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Abstract

To reveal whether the dynamics of solar activity precede those of global temperature, especially in terms of global
warming, the relationship between total solar irradiance (TSI), which is treated as a proxy of solar activity, and
global surface temperature (GST) is investigated in the frequency domain using wavelet coherence. The results
suggest that the effect of TSI on GST is mainly reflected on the characteristic scale around 22 yr, and variations in
TSI lead to changes in GST with some delay effect as shown by the phase difference arrows. However, this
implicated relationship has been perturbed by excessive CO2 emissions since 1960. Through the combination of
co-integration analysis and wavelet coherence, the hidden relationship between TSI and GST has been uncovered
without the CO2 effect and the results further indicate that TSI has a positive effect on GST at the characteristic
scale around 22 yr with a 3 yr lead.
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1. Introduction

An increasing trend of about 0°.6 C in the global surface
temperature (GST), which is captured in the last 150 yr, has
been considered to be the main manifestation of global
warming (Souza Echer et al. 2012). Global warming is not
only a hot research topic at present but also the most
controversial issue (Gil-Alana et al. 2014; Kristoufek 2017; Li
et al. 2018). On the one hand, many researchers discuss how
the rapid increase of CO2 concentration caused by human
activities is the main reason for climate warming since the
industrial revolution. Foukal et al. (2006) found that the total
solar irradiance (TSI) variations extending back about 10,000
yr using 10Be are too small to drive global climate variations on
centennial, millennial and even million-year timescales. In
particular, the commonly accepted point of view represented by
the Intergovernmental Panel on Climate Change (IPCC) holds
that the CO2 greenhouse effect has been the dominant cause of
global warming since the middle of the twentieth century. On
the other hand, other researchers suggest that the GST rise has
resulted from fluctuation in solar energy to a large extent. This
fluctuation is an important driving factor affecting the Earthʼs
climate change. Using the moving average method, Valev
(2006) found a significant correlation between GST and the
sunspot number (SN) over the period 1856–2002. Given that
the analysis result that both solar and temperature data follow
the same Lévy walk process, Scafetta & West (2010) not only
confirmed the existence of a complex and non-linear link

between solar activity and GST, but also obtained further
evidence that spectral coherence can be used to represent this
link. Scafetta (2014) demonstrates that GST and SN are
characterized by a common statistical fractional model,
indicating that the two parameters are quite related to each
other at multiple timescales. Therefore, it is essential to
determine which cyclical components and non-cyclical com-
ponents (especially the long-term trend in global temperature
change) are most influenced by solar activity or CO2 emissions.
Controversies in the literature suggest several issues on the

relationship between global climate change and solar activity.
First, without a suitable physical model, any discussion about
the statistical significance of a correlation is not so convincing.
Second, pioneering researches show an obvious methodology
dependence. The signature of solar or CO2 emissions in GST
observations can be distinguished by applying specific analysis
methods which further consider non-linearity, multi-timescale
oscillations and filtering of multiple climate change contribu-
tions. Third, the cycle amplitude and phase relationship might
change with the increase of time. Hereby, we propose to utilize
the wavelet coherence (WTC) to solve the above-mentioned
issues. WTC is an advanced signal processing method which is
special to study the multi-scale relationships between two non-
stationary time series in the time-frequency domain. The rest of
the paper is structured as follows. Section 2 describes the data
sets used in this study and the basic principles of WLC.
Section 3 presents the hidden relationship between TSI and
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GST after controlling the influence of CO2 emissions. Section 4
presents concluding remarks.

2. Data Sets and Methods

2.1. Data Sets

SN and TSI are two important parameters to describe solar
activity (Rigozo et al. 2011; Kopp 2016). Compared with the
indirect effect of sunspots, TSI is the direct indicator of the
solar activity parameter which is responsible for the Earth’s
climate change. Limited by unavoidable instrumental errors,
the measurable absolute level of TSI ranges from 1360 to
1375 W m-2. The mean value of TSI from 1979 to 2008 has
been tuned to 1366.1 W m-2 (Soon et al. 2011). Kopp & Lean
(2011) suggest a TSI value of 1360.8± 0.5 W m-2 as the best
representation of solar minimum. The impact of this uncer-
tainty in TSI on GST is beyond the scope of this paper. It must
be realized that recognizing the uncertainty in TSI is a premise
for correctly evaluating the dynamic evolution of the Sun-Earth
system.

In view of some misunderstandings and inaccurate informa-
tion about TSI, further explanation is necessary. Since the
direct and continuous satellite observation data of TSI have
only been accumulated for about 30 yr, which is insufficient to
study the long-term effect of climate change (Zhao &
Han 2012; Soon et al. 2014), the TSI before 1979 is
constructed using other solar indicators related to TSI. In this
paper, we apply the reconstructed TSI data provided by the
Laboratory for Atmospheric and Space Physics (LASP)
Interactive Solar Irradiance Data Center (LISIRD), which is
available at https://lasp.colorado.edu/lisird/. The main reason
for choosing the TSI reconstruction from LISIRD is that it uses
version 2 of the Naval Research Laboratoryʼs (NRL) TSI
variability model (NRLTSI2) to recover historical TSI from
1610 January to 2020 December. The NRLTSI2 computes TSI
from the variations with respect to quiet Sun conditions
resulting from bright faculae and dark sunspots on the solar
disk, where the magnitude of the irradiance variations is
determined by a linear regression of proxy Mg II index sunspot
area indices against the approximately decade-long solar
irradiance measurements of the Solar Radiation and Climate
Experiment (SORCE). Compared with the first version, version
2 improves the data quality of sunspot darkening indices based
on new cross calibration of the current sunspot region
observations made by the Solar Observing Optical Network
(SOON) with the historical records of the Royal Greenwich
Observatory (RGO), which severely affects estimates of TSI
prior to November 1978 (Coddington et al. 2016).

As for the global surface air temperature, our analysis in this
paper is based on Goddard Institute for Space Studies Surface
Temperature product version 4 (GISTEMP v4), which is
available at https://data.giss.nasa.gov/gistemp/. The GIS-
TEMP v4 integrates version 4 of the Extended Reconstructed

Sea Surface Temperature (ERSST) data with land surface air
temperature from version 5 of the Global Historical Climatol-
ogy Network (GHCN) monthly data set to create hybrid surface
temperature. Compared with the old version, the newer ERSST
version improves the spatiotemporal variability of SST and
absolute SST. The new GHCN version provides a much larger
number of stations (26000 versus 7200 in version 3) and more
comprehensive uncertainties for calculating station and regio-
nal temperature trends. Additionally, historical spatial varia-
tions in surface temperature anomalies are derived from
historical weather station data and ocean data from ships,
buoys and other sensors. Data uncertainties will arise with the
increase of measurement uncertainty in spatial coverage of the
station record, and also of systematic biases due to technology
shifts and land cover changes. Previously published uncertainty
estimation for GISTEMP included only the effect of incom-
plete station coverage. The newer version updates this term
using currently available spatial distributions of source data,
state-of-the-art reanalysis, and incorporates independently
derived estimates for ocean data processing, station homo-
genization and other structural biases.
The resulting 95% uncertainties are near 0.05°C in the global

annual mean for the last 50 yr and increase going back further
in time reaching 0.15°C in 1880. The GISTEMP provides
monthly estimates of GST change in the form of temperature
anomalies (deviations from the corresponding 1951–1980
means with a scale of 0.01°C) from 1880 to the present
(Lenssen et al. 2019). It should be noted that if station histories,
which could indicate documented changes in station location,
instrumental condition, time of observation, etc., exist, it may
be possible to correct the station records affected by those non-
climatic biases. It can be more helpful if parallel measurements
associated with the station change are available. Unfortunately,
station histories cannot be reached. Therefore, we should
recognize that the GST may not be the correct metric to study
climate change because the GST record may be contaminated
by other non-climatic factors as explained and outlined in
Connolly et al. (2021).

2.2. Methodology

The mathematical approaches employed in this research
include the continuous wavelet transform (CWT). We use the
cross wavelet and the wavelet decomposition to systematically
study the effect of carbon dioxide on global temperature from
two aspects of period term and long-term trend term
respectively. CWT, a time-frequency analytical method, which
was characterized by multi-resolution and time-frequency
localization, is a good tool to detect cyclical signals. At present
it is widely used in time series processing (Torrence &
Compo 1998).
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The CWT of a time series Xn(n= 1, 2,K, N) is defined as
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step, s is the wavelet scale, dt s is the normalization factor, ¢n
is the reversed time and f0 is the mother function (Li et al.
2018). Particularly, we choose the Morlet wavelet as the month
wavelet; the Morlet wavelet is defined as (Grinsted et al. 2004)
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where π−1/4 is the normalization factor, η is the dimensionless
time and w0 is the dimensionless frequency, which is set to 6
for a good balance between time and frequency localization.
Based on the CWT, the WTC of two time series Xn and Yn
(n= 1, 2,K, N) is defined as
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where Rn(s) is the localized correlation coefficient ranging from
0 to 1, S is the smoothing operator, s is the wavelet scale
(Aguiar-Conraria et al. 2008) and ( )W sn
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wavelet coefficient which is defined as
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Here ( )W sn
X is the wavelet transform of time series Xn and
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Y is the complex conjugation of wavelet transformation of

time series Yn. WTC realizes the simultaneous analysis of the
correlation of two signals in the time-frequency domain. It
represents the redundancy of information behind two signals
when the peak signal cross correlation is achieved in frequency
domain (Li et al. 2017). For a given timescale, the phase angle
between two time series Xn and Yn (n= 1, 2,K, N) is expressed
as follows
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where ( )f sn
XY is the phase difference, S is the smoothing

operator, s is the wavelet scale, and Im and Re represent the
imaginary and real parts of a complex number respectively.

The wavelet decomposition can effectively decompose a
signal into different scale spaces by stretching and translating
the wavelet basis function. The orthogonal discrete Meyer
wavelet is selected as the wavelet basis function, which can
decompose a signal into orthogonal frequency levels. Each
level is limited by a power of 2 (Souza Echer et al. 2009). In the
wavelet decomposition analysis, the original signal (S) is
decomposed in the approximation (A) and the detail (D). The
approximation contains the low-frequency part of a signal,
whereas the detail contains the high-frequency part of a signal.
After the first level decomposition, it is represented by S=A1
+D1. After the second level decomposition, the approximation

obtained from the first level decomposition is further decom-
posed into the approximation and details. Note that the detail
obtained from the first level decomposition should not be
decomposed again. The second decomposition can be defined
as S=A2+D2+D1 and A1=A2+D2. In this sequential way,
after the Nth decomposition, the original signal is finally
decomposed into: S=AN+DN+...+D2+D1 where D1, D2,
K,DN is the detail obtained by decomposition from level 1,
level 2 to equal level N, and AN is the detail obtained through
the decomposition from level N. The optimal decomposition
level is determined based on entropy criterion and the process
is repeated until this criterion is reached (Echer et al. 2004). In
this paper, the WT is performed until the fifth level
decomposition with the approximation A5 and the detail D5.
The corresponding frequency bands are shown in Table 1.

3. Results and Discussion

Figure 1 displays the monthly time series of total solar
radiation and GST from 1882 to 2020, in the left and right
panels respectively.
In Figure 1, we can see that the TSI time series displays a

significant periodic fluctuation with varying amplitudes. Mean-
while, the GST change is quite stable up until 1960 when an
obvious upward trend begins and keeps up until the end of the
analyzed period. This upward trend is usually considered to be
related to the excessive emission of carbon dioxide. A detailed
discussion on it is given later. Further, Figure 2 presents the
CWT results of the TSI time series and the GST time series, in
the left and right panels respectively.
In the figure, the yellower the color, the higher the power.

The bold contour line separates the insignificant area and
significant area that passes the 95% significance test under the
null hypothesis of the red noise (i.e., the first-order auto-
regressive process). The thin solid line of the cone of influence
distinguishes the reliable and unreliable regions due to the edge
effect by separating the whole time-frequency domain into dark
and light colors. It is clear from Figure 2 that (1) for the TSI
wavelet power spectrum the high power region with statistical
significance is located around the frequency band of 128
months, which is quite stable in time, revealing that TSI has a

Table 1
Frequencies Corresponding to the Scales of the Meyer Wavelet Function with a

1 yr Sampling Period

Level N Period (yr) Range (yr)

D1 1 2 2–4
D2 2 4 4–8
D3 3 8 8–16
D4 4 16 16–32
D5 5 32 32–64
A5 6 64 >64
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Figure 1. Monthly TSI and monthly GST from 1882 to 2021, in the left and right panels respectively.

Figure 2. Wavelet power spectrum of monthly TSI and monthly GST from 1882 to 2021, in the left and right panels respectively.
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significant oscillation with an 11 yr period; (2) for the GST
wavelet power spectrum, however, some regions with high
powers are observed. None of them passed the red noise test.
Two potential reasons can explain it: either GST really does not
have a significant period, or the significant period is greater
than 512 months, which cannot be detected by wavelet
analysis. Obviously, this dilemma will be overcome in the
future with the increase of observation data; (3) the wavelet
power spectra of TSI and GST are not consistent, and TSI and
GST have no common significant period in the analyzed range.

To explore the influential mechanism of TSI on GST, the
WTC is used to expose regions with high local correlation but
not necessarily high power in time-frequency domain and
further reveal the phase relationship.

In Figure 3, the region surrounded by a bold contour line
indicates that it passes the 95% significance level test based on
Monte Carlo simulations of the red noise. Only the region where
the WTC coefficient is greater than 0.5 shows the phase
difference arrow. The arrow which points right implies that the
two time series are in-phase; the arrow pointing left means the
two time series are in anti-phase; the arrow pointing down
indicates TSI leads GST; the arrow which points up expresses
that TSI lags GST. From Figure 3 we can see that TSI and GST
show a significant correlation at the period around 256 months
where the arrows generally points southeast. This indicates that
TSI leads GST by about π/4, which is 1/4 of the 256 month
period, or 32 months. The WTC result in Figure 3 demonstrates

that the effect of TSI on GST is mainly reflected at the timescale
around the 256 month or 22 yr cycle, but with an obvious lag.
However, the strong correlation is observed only until approxi-
mately 1960, after which the link between TSI and GST
disappears with the sharp increase in GST. This phenomenon
may be attributed to the greenhouse effect caused by the increase
of carbon dioxide emissions. Figure 4 displays the annual CO2

emissions (specifically global CO2 emissions from fossil-fuel
burning, cement manufacture and gas flaring) from 1880 to 2014
obtained from the Carbon Dioxide Information Analysis Center
database, which is available at http://cdiac.ornal.gov/trends/
emis/tre-glob.html. From Figure 4 we can see that due to the
fossil-fuel burning, the content of carbon dioxide has increased
dramatically since the second industrial revolution in 1960, which
is consistent with the change trend of GST. This trend also
weakens the connection between TSI and GST. To further study
the effect of CO2 on GST, the WTC and the wavelet
decomposition are employed to comprehensively detect the
relationship between GST and CO2 from two aspects of period
term and long-term trend term respectively.
Figure 5 shows the WTC spectrum of GST and CO2. It is

obvious that locally significant correlations are found on
timescales of less than 8 yr but with strong phase mixing, and
no high correlation zone is observed at timescales of more than
8 yr. The results in Figure 5 suggest that there is no correlation
between GST and CO2 from the aspect of period term. As
shown in Figure 5, WTC mainly focuses on the correlation

Figure 3. WTC spectrum of monthly TSI and monthly GST from 1882 to 2021.

5

Research in Astronomy and Astrophysics, 22:095019 (10pp), 2022 September Li et al.

http://cdiac.ornal.gov/trends/emis/tre-glob.html
http://cdiac.ornal.gov/trends/emis/tre-glob.html


Figure 4. Yearly carbon dioxide emissions from 1882 to 2014.

Figure 5. WTC spectrum of yearly CO2 emissions and yearly GST from 1882 to 2014.

6

Research in Astronomy and Astrophysics, 22:095019 (10pp), 2022 September Li et al.



analysis of periodic terms of two time series in the time-
frequency domain, but it does not consider the correlation of
trend terms. To compensate for the shortcoming of WTC, the
wavelet decomposition is performed until the D5 level and
Figure 6 presents the approximation A5 of GST, CO2 and TSI,
which is the scaling level corresponding to the long-term trend
(>64 yr).

From Figure 6, we can observe that the trend variation of
GST is consistent with that of CO2, and the correlation
coefficient is as high as 0.99. The trend variation of GST is
inconsistent with that of TSI, especially after approximately
1960, when the trend of TSI begins to decline while the trend
of GST continues to increase, and the correlation coefficient is
only 0.69. A more reasonable result may be obtained by
dividing the trend in Figure 6 into two segments before and
after 1960 (Table 2).

From the results in Table 2, we can draw the following
conclusions: (1) the change of global temperature before 1960
is more correlated with TSI than CO2; (2) the change of global
temperature after 1960 is more correlated with CO2 than TSI;
(3) the contribution of the increasing CO2 concentration to the
global temperature change tends to be linear. Only by
controlling the impact of CO2 emissions can we truly reveal
the potential relationship between TSI and GST. According to
the Augmented Dickey–Fuller test, the time series of GST and
CO2 emission is non-stationary (Dickey & Fuller 1979). For

non-stationary time series, a classical regression model cannot
be used, which is based on stationary time series. Otherwise,
many problems such as spurious regression will appear, and
then wrong conclusions will be drawn. To overcome the
difficulty of analyzing non-stationary time series, the co-
integration theory proposed by Engle and Granger in 1987
provided a solution for modeling non-stationary time series
(Engle & Granger 2015). The basic idea of co-integration
theory is that although two or more time series are non-
stationary, some linear combination of them can be stable.
Therefore, there is a long-term stable relationship between
these two or more time series, which is called a co-integration
relationship. The result of the Engle–Granger co-integration
test demonstrates that GST and CO2 emissions are co-
integrated. This implies that there is a long-term stable
equilibrium relationship between GST and CO2 emission. We
thus regress GST on CO2 emissions and apply the ordinary

Figure 6. The approximation A5 corresponding to the long term trend of TSI, CO2 emissions and GST after wavelet decomposition, where the approximation A5 of
CO2 emissions is the deviation from the 1882–2014 average.

Table 2
Correlation Analysis of the Trend Item of GST, TSI and CO2 Before and

After 1960

Period Correlation (GST/TSI) Correlation (GST/CO2)

1882–1960 0.99 0.87
1960–2014 −0.97 1
1882–2014 0.69 0.99
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least squares method to estimate the coefficient of the co-
integration regression equation. The regression residuals, as the
deviations from the equilibrium relationship, represent GST
dynamics after controlling the impact of CO2 emissions. It
should be noted that the CO2 emission time series has an
annual frequency, so the frequencies of TSI and GST are
lowered by averaging the original monthly data to make sure
that the frequencies of all three-time series are consistent.

Since the trend of GST before 1960 is more correlated with
TSI than CO2, Figure 7 mainly displays the GST fluctuations
from 1960 to 2014 after removing the trend item caused by
CO2 from GST. From Figure 7 we can clearly see that the trend
of GST significantly decreases after 1960 when controlling the
impact of CO2 emission, which is completely consistent with
the results in Table 2. In this way, we could shed light on the
true underlying relationship between TSI and GST without the
effect of CO2 emissions.

Considering the change in frequency, Figure 8 shows the
WTC spectrum of yearly TSI and yearly GST before and after
controlling the CO2 effect. From Figure 8 we can see that after
controlling the effect of CO2 emissions on GST, the correlation
between TSI and GST not only increases considerably but also
passes the significance test for the period after 1960. When
looking at the significant region with the characteristic scale
around 22 yr, we can see that the correlation between TSI and
GSI is positive, and the phase difference arrows roughly point
to the lower right and fluctuate in a relatively small angle range.

Consequently, we adopt the average phase difference to
quantitatively express the phase relationship between TSI and
GSI, and the average phase difference is 50°.2, which indicates
that the changes in TSI precede the changes in GST by 3 yr. It
can be seen that the impact of solar activity on the Earth’s
climate has a delayed effect, and the change of solar activity
can only be shown in the Earth’s climate after several years.
The 22 yr cycle, which is depicted by the relationship between
TSI and GST in Figure 8, is confusing on the premise of the
fact that the TSI is insensitive to the 22 yr solar magnetic cycle
as determined by the study of sunspots. The explanations for
this problem are structured as follows: (1) the TSI data are
partially reconstructed using SN data, and a sunspot does not
consider the change in the Sunʼs magnetic field polarity every
11 yr cycle. Therefore this is not surprising that TSI is
insensitive to the 22 yr solar magnetic cycle (Barnhart &
Eichinger 2011); (2) solar activity has a 22 yr cycle as the
dominant period which is also named the magnetic Hale cycle
(Souza Echer et al. 2009), and GST also has large climate
oscillations with the period of about 20 yr (Scafetta 2010); (3)
although the 22 yr cycle of sunspots has a lower amplitude or
power than the 11 yr significant cycle, the WTC can well reveal
regions with a high local correlation of two time series in the
time-frequency domain. Notably, the current research cannot
determine the physical mechanism that could well explain the
impact of solar activity on the Earthʼs climate. However, we are
inclined to the views of Marsh & Svensmark (2003) that global

Figure 7. Global land surface temperature time series before and after controlling the CO2 effect.
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climate change may be attributed to the variability of solar
magnetic field and solar wind, which modulate the flux of
galactic cosmic rays reaching the Earth. These galactic cosmic
rays may interfere with the atmospheric electric field and cloud
cover in turn.

4. Conclusion

In this study, we examine the relationship between solar
activity, CO2 emissions and GST. First, the results of CWT
indicate that TSI shows a significant oscillation with an 11 yr
period while GST has no dominant scale. Then, WTC is
applied to confirm that TSI has a positive lag effect on GST,
but this connection has been hampered by excessive CO2

emissions since 1960. Further, the combination of WTC and
WT demonstrates that the effect of CO2 emissions on GST is
mainly reflected in the trend. Finally, through a co-integration
analysis, the relationship between TSI and GST has been
reexamined by WTC. The results show that TSI has a positive
effect on GST at the characteristic scale around 22 yr with a
3 yr lead.
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