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Abstract

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the most sensitive ground-based, single-
dish radio telescope on Earth. However, the original H I spectra produced by FAST are affected by standing waves.
To maximize the power of FAST for high-sensitivity observations, we proposed an algorithm that combines fast
Fourier transforms and extreme envelope curves to automatically correct the baselines of FAST H I spectra and
remove standing waves from the baselines. This algorithm can reduce the amplified noise level caused by standing
waves to a near-ideal level without losing signals or introducing false signals. The root mean square of the average
baseline reaches ∼8 mK, approaching the theoretical sensitivity of an H I spectrum produced by FAST for an
integration time of 335 minutes, i.e., ∼6 mK.
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1. Introduction

The Five-hundred-meter Aperture Spherical radio Telescope
(FAST), located in Guizhou Province of Southwest China, is the
world’s largest single-dish radio telescope. It is an important
facility for surveying neutral hydrogen up to the edge of the
universe, detecting weak space signals, hearing possible signals
from other civilizations, etc. (Nan et al. 2011; Qian et al. 2020).
Although it has produced significant scientific achievements (Qian
et al. 2020), the baselines of the original H I spectra are not flat
enough and they contain massive standing waves that might be
generated by reflections between the dish and the receiver cabin
(Jiang et al. 2020). Although efforts have been made to minimize
the standing wave effects of FAST data (Jiang et al. 2020),
standing waves still exist in the spectra. Standing waves can
amplify the noise level of a signal; e.g., ripple amplitudes of
∼15mK are commonly seen (Jiang et al. 2020), which cause the
noise of the obtained high-sensitivity spectra to be higher than the
theoretically predicted noise. Some studies usually require
extreme high-sensitivity observations during the analysis of the
spectra; e.g., searching for the stellar winds, compact high-
velocity clouds and active star-forming dwarf galaxies (Lizano
et al. 1988; Giovanardi et al. 1992; Burton et al. 2001; Salzer et al.
2002, Li et al. 2022). A high-precision baseline correction method
is hence necessary for studies that require extreme high-sensitivity
spectra.

Polynomial fitting and trigonometric function fitting methods
are commonly used to make baseline corrections (Gan et al. 2006;
Baek et al. 2011). These methods usually need to cut peaks from
the original spectrum and estimate the baseline using a polynomial
or trigonometric function. However, these methods can be
ineffective if the baseline is complex or the format of the function

is not good enough. The asymmetrically reweighted penalized
least squares (arPLS) algorithm, developed from penalized least
squares methods (Eilers 2003; Carlos Cobas et al. 2006; Zhang
et al. 2010; Baek et al. 2015), is a widely used baseline correction
method for FAST data (Wang et al. 2022; Zhang et al. 2022). The
baseline can be estimated by changing the “weight” parameter
iteratively. Similar weights are assigned to baseline regions
without peaks, while no weights or small weights are assigned for
peaks; once assigned, the weights gradually reduce as the level of
the signal increases. However, arPLS is not good at removing
standing waves.
To correct an inclined baseline and remove standing waves from

the original H I spectra automatically produced by FAST, an
algorithm combining fast Fourier transforms (FFTs) and extreme
envelope curves (EECs), called FFTEEC, is proposed in this work.

2. Data

2.1. Observations

FAST is equipped with a 19 beam receiver and dual linear
polarizer (i.e., XX and YY). The full bandwidth of the L-band is
500MHz over the frequency range 1.0–1.5 GHz. The frequency
resolution of the high-resolution modes is 476.84 Hz, corresp-
onding to a velocity resolution of ∼0.1 km s−1 @ 1.4 GHz. The
beam size is 2 9, and the pointing error is ∼0 2 (Li et al. 2018;
Jiang et al. 2019, 2020). The data used in this paper consist of H I

spectra of G176.51+00.20 observed on 2021 August 19 and 20,
with the 19 beam tracking observing mode, and the total
integration time of the data was 335 minutes with a sampling rate
of one second. We resampled the data to a velocity resolution of
0.1 km s−1, and only considered data in the velocity range
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−7000–7000 km s−1, i.e., 140,001 channels. The data displayed
in this paper are from the YY polarization of Beam M01.

2.2. Baseline of FAST

Figure 1 displays the original spectra after correcting the flux
and velocity (Jiang et al. 2020). In the left panel, the non-
uniform waterfall image indicates that the baselines of the
different original spectra are inconsistent, and the average
spectrum with massive standing waves is inclined. The right
panel shows fringes in the waterfall image after roughly
correcting the inclined baseline with the polynomial fitting
method. The standing waves are obvious and unstable (see the
partially enlarged view). The arc-shaped standing waves in the
2D waterfall image mean that the phases of the standing waves
drift with time and the periods of the standing waves in
different spectra are inconsistent at the same time.

3. Method

Due to the irregular phases and periods of standing waves, as
well as huge amounts of data produced by FAST, e.g., 6.0 TB
for our data, we propose a highly precise baseline estimation
algorithm, FFTEEC, to correct baselines automatically. First,
the original spectrum is preprocessed by a polynomial fitting
method. Second, the standing waves are extracted and removed
using FFTs. Third, the EEC method is employed to calibrate
the unsmooth parts in the baseline. Fourth, the extracted signal
is combined with the baseline obtained in the third step as the
result. Figure 2 displays the whole pipeline of the algorithm.

3.1. FFTs

An FFT is a fast algorithm that computes discrete Fourier
transforms (DFTs, Cooley & Tukey 1965). The DFT of
sequence x with length N can be expressed as
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Any frequency with a large amplitude in the frequency
domain, X, can be considered as a standing wave. A new
sequence, Y, is obtained by sorting X from high to low and
removing the first several items.

3.2. EECs

An EEC, ye, can be obtained with the following steps. First,
get the smoothed sequence y from Y, and the local maximum
and minimum are extracted from y. Second, the maximum and
minimum envelope curve of y, ymax and ymin, respectively, can
be obtained by fitting the local extrema with a linear
interpolation method. Thus, ye can be expressed as
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3.3. Automatic Signal Extraction

To extract a complete signal, we propose an iterative method to
cut the signal automatically. The initial signal range is obtained
from the EEC, where ye is greater than 20σ of the smoothed
baseline. The signal range needs to be extended if the difference
between the wing of the smoothed signal and the baseline is

Figure 1. Left: The waterfall image and average spectrum of original FAST spectra. The waterfall image, which contains 156 spectra, is non-uniform, which arises
from the baselines of different original spectra being inconsistent. The baseline is inclined and contains massive standing waves with different frequencies. Right:
Waterfall image after removing the polynomial-fit baseline and an enlarged image. The standing waves in the waterfall image are arc-shaped, indicating that they drift
with time. The periods of standing waves are not stable in the different spectra.
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greater than 1σ until it is smaller than 1σ. The method is displayed
in Figure 2 as a subprocess that is framed by a box.

4. Performance of FFTEEC

4.1. Simulation

The simulated data considered here contain the pure
analytical signal p, a simulated baseline, b, and random noise,
j,3 which can be expressed as
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and b contains the residuals extracted from the real data by the
method in this paper.

Figure 3 displays the results and residuals processed by
FFTEEC and arPLS, respectively.4 Both methods can be used
to correct the inclined baseline, since the baselines in the left
panel are sufficiently flat. The baseline obtained by arPLS is
better than that obtained by FFTEEC on the two ends of the
spectrum. In the right panel, although the profile of the
residuals of arPLS is comparable to the simulated baseline, it is
hard to judge whether the standing waves have been removed
since the noise level of the residuals is very high. In contrast,
the residuals from FFTEEC are remarkably consistent with the
simulated baseline, not only with the profile, but also the
standing waves.
Figure 4 displays a comparison between a simulated signal

and spectra processed by FFTEEC, and it can be seen that all
profiles are consistent (see details in the top panel). To show
the differences more clearly, we have provided a partially
enlarged view in the middle panel, and residuals are displayed

Figure 2. Pipeline of FFTEEC. The figure corresponding to each step is the average spectrum after the step is processed.

Figure 3. Left: Results processed by different methods. The blue line shows the FFTEEC result, where the zero-point is 1, and the green line is the arPLS result. The
flat baselines indicate that both methods can be used to correct inclined baselines. Right: Simulated standing waves and residuals from different methods. The blue line
is the FFTEEC result and the green line is the arPLS result. The orange line is the simulated standing wave. The spectra have been separated by 1 on the y-axis to aid
presentation. The profiles of the residuals of arPLS and FFTEEC are consistent with the simulated baseline. Standing waves are obvious in the residuals of FFTEEC,
but unclear in the residuals of arPLS since the random noise is very high.

3 The random noise was generated by the random number generator numpy.
random.randn from the Python language.

4 We used the C++ arPLS software package provided by Ganriel Kronberger
to speed up the calculations. https://github.com/heal-research/arPLS.
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in the bottom panel. The signals in the spectra processed by
FFTEEC are consistent with the simulated signal, and the
residuals between them are flat. In the simulated data, the width
of the 3σ signal is 60.2, while that obtained by the automatic
signal extraction method is 84.8, which is wider than the signal.

The root mean square error (RMSE) can be applied to
illustrate the difference between two spectra, which can be
expressed as
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where N is the length of the sequence, and y and y are the
signals to be compared. The RMSE between the simulated
signals and the spectra processed by FFTEEC is 0.10, and that
between the simulated signals and the simulated signals after
random noise injection is also 0.10, indicating that there is only
random noise in our result. As highlighted by the visual effect
shown in Figure 4 and RMSE values of the simulated data, our
method does not lose signals or introduce false signals.

The root mean square (rms) can also be employed to judge
the effectiveness of our method, which can be expressed as
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where N is the length of the sequence and y is the baseline after
removing the signal. We compared the rms noise levels
between the random noise of simulated data and our results,
and the ratio between them is 1.12, indicating that our method
can get a near-ideal rms noise levels.

4.2. Application to Real Data

We applied a 10th order polynomial fitting method to correct
the inclined baseline preliminarily. However, the baseline is
roughly flat after polynomial correction, but still bumpy, and
there are massive standing waves with different periods in it.
Figure 5 presents the baseline of FAST in the frequency

domain processed by FFT. The blue line is the original data,
and there are three distinct standing waves with different
frequencies. The orange line is the result where the standing
waves have been removed. Here, we find that the frequencies
of the standing waves of most FAST data are relatively
consistent and contain three different frequencies, as shown in
the figure after processing the data from different beams.
However, some standing waves appear to have additional
frequencies; e.g., the XX polarization of Beams M10, M13 and
M15, the YY polarization of Beams M06, M07 and M17, etc.
Taking the first 20 orders can remove almost all standing waves
in the different data sets, whether the standing waves contain
three frequencies or more. Thus the order of the FFT algorithm
usually can be assigned to 20, indicating removal of the top 20
items with the largest amplitudes in the frequency domain. This
number was obtained after experimenting using various FAST
data sets.
Figure 6 displays spectra corrected by FFTEEC and arPLS,

in the left and right panels respectively. In the left panel, the
standing waves have been removed from the spectrum, since
there is only random noise in the waterfall image. Meanwhile,
FFTEEC is stable for the different spectra, since the average
spectrum is so flat that it is hard to find any obvious standing
waves. The result processed by arPLS is shown in the right
panel; no matter in the waterfall image or average spectrum,
standing waves are obvious, indicating that arPLS can just
correct the inclined baseline and is not good at removing
standing waves in the original H I spectra produced by FAST.

Figure 4. Results for simulated data. Top: The orange line is the simulated
signal and the blue line is the spectrum processed by FFTEEC. Middle: An
enlarged figure of the top panel. Bottom: The residuals between the simulated
signal and our result. The profile of the simulated signal is similar to the results
produced by FFTEEC in the top and bottom panels. The residuals are flat in the
bottom panel, indicating that the standing waves have been removed from the
baseline and we did not introduce any false signals or lose signals.

Figure 5. FAST baseline in the frequency domain. There are three obvious
peaks in the blue line, corresponding to the frequencies of standing waves. The
peaks have been removed in the orange line, indicating that our method can
effectively extract standing waves.
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Table 1 lists the rms noise of the average spectrum of five
groups, i.e., the XX polarization of Beams M02 and M03 and
the YY polarization of Beams M01, M06 and M13. The first
row is for arPLS and the second row is for FFTEEC. The
parameter λ, which is used to control the balance between
fitness and smoothness, of arPLS is 1011 when real data were
processed. Based on the rms estimation method of the average
spectrum provided by FAST (see Equation (10) of Jiang et al.
2020), the theoretical rms of the average spectrum, integrated
for 335 minutes, is 6 ∼ 8 mK. The rms noise of arPLS is
∼20 mK, which is about three times greater than the theoretical
rms. As a comparison, the rms noise of FFTEEC is ∼8 mK and
approaches the theoretical rms.

In conclusion, although arPLS can be applied to correct the
inclined baseline, it is hard to remove standing waves from the
baseline. In contrast, FFTEEC can effectively remove standing
waves and obtain a near-ideal rms. There are some shortcomings
for FFTEEC, e.g., it can only be used to correct the baseline when
knowing the position of the signal, but it cannot automatically
extract the signal as arPLS can. Additionally, sometimes the
parameters of FFTEEC affect the results; e.g., the length of the
smoothing box when automatically extracting a signal.
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Table 1
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