.2. Implemental Details

We develop our model on PyTorch deep learning package.
We adopt Adam (Kingma & Ba 2015) as the optimization
algorithm during the training, with a batch size of 8. In the
experiments, our model is trained for 20 epochs, taking about
36 hr on two NVIDIA GeForce GTX 3090 Ti GPU. We set the
initial learning rate is 0.0002 for all of the encoders, generators
and discriminators, and the learning rate decay is γ = 0.5 for
every 10 epochs. The parameters of the hybrid loss functions
are set as: (λadv, λccc, λsrc, λlrc) = (0.2, 3, 1, 0.5). Weights of
the dust storm features are set as: (wcc

, wcd
, ω d) = (1, 1, 10).

The model will be available as open source at https://github.
com/phoenixtreesky7/DRL_UMDSR.

4.3. Comparisons with Other Image Enhancement/
Dehazing Methods

We compare our model with the following methods: (1)
Conventional Image Enhancement methods (AL and CLAHE
Reza 2004); (2) Physical Prior-based methods (DCP He et al.
2011 and NLP Berman et al. 2018); (3) Supervised Learning-
based method (MSCNN Ren et al. 2020 and EPDN Qu et al.
2019); (4) Semi-supervised Learning-based methods (SSDN Li
et al. 2019 and DADN Shao et al. 2020); (5) Unsupervised
Learning-based methods (ZID Li et al. 2020). Qualitative and
quantitative results are illustrated in Figure 6 and Table 2,
respectively.

Qualitative Comparisons: All algorithms can be observed to
restore the dust storm images with good visual perception to
some extent. However, the visual results of AL and DADN
(Shao et al. 2020) contribute false color, more like the photos
taken on Earth. The CLAHE (Reza 2004) and SSDN (Li et al.

2019) seem to fail to remove the dust storm effectively,
producing poor visual results in distant scenes. Although the
physical prior-based methods DCP (He et al. 2011) and NLP
(Berman et al. 2018) can effectively remove dust storms from
the scenes, they tend to yield over-enhanced visual artifacts,
especially in the sky regions. These results also demonstrate
that these priors are invalid for Martian dust storm images. The
results of the MSCNN (Ren et al. 2020) and EPDN (Qu et al.
2019) maintain plausible visual details, achieving better
performance than the non-learning methods. However, some
visual results are not satisfactory because some scenes are over-
saturation, as illustrated in the first, the fifth, and the last images
in Figure 6 (g). The restored images of ZID (Li et al. 2020)
have severe color distortion in the sky regions. By contrast, our
model achieves remarkable performance. Note that our visual
results may not be as colorful as the ones of AL, DCP (He et al.
2011), MSCNN (Ren et al. 2020), and DADN (Shao et al.
2020). However, our DRL framework extracts the dust storm
factors from the dust storm images, and the remaining content
features are aligned to the ones of real-world Martian clear
images. It enables the restored image to display consistent and
faithful colors. Moreover, our model generates high-quality
restored results with fewer artifacts than all the compared
methods, as illustrated in Figure 7 where the red blocks are the
noticeable artifacts masks detected by PIQE (Venkatanath et al.
2015) metric.
Quantitative Comparisons: We further use the GMRVL

(Hautiere et al. 2008), BRISQUE (Mittal et al. 2012) and PIQE
(Venkatanath et al. 2015) to quantitatively evaluate the
effectiveness of our model. The results are listed in Table 2.
It can be found that the conventional image enhancement
models can generate high contrast results with higher GMRVL
than learning-based methods. However, the other two metrics
of them are worse, indicating that the results are unnatural and
also demonstrating that these methods are unable to cope with
complex dust storm conditions. The physical prior-based
methods can generally obtain better GMRVL scores than other
methods. However, they are more likely to lead to unnatural
results with more artifacts as they get high BRISQUE and
PIQE. The reasons are that these priors are invalid on Mars.
The supervised and semi-supervised methods successfully
refrain from over-saturation, resulting in smaller BRISQUE
and PIQE than the non-learning methods. However, despite
their superiorities, their BRISQUE and PIQW scores are still
higher (worse) than ours. Thanks to the DRL, our model
achieved better visual quality and obtained the lowest scores of
the BRISQUE and PIQE. As Table 2 demonstrates, our model
surpasses the second-best methods with gains of 1.123 on
BRISQUE and 5.517 on PIQE. Note that our GMRVL is lower
than some of the compared methods. The reason is that these
methods tend to outcome over-enhanced results, which may
increase the GMRVL to a certain extent.
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Figure 6. Visual comparisons with other methods, including (b) AL, (c) CLAHE (Reza 2004), (d) DCP (He et al. 2011), (e) NLP (Berman et al. 2018), (f) MSCNN
(Ren et al. 2020), (g) EPDN (Qu et al. 2019), (h) SSDN (Li et al. 2019), (i) DADN (Shao et al. 2020) and (j) ZID (Li et al. 2020). (a) The dust storm images. (k) The
results of our method.
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4.4. Ablation Studies

To evaluate the effectiveness of each configuration in our
model, we compare the following models: (1) “BN”: using the
batch normalization in the entire networks; (2) “IN”: using the
instance normalization in the entire networks; (3) “LLS”: using
only one long skip connection that connects low-level stage,
i.e., the encoder block behind the feature extraction and the
generator block before the final output one; (4) “CNN”: using
the vanilla convolutional layers, i.e., removing the identity
shortcut connections in each ResNet blocks; (5) CycleGAN:
using CycleGAN framework, i.e., excluding the dust storm
encoder Eds. All of the above models are trained for ten epochs
for fast evaluations.

As shown in Table 3, both of the results of models “BN” and
“IN” reduce the performances of dust storm removal compared
with our model with SSN. Furthermore, it verifies that different
layers of the networks behave differently; thus, the normal-
ization should also be changed at each layer. Moreover, they

would generate “spot” artifacts as labeled by the red rectangle
illustrated in Figures 8(b) and (c). The model U-Net uses skip
connections between the encoders and generators at each stage.
Compared with the “LLS” where skip connections are only
used at the low-level stage, U-Net shaped network increases
GMRVL by 0.157, and it significantly reduces BRISQUE and
PIQE by 1.179 and 8.226, respectively. These are because the
skip-connections at different levels preserve the generators’
structure (low-level features) and semantic (high-level features)
information. The model “CNN” replaces the ResNet blocks
with two stacked conventional convolutional layers. However,
it reduces by 0.083 on GMRVL and increases by 0.769 on
BRISQUE and 0.403 on PIQE. We further compare the DRL
with the CycleGAN, another widely used framework for
unsupervised learning. As illustrated in Table 3, the DRL
framework contributes 0.453 improvements on GMRVL, 8.491
improvements on BRISQUE, and 10.509 improvements on
PIQE, compared with the CycleGAN. These evaluations verify
the effectiveness of using the DRL framework.

Table 2
Quantitative Evaluations of Different Methods using GMRVL (Hautiere et al. 2008), BRISQUE (Mittal et al. 2012) and PIQE (Venkatanath et al. 2015)

Metrics Image Enhancement Physical Prior-based Supervised Learning
Semi-Supervised

Learning
Unsupervised
Learning

Metrics AL CLAHE DCP NLP MSCNN EPDN SSDN DADN ZID Our

GMRVL ↑ 2.280 2.071 2.715 1.952 1.902 1.529 1.923 1.236 1.881 1.856
BRISQUE ↓ 34.100 28.757 38.739 38.051 37.955 25.750 26.026 28.693 25.867 24.627
PIQE ↓ 44.541 45.004 47.544 46.726 46.297 37.253 33.351 35.091 38.952 27.834

Note. ↑ indicates that the larger, the better. ↓ indicates that the smaller, the better. The bold and underlined values indicate the best and second-best results.

Figure 7. The noticeable artifacts masks detected by PIQE (Venkatanath et al. 2015) metric for (b) AL, (c) CLAHE (Reza 2004), (d) DCP (He et al. 2011), (e) NLP
(Berman et al. 2018), (f) MSCNN (Ren et al. 2020), (g) EPDN (Qu et al. 2019) , (h) SSDN (Li et al. 2019), (i) DADN (Shao et al. 2020), (j) ZID (Li et al. 2020) and
(k) ours results. (a) The dust storm image.
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5. Conclusion and Discussion

In this work, we propose an unsupervised Martian dust storm
removal network via DRL. The network is formed with three
parts, i.e., the forward translation, the backward reconstruction,
and self-reconstruction, to achieve powerful representation
learning. Additionally, we enforce the adversarial loss, cycle-
consistency loss, and latent reconstruction loss to train the
model.

Advantages. There are several significant advantages of our
model. First, our dust storm removal model with DRL can be
solely trained on the real-world unpaired dust storm and clear
images. Thus, we can circumvent the expansive and time-
consuming data set collection and address the domain shift
issue. Second, the model can implicitly learn the dust storm-
relevant prior knowledge from the dust storm data sets,
generating a high-quality image without relying on any
handcrafted priors as training objects. Extensive experiments
demonstrate that our model exhibits good generalization
performances on real-world Martian dust storm removal.

Properties. It is worthy to note that our work is an image
restoration model, not image enhancement. On the technical
side, our model translates the Martian dust storm images into
clear images. During this translation, the discriminator acts as a
style classifier that can align the restored images and the clear
images onto the same domain. In our data sets, the clear
samples are collected from real, clear Martian images; as a
result, our restored images are more looked like to be taken on
a clear day on Mars. Because of this, unlike the goals of image
enhancement algorithms that yield visually pleasant results
with vivid color and high contrast, our goal is to restore the
Martian dust storm image to a real, natural, and faithful one.

Beyond Martian dust storm removal.With the rapid devel-
opment of space technology, numerous optical telescopes have
been built (in outer space and on the ground), and massive
amounts of astronomical image data have been captured. It
enables us to develop data-driven-based approaches for
astronomical image restoration. Unfortunately, it is impractical
to simultaneously obtain the paired clear and degraded
astronomical images. As discussed above, the advantages and
properties of the proposed DRL network enable effective
unsupervised learning, having huge potential for many other
data-driven-based astronomy image restoration, where the
paired unclear and clear images are unavailable.
Evaluation of the dust storm.We further propose a new

approach for the Martian dust storm evaluations with respect to
the level and spatial distribution in the scenes. Specifically, we
compute the difference between the recovered image and the
dust storm image by the following function:

D¢ = -

D = D¢ + D¢
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where fc2g[·] is the color-to-gray transform; fg[·] is the Gaussian
filter (window size = 7 and standard deviation = 3 in this
paper). H and W represent the height and width of the image; p
refers to the position of the pixel in the map. ΔI is the map of
the difference between the recovered image and the dust storm
image; it also describes the distribution of the suspended dust
particles. The ΔI uses the middle equation in the Equation (13)
to maintain that each pixel in the ΔI map is >= 0. DI is the

Table 3
Ablation Study: Evaluations on the SSN, U-Net Shape, ResNet Block and DRL (at 10th epoch)

Metrics BN IN LLS CNN CycleGAN Ours (SSN, U-Net, ResNet, DRL)

GMRVL ↑ 1.434 1.662 1.529 1.603 1.233 1.686
BRISQUE ↓ 26.466 25.863 26.792 26.382 34.104 25.613
PIQE ↓ 30.081 29.640 36.229 28.406 38.512 28.003

Figure 8. The visual results of the models in our ablation studies. As we can find that artifacts are generated in the results of the models of “BN”, “IN”, “LLS” and
“CycleGAN”, demonstrating the inefficiency of these models.
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global average of ΔI; it reflects the level of the dust storm to
some extent.

Figure 9 shows the visual results of ΔI maps. As we can see,
the ΔI maps are consistent with the input images, indicating
that the dust storm is heavier in the distant background (the sky
or mountain) scenes while less in the foreground. The DI can
be used as a new quantitative metric to measure the level of the
dust storm in the scenes. As demonstrated in Figure 9, the left
two samples got higher DI than the right ones, indicating that
they encountered more severe dust storms.
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