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Abstract

Predicting the activity of solar flares is of great significance for studying its physical mechanism and the impact on human
production and life. Problems such as class imbalance, high time-series sensitivity, and over-localization of important
features exist in the sample data used for flare forecasting. We design a solar flare fusion method based on resampling and
the CNN-GRU algorithm to try to solve the above problems. In order to verify the effectiveness of this fusion method,
first, we compared the forecast performance of different resampling methods by keeping the forecast model unchanged.
Then, we used the resampling algorithm with high performance to combine some single forecast models and fusion
forecast models respectively. We use the 2010–2017 sunspot data set to train and test the performance of the flare model in
predicting flare events in the next 48 h. Through the conclusion of the above steps, we prove that the resampling method
SMOTE and its variant SMOTE-ENN are more advantageous in class imbalance problem of flare samples. In addition,
after the fusion of one-dimensional convolution and recurrent network with “forget-gate” , combined with the SMOTE-
ENN to achieve TSS= 61%, HSS= 61%, TPRate= 77% and TNRate= 83%. This proves that the fusion model based on
resampling and the CNN-GRU algorithm is more suitable for solar flare forecasting.

Key words: (Sun:) sunspots – Sun: flares – Sun: X-rays – gamma-rays – Sun: magnetic fields – Sun: corona

1. Introduction

1.1. Flare Forecast Background Description

The eruption of solar flares is a complex nonlinear process,
which is an important issue in the field of solar-terrestrial
research (Soumya et al. 2020). When it explodes, it will
generate a huge energy and probably with coronal mass
ejection (CME) (Temmer et al. 2010). The generated rays and
high-energy particles will affect the operational reliability of
space-based and ground-based systems. The earliest human
discovery of flares dates back to 1859, when British astronomer
Carrington observed flashes in the visible light range
(Carrington 1859). A reliable flare forecasting model should
explain how energy is stored in the Sun’s atmosphere and how
it is released. The accepted standard is to refer to the flare
model Sweet-park (Parker 1957) to describe the evolution
mechanism of flares under steady-state magnetic reconnection.
It is believed that the energy released by the flare comes from
the magnetic field, and the core process of specific energy
release and transformation is magnetic reconnection.

However, there is no more reliable physical model used to
accurately describe the flare mechanism in the existing
research; data-driven models are better at establishing nonlinear
mapping relationships with a large number of samples. The use
of machine learning methods combined with data processing
technology to research on flare forecasting is of great
significance.

1.2. Flare Forecasting Methods

The core problem of solar flare forecasting is to effectively
distinguish flare events from non-events. Park and Leka’s
research focuses on the “transition region” between flare events
and non-events (Park et al. 2020). The study captures all flare
events in a complete solar cycle, graphically and quantitatively
showing three different event types: event/event, no event/
event, no event/no event. However, this method is highly
dependent on human experience and does not take into account
the temporal characteristics of flares during their evolution.
There are attempts to design solar flare forecasting algorithms
to study short and long term fluctuations in sunspots (Soumya
et al. 2020). By acquiring sunspot data of 12 months, the study
analyzed the performance of short-term data and medium-to-
long-term data in forecasting, and finally proved that sequence
data containing nonlinear and multi-period information can
better describe the evolution of flares.
In order to improve the performance of forecasting

algorithm, Nishizuka tried to build a special deep learning
model named DeFN (Nishizuka et al. 2020) deep learning
network. The basic principle is to automatically identify
sunspots through a convolutional network, and then extract
79 features. Soft X-ray data are used to evaluate flare levels,
including X-level, M-level, and C-level large flares. Finally, the
correlation analysis of these 79 features and the flare level is
carried out for flare forecasting.
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In terms of deep learning networks, some scholars have
proposed further methods. Yi et al. (2020) introduced Long
Short-Term Memory (LSTM) networks for flare forecasting,
evaluating and comparing them with four regression models.
Finally, the model was evaluated using ten-fold cross-
validation and rms error criterion. The testing results proved
that this improved recurrent network has better performance in
forecasting. However, unlike other studies, this study only
made time series forecasting of X-ray flux, and did not discuss
other predictors that affect flare events in detail.

1.3. Problems to be Solved Urgently in Flare Forecasting

Compared with other typical machine learning, deep learning is
more suitable for processing large amounts of data to obtain
corresponding patterns. Solar activity is highly correlated with
time accumulation, and only convolutional layer networks cannot
capture the time-series features in samples. Solar activity is mainly
concentrated in sunspots, and only Recurrent Neural Network
(RNN) cannot fully adapt to the problem of highly localized
features. Some scholars have tried the fusion of convolutional
layers and recurrent networks, which are widely used in other
industries (Wang et al. 2016), but did not explain how to solve the
problem of flare forecasting.

M-class and X-class flare events are low-probability events,
and there are a large number of class imbalances (Wan et al.
2021), and the models used to predict solar flares also need to
deal with class imbalances. The testing results have proved that
directly using unbalanced processing algorithm such as
resampling or weighting is not conducive to the accuracy of
the forecasting model. We need to select a class imbalance
processing algorithm suitable for the flare forecasting problem
by comparing comprehensively.

The sections of this paper are arranged as follows: Section 1 is
Introduction. Section 2 introduces the data and basic methods,
including how to obtain the data and typical deep learning
methods. Section 3 introduces the fusion algorithm applied to flare
forecasting, including the use of the improved synthetic minority
oversampling technique (SMOTE) algorithm, and how to achieve
the fusion of 1D convolutional and recurrent networks. Section 4
presents testing and analysis, where we introduce the adopted
evaluation metrics and show the specific performance of each
method. Section 5 draws the conclusion.

2. Data and Method

2.1. Data Source

Accurately classifying labels in flare samples is the basic
task of forecasting. A more common approach is to extract all
the predictors and corresponding data on whether or not a flare
event will occur through an open source website.

For sunspot acquisition, we can easily download daily sunspot
observation data from (ftp.swpc.noaa.gov/pub/warehouse). We

can also extract forecast data for solar flares as comprehensively
as possible by selecting keywords on the JSOC website (https://
www.jsoc.stanford.edu). Among them, the selection of predic-
tors is in principle not less than 10. The sampling time of single
predictor data is not less than 1 minute or more than 1 week, and
the total sample sampling time of all predictors is not less than
1 yr.
Regarding the method of acquiring soft X-ray labels, GOES

satellites are civilian geostationary orbiting weather satellites
under the umbrella of NOAA and NASA. The satellite
continuously observes and records data related to soft X-ray
flares, including start time, end time and level based on soft X-ray
flux assessments, and NOAA numbers for the sunspot. If a flare of
magnitude M1.0 and above occurs in the sunspot within the next
48 h, it is marked as a positive sample and marked as “1”.
Otherwise, a negative sample is marked as “0”.
SunPy is a Python-based API for solar physicists. Through the

program written by yourself, you can easily obtain the GOES flare
event data set within a specified time range through SunPy, as a
reference for the labeling of subsequent flare samples. Of course,
what you need to know is that a more convenient way to obtain
data is to refer to the sunspot magnetogram and flare data set (Xin
et al. 2018) provided by the Interdisciplinary Innovation Working
Group on Space Environment Early Warning and Artificial
Intelligence Technology.
We choose the sunspot sequence data from 2010 to 2017 as the

initial data. The main parameters included are shown in Table 1.

2.2. Deep Learning Method

Deep learning not only has obvious advantages when dealing
with massive amounts of data but also has the nature of
extracting features from the original data, which can mine
unknown internal connections and mechanisms in the data.
Multiple neurons form a neural network, including an input
layer, a hidden layer, and an output layer. In particular, the
introduction of the hidden layer strengthens the expressive
ability of the network, but it also leads to an increase in
computational complexity. The hidden layer can have more
than one layer, the output layer can also have multiple outputs.
The neural network realizes the extraction of knowledge by

transforming the input data layer by layer. The weights of the
transformation are obtained through learning. This process is
the “training model”. First, the network transforms the input
value and outputs the predicted value. Then, the loss function is
used to calculate the difference between the predicted value and
the true value to obtain the loss value. Finally, the optimizer
uses the value calculated by the loss function to update the
weights value in the opposite direction of the gradient and so
on, until the model accuracy reaches a satisfactory accuracy or
the convergence is complete.
Convolutional Neural Network (CNN) algorithms are

designed to process data with a grid structure such as a matrix.
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The neurons between the layers are locally connected, and
weight values are shared among all neurons in a single layer,
thereby reducing the amount of calculation. For one-dimen-
sional sequence data, the one-dimensional CNN is used to
extract local features, as shown in Figure 1. For two-
dimensional data such as magneto-grams, the two-dimensional
CNN is generally used for feature extraction, and the
calculation principle is shown in Figure 2.

For RNN, its feature is that the hidden layer transformation result
of the previous sample and the current sample is used as the input
of the network at the same time, thus introducing the concept of
time. In formula (1), u and v are the weight matrices between
hidden layers, Ht−1 and Ht are the hidden layers of the previous
sample time series value. f (. ) is the activation function, and w is the
weight matrix of the time series. However, the traditional RNN
only considers neighboring samples, that is, the state at the most
recent moment, and cannot well extract features with long-term
dependence. Therefore, a variant of RNN called LSTM was
proposed by Jurgen Schmidhuber quote in 1997 (Hochreiter &
Schmidhuber 1997). In recent years, it has been widely used as the
basic structure of deep learning networks, mainly for fusion with
CNN and other feature recognition algorithms

⎧
⎨⎩

( · )
( · · ) ( )

Y f v H
H f u X w H

1t t

t t t 1

=
= + -

Compared with the traditional RNN, LSTM obtains the
transmission state Ct that RNN does not have, as shown in
Figure 3. In the process of successive network transformation of
samples, the gate state Ct changes very slowly compared with the
transformation value Ht of the hidden layer. This remembers long-
term information and forgets unimportant information.

LSTM has many internal operation parameters, which makes
matrix operation difficult. Therefore, its improved variant
Gated Recurrent Unit (GRU) was proposed. GRU has one less
gating setting than LSTM and uses the same gate state to
achieve selection and forgetting memory. It has fewer
parameters than LSTM, so it is easier to train and can achieve
similar or even better results.

3. Solar Flare Fusion Forecasting Model Based on
Class Imbalance and CNN-GRU Algorithm

3.1. SMOTE-ENN Resampling Algorithm Based on
Clustering

The idea of SMOTE is summarized as interpolating between
minority samples to generate additional samples. Define the
density of minority class samples xi as Di. The density Di refers
to the number of samples whose distance from the sample xi is

Table 1
Main Parameters

Key words Predictors Symbol

Unsigned value Total unsigned current helicity Hc

Total unsigned vertical current Jz

Net current parameter Absolute value of net current
helicity

Hcabs

Sum of absolute values of positive
and negative net currents

Jzsum

Magnetic field
information

Total photospheric magnetic free
energy density

ρtot

Average photospheric magnetic free
energy

r

Image information Net flux f
Active area of strong magnetic field Area
Pixel ratio with a clipping angle

greater than 45°
Area − shear

Figure 1. One-dimensional convolution.

Figure 2. Two-dimensional convolution.
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less than or equal to the average distance between samples in
the minority class. Record the density threshold DT as the mean
of the density Di of all minority class samples xi. Determine the
relationship between Di and DT. If Di is less than DT, the
sample is a dense point, otherwise it is a sparse point.

The characteristic of SMOTE is that it will randomly select
minority samples to synthesize new samples, regardless of the
surrounding samples. This is likely to cause two problems: (1) if
the selected minority samples are surrounded by minority
samples, the newly synthesized sample will not provide much
useful information. This is like the point far from the margin in the

support vector machine that has little effect on the decision
boundary. (2) If the selected minority samples are surrounded by
majority samples, such samples may be noises, then the newly
synthesized sample will overlap most of the surrounding majority
samples, making classification difficult. The effect of the SMOTE
algorithm is shown in Figure 4. Therefore, it is necessary to
implement the Edited Nearest Neighbor (ENN)method in the data
cleaning method.
For a sample belonging to the majority class, if more than

half of its K neighbors do not belong to the majority class, this
sample will be eliminated. Another variant of this method is

Figure 3. Typical RNN network principle.

Figure 4. SMOTE resampling effect comparison.
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that all K neighbors do not belong to the majority class, and
this sample will be eliminated. The disadvantage of the
SMOTE algorithm is that the generated minority samples are
easy to overlap with the surrounding majority samples and are
difficult to classify. The data cleaning technology can just deal
with overlapping samples, so the two can be combined to form
a pipeline, namely “SMOTE-ENN” (Lu et al. 2019). “SMOTE-
ENN” can usually remove more overlapping samples.

3.2. Fusion Algorithm Based on CNN-GRU

A forecasting model based on a convolutional network fusion
recurrent neural network is built. As shown in Figure 5, the
magneto-gram information is extracted through the convolutional
network, the sample features are output, and then the pattern
recognition is performed through the recurrent neural network,
and then the global regression layer is designed to output the
forecast result of the flare yield. The advantage of using the fusion
model is that it can not only analyze the morphological
characteristics of the active region from the magneto-gram, but
also extract the time series characteristics based on the time
evolution of the flare, and draw the forecasting conclusion through
comprehensive judgment, which is closer to the actual evolution
process of the flare than a single algorithm.

It should be noted that before constructing a forecast model,
the data of sunspots need to be distinguished. Although the

physical properties of sunspots are similar to a certain extent, it
does not mean that they are in the same state at the same time.
As shown in Figure 6, data for different sunspots need to be
input into the forecast model separately. Similarly, in the
forecasting process, it is also necessary to associate the sunspot
number with the model as much as possible.
We will explain the process from sequence data to sample.

To analyze the impact of changes in sequence data in time
series on flares, and to unleash the maximum performance of
computing hardware. We concatenate sequence data consisting
of multiple predictors into a 2D matrix whose rows and
columns are features and batches, respectively. Take time series
data of three predictors as an example, as shown in Figure 7.
Next, we regard the matrix composed of predictors as input

and design a one-dimensional convolution kernel and its relu
function of the same width to complete the design of the
convolution layer. As shown in Figure 8. All convolutional
layers use the same framework to capture the morphological
features of the sequence data.
CNN will output this change rule as a set of features, and

then through multiple layers and then through the RNN layer to
capture the time change rule of these features. The specific
process is shown in Figure 9.
Finally, this law is output to the full link layer for identifying

and judging whether flares occur.

Figure 5. Basic principles of the fusion model.
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As shown in Figures 8 and 9, the input to this model is the
sequence data of the predictors, and the output is a Boolean value
of whether a flare has occurred. The role of the convolutional
network is that it is better at capturing the morphological laws in
the samples and outputting them in the form of data. At the same
time, considering that solar flares are a time-accumulating
problem, we combine the GRU to capture long time series
problems in sequence data. Compared with a single model, this
model that considers both the regularity of data changes and the
accumulation of time is more advantageous in flare forecasting.

4. Performance Index and Test Results

4.1. Performance Index

This paper has researched the data-based forecasting strategies
of solar flare physical activities. The main contents are as follows:
First, according to the physical mechanism of solar flare eruption,
a suitable combination of parameters is selected and the data are

extracted. Learn algorithmic solar flare forecasting methods, and
design multiple sets of comparative examples. The evaluation
index used in this paper is the confusion matrix of the two-class
(as shown in Table 2) problem commonly used index and its
derivative index to measure the performance of the model.
In the field of machine learning, several basic indices are

usually derived based on the above confusion matrix. The
meaning and calculation formula is as follows:
Accuracy: The model correctly detects the accuracy of all

samples. When negative samples account for the vast majority
of all samples, even if the “positive samples” representing the
flare outbreak are misclassified, the accuracy rate is still high:

( )Accuracy
TP TN

TP FP TN FN
2=

+
+ + +

Recall: How many positive or negative samples were
detected by the model? For the flare forecast model, the TP
rate should be as high as possible to forecast all flare events as

Figure 6. Associate sunspot numbers with forecast models.
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Figure 7. Extension of sequence data to a two-dimensional matrix.

Figure 8. Design of convolutional layers.
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much as possible and prevent space weather disasters in time:

⎧

⎨
⎪

⎩⎪

( )3
TP

TP

TP FN

TN
TN

TN FP

rate

rate

=
+

=
+

Precision: The confidence level of the positive or negative
samples detected by the model. In the actual forecast, it is a
contradiction with the recall rate:

⎧

⎨
⎪

⎩⎪

( )
P

P

TP

TP FP
TN

TN FP

4
=

+

=
+

+

-

F1 coefficient: Comprehensive index, the harmonic average
of recall rate, and precision rate. In the case of a high recall rate,
to ensure that the F1 coefficient is high, the accuracy rate is

Figure 9. Design of the recurrent network layer.

Figure 10. Comparing the effects of sunspot numbers on forecasts.

Table 2
Confusion Matrix

Forecast for Flares Forecast for no Flares

Actual flare TP FN
Actually no flare FP TN
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high:

⎧
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The probability that the false report rate (FAR) model
incorrectly predicts a negative sample as a positive sample:

( )

PFAR 1
FP

TP FP
6

= -

=
+

+

In addition to the above-mentioned commonly used
indicators in the field of machine learning, there are two
general indicators in the field of space weather forecasting as
follows:

Peirce scores: The full name of this indicator is True Skill
Statistic, abbreviated as TSS:

( )

TSS TP TN 1
TP

TP FN

FP

FP TN
7

rate rate= + -

=
+

-
+

The value interval is [−1, 1], which comprehensively
evaluates the ability of the model to detect positive and
negative samples. −1 means that the extreme cannot predict,
and +1 means that the extreme can predict all flare events and
non-flare events. Although the value interval of TSS is a closed
interval, the TSS value rarely is “−1” or “1” in the complete
ideal situation in the actual application process.

Heidke scores: The full name of this indicator is Heidke Skill
Score, abbreviated as HSS:

( )

( )
( ) ( ) ( ) ( )
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It is not affected by the imbalance problem and measures the
gain of the model compared to random forecasting. The value
range is [0, 1]. When the HSS is equal to 0, the model does not
have any predictive ability, and the perfect HSS takes the value
is 1.

4.2. Test Methods and Results

First, in order to prove that sunspots need to be considered in
the training process, we use the basic classifier to conduct a
brief test, and the results are shown in Figure 10. It can be seen
from the figure that before the sunspot numbers are not
distinguished, the classifier can hardly distinguish the flare
events correctly, and this phenomenon has been significantly
improved after distinguishing the sunspot numbers, especially
in the Accuracy and Precision. It proves that it is very

necessary to train after considering the number of sunspots in
the process of flare forecasting.
To fully study the performance of machine learning models

in the field of solar flare forecasting, this project uses a data set
with a class imbalance ratio of 24:1 (as shown in Figure 4). To
confirm the optimal resampling algorithm, the samples were
randomly divided into three groups, denoted as Data A, Data B,
and Data C. Based on the same classifier, the “Hybrid
sampling”, SMOTE, and SMOTE-ENN algorithms were used
for re-sampling. The conclusions of different sampling methods
are shown in Figure 11. It can be seen from the figure that the
SMOTE-ENN method performs more prominently in most
scenarios.
After confirming that SMOTE-ENN is the optimal resam-

pling method, it is substituted into different classifiers. As
shown in Figure 12, using SVM, convolutional network CNN,
recurrent network RNN, and its two variants LSTM and GRU,
including the fusion model CNN-GRU and CNN-LSTM, it is
found that the fusion model performs more prominently on
most indicators.

5. Conclusions

This article has carried out research on the solar flare fusion
forecasting model based on resampling and the CNN-GRU
algorithm, and has drawn the following conclusions:

1. Class imbalance will affect model performances. Com-
paring the forecasting results of the original data, basic
mixed sampling, SMOTE algorithm and DS-SMOTE
algorithm, the resampled data show better performance
than the unresampled data in the forecasting. In addition,
the results show that the difference between SMOTE and
DS-SMOTE is uncertain, and further testing is required to
prove it.

2. The recurrent network has an important impact on the
performance of the forecasting model. It can be seen from
the test results that in the performance comparison of a
single model, the comprehensive index of LSTM is
higher than that of other single models, but after it is
integrated with CNN, its performance is significantly
reduced. In addition, the performance of the GRU model
is not as good as that in a single model. LSTM, but the
performance has been significantly improved after fusion.
This proves that the optimal single model is not globally
optimal after being extended to the fusion model, and the
fitness of different forecasting models in different
application scenarios is different.

3. The fusion model has more advantages in flare forecast-
ing tasks. Comparing the results of the single algorithm
and the fusion algorithm: the TSS and HSS of the fusion
algorithm are all good, the classification ability of
positive and negative samples is better, and the FAR
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Figure 11. Comparing the performance of different resampling algorithms.

Figure 12. Comparison of performance index of forecast models.
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has a certain degree of decline. Among them, the
performance of CNN-GRU is the best, indicating that
the addition of CNN improves the ability of GRU to
extract features, combining the former’s lower FAR and
the latter’s better detection effect of positive and negative
samples. Comparing the performance of the two fusion
strategies. It also proves that GRU is indeed easier to train
and more practical than LSTM.

Considering that deep learning requires high computing
hardware, this article does not compare the impact of different
optimizers, different depths, different batch sizes, and different
predictors on accuracy.
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