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Abstract

The restricted three-body problem (RTBP) is a fundamental model in celestial mechanics. Periodic orbits in the
synodic frame play a very important role in understanding the dynamics of the RTBP model. Most of these
periodic orbits, when interpreted in the sidereal frame, are actually resonant periodic orbits. As a result, numerical
computation of the periodic orbits is also one approach for researchers to understand the orbital resonances of the
three-body problem. Extensive studies have been carried out on this topic, concerning either the circular case or the
elliptic case of this model. In this paper, we make a brief review of the history and current status of the studies on
resonant periodic orbits in the RTBP model. Starting from the unperturbed two-body problem, we organize the
review paper by the two cases of this model—the circular restricted three-body problem and the elliptic restricted
three-body problem.
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1. Introduction

A resonance arises when there is a simple numerical
relationship between frequencies or periods (Murray &
Dermott 1999). Mean motion resonance (MMR) or orbital
resonance is of great importance in the dynamics of planets and
satellites. Orbital resonance is believed to be the source of
many interesting dynamical phenomena related to long-term
stability and instability. In the solar system, there are a great
number of MMRs involving asteroids, planetary rings, moon-
lets, and smaller Kuiper Belt objects (a few involve planets,
dwarf planets, or larger satellites). Meanwhile, resonant orbits
have been widely employed in mission design for planetary
flyby trajectories (NASA/ESA 2009) and as nominal orbits,
including the mission extension phase of IBEX (Mccomas et al.
2011; Dichmann et al. 2014) and the TESS mission (Gangestad
et al. 2013). Besides, investigations on transferring from a low
Earth orbit to the vicinity of the Earth-Moon libration points via
resonant arcs (Vaquero & Howell 2014a) and between different
resonant orbits (Vaquero & Howell 2014b; Lei & Xu 2018) are
also carried out.

Generally, there are two approaches to study resonances in
celestial mechanics. One is the Hamiltonian approach. By
focusing on the specific resonant term and eliminating other
periodic terms (the so-called averaging process), the Hamilto-
nian is reduced to a 1° of freedom system with the resonance
angle as the action variable (Henrard & Lemaitre 1983b;

Feng et al. 2016; Tan et al. 2020). The other is the approach of
periodic orbits. It is proved by Birkhoff (1927), Arenstorf
(1963), Guillaume (1969), Schmidt (1972) that families of
symmetric periodic orbits exist in the rotating frame, which can
be generated by continuation w.r.t. the parameter μ of the
periodic orbits in the corresponding degenerate (μ= 0) model.
The periodic orbits can be computed rather easily with good
accuracy and they refer to the complete system, i.e., no
approximation is involved (Hadjidemetriou 1992). Resonant
motion is associated with the periodic motion. Therefore,
the computation of families of periodic orbits provides useful
information on the resonant structure of the phase space
(Berry 1978; Hadjidemetriou 1993b; Benet et al. 1999).
Furthermore, the stability of resonant periodic orbits has been
extensively studied in (Broucke 1968; Hadjidemetriou 1975;
Hadjidemetriou & Ichtiaroglou 1984) to better understand the
dynamics of the real solar system. However, there exist some
limitations of computing the periodic orbits: (a) time-consum-
ing computations of mappings; (b) the problem of accuracy in
the exact initial conditions and, more importantly, their stability
(Hadjidemetriou 1993b). Therefore, researchers sometimes use
a combination of the two methods above to provide a
comprehensive understanding of the phase space. Anyhow,
the periodic orbit is a powerful tool for studying resonant
problems. A review of the existence proofs for various types of
periodic orbits in connection with the study of problems in
celestial mechanics and stellar dynamics is given by
Hadjidemetriou (1984). Meanwhile, a systematical review of
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periodic orbits and their stability in different planetary systems
is presented by Hadjidemetriou (1988). In this paper, we briefly
review the efforts on the studies of resonant periodic families in
the circular restricted three-body problem (CRTBP) and elliptic
restricted three-body problem (ERTBP) models carried out by
previous researchers.

The remainder of the paper is structured as follows. Families
of two kinds of periodic orbits (circular and elliptic cases) in
the unperturbed model are introduced in Section 2. Families of
resonant periodic orbits in the CRTBP and ERTBP are
introduced in Sections 3 and 4, respectively. In Section 5, we
conclude this review.

2. Families of Periodic Orbits in the Unperturbed
Model

We start from the unperturbed two-body problem to obtain a
clear view of the resonant structure in the restricted three-body
problem (RTBP). P1 and P2 are denoted as the two primaries
with masses m1 and m2 of the system, respectively. The second
primary P2 revolves around the first primary P1 in a circular
orbit. We study the motion of an infinitesimal particle P3

(m3= 0) in a uniformly rotating frame O-xy (the synodic
frame), whose initial phase is on the positive x-axis which
points from P1 to P2. The parameter μ is defined as μ=m2/
(m1+m2). Take the units of the system as [M]=M1, and
[ ] =L P P1 2 . With these units, the period of the second primary
is equal to 2π and the angular velocity of the O-xy frame (and
of the second primary) ¢n is equal to one. In the unperturbed
case, we have μ= 0, i.e., the second primary has a zero mass
and moves on a Keplerian orbit around the first primary.

Theory of periodic orbits in the unperturbed model has been
presented by many researchers (Hadjidemetriou & Ichtiaroglou
1984; Hadjidemetriou 1988; Ichtiaroglou et al. 1989;
Hadjidemetriou 1993b). Moreover, investigations on the limits
of the periodic solutions in the restricted problem as μ→ 0 and
families of periodic solutions which are called generating
families have been investigated by researchers (Hénon 1997;
Bruno & Varin 2006, 2007; Zaborsky 2020). Generally, two
kinds of periodic orbit families exist in the unperturbed model
(μ= 0). One is the family of circular periodic orbits, and the
other is the family of elliptic periodic orbits. We make a brief
introduction to them in this section.

For the planar case, we denote the initial condition of the
periodic orbit as  ( )x y x y, , ,0 0 0 0 , its Jacobi constant as C, and its
orbital period as T. Usually, a symmetric periodic orbit can be
represented by a point in the plane x0– y0, or x0–C, or
equivalently, in the plane T–C. A monoparametric family of
symmetric periodic orbits is represented by a smooth curve in
the plane x0–C or x0– y0, which is called the “characteristic
curve”. The term “characteristic curve” has been indicated by
many researchers to study the resonant periodic families
(Hadjidemetriou & Ichtiaroglou 1984; Ichtiaroglou et al. 1989;

Hadjidemetriou 1992; Kotoulas & Hadjidemetriou 2002; Hou
et al. 2018). In this review, we present the first order resonant
periodic families in the T–C plane and discuss their properties
from a different perspective.

2.1. Families of Circular Orbits

In the inertial frame, a periodic orbit of P3 is called direct
(retrograde) orbit if P3 revolves around P1 in the same (opposite)
direction as that of P2 (Ichtiaroglou et al. 1989). Therefore, there
exist two families of circular periodic orbits: the direct family D
and the retrograde family R. In this review, we pay our attention
to the direct family D. Due to the existence of P2, family D has
two branches (denoted asDint and Dext), which correspond to the
inside and outside of the orbit of P2, respectively. In Figure 1, we
present the circular families of the unperturbed model in the T–C
plane. Both of the families Dint and Dext have one thing in
common: the Jacobi constant C decreases from infinity and
gradually converges to a constant as the period T continues to
increase. Taking one orbit in family Dint as an example, the orbit
is circular in both the inertial frame and synodic frame (see orbit-
1 in the first column of Figure 2).

2.2. Families of Resonant Periodic Orbits

There is an infinite number of resonant periodic families which
bifurcate from the circular family D at the resonance

¢ =n n p q: : , where n is the mean motion of the small body, ¢n
is that of the second primary, and p, q are integers. For each of
these resonant periodic families, the semimajor axis a, and the
value ¢n n: remains unchanged. The eccentricity, however,
increases with decreasing value of the Jacobi constant C. For
each resonance, there exist two different branches of the resonant
family, differing in phase only (Hadjidemetriou 1993b). In
Figure 1, characteristic curves of some example resonant periodic
families related to the first, second, and third order resonances are
shown. They appear as vertical lines in the T–C plane. Along
each vertical line, from top to bottom, the orbital eccentricity
gradually increases. As we have mentioned, actually there are
two branches of the ¢n n: resonant periodic family. Taking the 2:1
resonant periodic family as an example, one branch has the
periapsis on the positive x-axis (denoted as family I2:1) and the
other has the apoapsis on the positive x-axis (denoted as family
II2:1). Example orbits of each branch are presented in the middle
and the right column of Figure 2, respectively. In the unperturbed
model, the T–C curves of the two branches exactly coincide with
each other, so they appear as a single vertical line (actually two
identical vertical lines) in Figure 1. In the following perturbed
model, due to the perturbation from the secondary, the two
branches separate from each other in the T–C plane.
One remark is that characteristic curves of the unperturbed

model displayed in Figure 1 look different from those displayed in
the x0–C plane (Hadjidemetriou 1988; Hadjidemetriou & Ichtiar-
oglou 1984) or the x0– y0 plane (Ichtiaroglou et al. 1989;
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Hadjidemetriou 1993a; Kotoulas & Hadjidemetriou 2002), but they
all represent the same resonant periodic families. All the periodic
orbits in the unperturbed model are orbitally stable (Hadjidemetriou
& Ichtiaroglou 1984).

3. Families of Periodic Orbits in the CRTBP Model

Periodic orbits in the unperturbed model can be continued
from μ= 0 to μ> 0. In this section, we focus on the resonant
periodic families in the CRTBP model, including the
symmetric and asymmetric periodic families.

3.1. The Symmetric Resonant Periodic Families

There are two different kinds of symmetric periodic orbits
when μ> 0: (a) periodic orbits of the first kind: the periodic
orbits correspond to the nearly circular orbits of the small body,

which are continued from the families Dint and Dext in Section
2; (b) periodic orbits of the second kind: the periodic orbits
correspond to elliptic orbits of the small body, which are
continued from the resonant periodic orbits in Section 2. In
what follows, we mainly focus on periodic orbits of the second
kind and review families near the first, second, and even higher
order resonances in different systems separately. The results
obtained by different researchers are presented.

3.1.1. The First Order Resonances

Continuation of circular orbits in family D of the small body
is possible in all cases except at the first order interior
resonance n: (n+ 1) or exterior resonance (n+ 1): n, (n= 1, 2,
3...). A review of the existence proof is given in
Hadjidemetriou (1984). Analytic studies of behaviors near the

Figure 1. Characteristic curves of families of periodic orbits in the unperturbed model. Upper left: the interior circular periodic family Dint and the first order interior
resonant periodic families of 2:1, 3:2, 4:3, and 5:4 resonances. Upper right: the exterior circular periodic family Dext and the first order exterior resonant periodic
families of 1:2, 2:3, 3:4, and 4:5 resonances. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi constant. Lower left: family Dint

and the 3:2, 5:3 and 7:4 resonances. Lower right: family Dext and the 2:3, 3:5 and 4:7 resonances.
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Figure 2. Example orbits in the unperturbed model: the upper three orbits are in the inertial frame and the lower three are in the synodic frame. The first column
illustrates an example orbit (orbit-1: C1 = 3.095526261903474) in the family Dint. The second column shows an example orbit (orbit-2: C2 = 2.500304912949211) in
the family I2:1 and the last column displays an example orbit (orbit-3: C3 = 2.500039570216568) in the family II2:1. The larger and smaller blue dots represent the
positions of P1 and P2, respectively. The green dots indicate the initial phases of the example orbits.
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first order resonances have been made by Guillaume (1969);
Hadrava & Kadrnoska (1986).

Numerical investigations of symmetric periodic families near
the first order resonance have been made by many researchers.
(Colombo et al. 1968; Hadjidemetriou & Ichtiaroglou 1984)
perform a detailed analysis of families near the interior first
order resonance 2:1, 3:2, and 4:3 with the mass parameter
μ= 0.001. Each of the continued families consists of a part
with a circular branch (continued from family Dint) while the
remaining parts consist of elliptic branches. For each first order
resonance, there exist two branches of periodic orbits of the
second kind, one with periapsis on the positive x-axis (denoted
as family I(n+1):n) and the other with apoapsis on the positive

x-axis (denoted as family II(n+1):n). One family is stable and the
other is unstable, but along the family, the stability type
changes. Families of periodic orbits in the 2:1 resonance in the
Sun-Jupiter system are investigated by many researchers
(Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000;
Celletti et al. 2002; Voyatzis et al. 2009). The results show that
family I2:1 is stable. Family II2:1 consists of two parts. One part
is stable and the other is unstable, separated by a collision orbit
(Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000).
Meanwhile, families of resonant periodic orbits at the 3:2
resonance are also investigated in Hadjidemetriou & Voyatzis
(2000). Details of the 2:1 and 3:2 resonant periodic families in
the space of initial conditions x0-h are shown in Figure 1 of

Figure 3. Genealogy of the first order interior resonant periodic families in the T–C plane, continued from the upper left frame of Figure 1 to the Sun-Earth (upper
frame), Sun-Jupiter (middle frame) and Earth-Moon (lower frame) system. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi
constant.
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Hadjidemetriou & Voyatzis (2000). Besides, families of
periodic orbits in the 3:2 resonance are also studied by
Antoniadou et al. (2011), Antoniadou & Libert (2018a) in the
CRTBP model with μ= 0.001. More details about the 3:2
resonant periodic families are given by those authors. Two
families are formed near the 3:2 resonance. Family I3:2 is stable
but could not be continued to high eccentricities of the small
body, due to close encounters with the primaries. Family II3:2
consists of two parts, one is stable and the other is unstable,
divided by the region where collisions occur (see figure 4 of
Antoniadou & Libert 2018a).

Besides, studies about the asteroid motion in the 2:1 and 3:2
resonances in the Sun-Jupiter system are made by many

researchers to have a better understanding of their different
behaviors (gap in the 2:1 resonance, group in the 3:2
resonance) (Moons & Morbidelli 1993; Michtchenko &
Ferraz-Mello 1995, 1996; Morbidelli 1996; Hadjidemetriou &
Lemait̂re 1997; Hadjidemetriou 1999; Hadjidemetriou &
Voyatzis 2000; Tsiganis et al. 2002).
Exterior first order resonant periodic families n: (n+ 1),

(n= 1, 2, 3...) evolve in a similar way as the interior first order
resonant periodic families. The symmetric resonant families
join smoothly the circular family (continued from family Dext),
leaving a gap on the characteristic curves at the position of the
1st order resonance when μ≠ 0. Similarly, there are two
families of periodic orbits of the second kind for each exterior

Figure 4. Genealogy of the first order exterior resonant periodic families in the T–C plane, continued from the upper right frame of Figure 1 to the Sun-Earth (upper
frame), Sun-Jupiter (middle frame), and Earth-Moon (lower frame) system. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi
constant.
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Figure 5. Example orbits of first order resonance in the Sun-Jupiter system: orbit-4 (family I2:1): C = 2.500232027717493; orbit-7 (family II2:1):
C = 2.500104038547575; orbit-5 (family I3:2): C = 2.501824165160431; orbit-8 (family II3:2): C = 2.500138565225013; orbit-6 (family I4:3): C =
2.803722842001424; orbit-9 (family II4:3): C = 2.813137090752240.
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first order resonance n: (n+ 1), denoted as family In:(n+1) (with
periapsis on the positive x-axis) and family IIn:(n+1) (with
apoapsis on the positive x-axis), respectively. A systematic
investigation of symmetric periodic orbits at the exterior
1:2, 2:3, and 3:4 resonances in the Sun-Neptune system is
given by Kotoulas & Hadjidemetriou (2002). (Hadjifotinou &
Hadjidemetriou 2002; Kotoulas & Hadjidemetriou 2003)
calculated the periodic orbits and their stability for the 2:3
and the 3:4 resonant motion, respectively. A comparative study
of the 2:3 and the 3:4 resonant motion in the Sun-Neptune
system is also performed by Kotoulas & Voyatzis (2004). The
results show that the stable and unstable region of the family
I2:3 and I3:4 in the CRTBP model are separated by a collision
orbit. Family II2:3 and family II3:4 are stable for all values of the
eccentricities, with the exception of a small region where
collision orbits exist (Kotoulas & Hadjidemetriou 2002).
Besides, systematic studies of families at the exterior first
order resonance n: (n+ 1) with 2� n� 7 are conducted by
Kotoulas & Voyatzis (2005), Voyatzis & Kotoulas (2005) in
the Sun-Neptune system. Family In:(n+1) joins smoothly with
the family II(n+1):(n+2) through a segment of near circular
orbits. A closed characteristic curve is formed by three families
at the exterior 6:7 and the 7:8 resonance (Voyatzis & Kotoulas
2005). Besides, the stability and bifurcation analysis of the
exterior 1:2 and 2:3 resonant families in the Earth-Moon
system are studied by Li et al. (2021).

As an example, we continue these first order resonant
periodic families from the unperturbed two-body system (see
the upper left and upper right of Figure 1) to the Sun-Earth
(μSE), Sun-Jupiter (μSJ) and Earth-Moon (μEM) system and

present them in the T–C plane. Interior as well as exterior first
order resonant periodic families, including the near circular
family are displayed in Figures 3 and 4, respectively. Stable
family members are highlighted with dark blue color in Figures
3 and 4. Example orbits corresponding to different branches of
the 2:1, 3:2, and 4:3 resonant families in the Sun-Jupiter system
are displayed in Figure 5. Comparing Figure 3 as well as Figure
4 with the upper frames of Figure 1, we notice that
characteristic curves of the two branches of each resonant
periodic family no longer coincide with each other. Also, we
find: (1) starting from higher values of n, the interior (n+ 1): n
and the exterior n: (n+ 1) resonances are gradually influenced
by the 1:1 resonance, in the form that the genealogy of first
order resonant periodic families becomes more complex and
more distorted from the unperturbed two-body system with
increasing μ, especially for those close to the 1:1 resonance. (2)
With increasing μ, stable orbits in the first order resonances are
becoming fewer and fewer. This is due to the gradual
increasing strength of the 1:1 resonance, which leads to its
gradual overlap with nearby interior and exterior resonances.
The resonances being overlapped generally become chaotic.
For example, judging from Figure 3, for the Sun-Jupiter
system, we cannot expect stable first order resonance periodic
orbits beyond the 4:3 one, and for the Earth-Moon system, we
cannot expect stable first order resonance periodic orbits
beyond the 3:2 one.

3.1.2. The Second Order Resonances

Continuation of the circular family D from μ= 0 to μ> 0 is
possible at the second order resonances (2n+ 1): (2n− 1) and

Figure 6. The family of periodic orbits of the first kind and the families of the second kind near the 3:1 and 2:1 resonance (schematically). Left: shown in x0–C plane.
The stable family II3:1 cannot be represented on the present diagram (x0 > 0) because its vertical intersection point with the x axis is at the negative x axis (see orbit-13
in Figure 8). Right: shown in T–C plane. The near circular family is represented by the dotted line, and the unstable segment is denoted as (A,B) in the frame. The
abscissa is half of the orbital period T/2. The families I3:1 and II3:1 are shown by dashed lines. Periodic orbits in these two families actually make two loops in the
synodic frame (see Figure 8), so the abscissa of the two families shown in the right frame is actually T/4.
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(2n− 1): (2n+ 1), (n= 1, 2, 3...) (Hadjidemetriou 1988). It is
proved by Hadjidemetriou (1982) that at the resonant circular
orbits ( ) ( )¢ = ¼ + - ¼n n n n: 3: 1, 5: 3, 7: 5, , 2 1 : 2 1 , there
always exists a Hamiltonian perturbation which generates
instability. According to Hadjidemetriou & Ichtiaroglou
(1984), the increase of the mass of the second primary
(μ> 0) is such a perturbation. Asteroid motions near the 3:1
resonance in the Sun-Jupiter system have been investigated by
researchers (Henrard & Caranicolas 1990; Hadjidemetriou &
Ichtiaroglou 1984; Grau 1995; Hadjidemetriou 1986, 1992,
1993a, 1993b). It is proved by Hadjidemetriou (1982, 1985,
1993b); Hadjidemetriou & Ichtiaroglou (1984) that a small
unstable region (A, B) is generated in the characteristic curve
near the 3:1 resonance, where A and B represent critical orbits.
A similar property holds for the resonance 5:3 and the
resonance 7:5 (Hadjidemetriou & Ichtiaroglou 1984). From
the two critical orbits that define the unstable region, two
families of symmetric periodic orbits of the second kind
bifurcate, which are denoted as family I3:1 and family II3:1,
differing in phase only (Hadjidemetriou & Ichtiaroglou 1984;
Hadjidemetriou 1993a, 1993b). The family I3:1 is unstable and
the family II3:1 is stable (Hadjidemetriou 1992; Celletti et al.
2002). The two 3:1 resonant periodic families are displayed in
Figure 6. The families of periodic orbits of the first kind (near
circular family) and the families of the second kind near 3:1
and 2:1 resonances are presented in the x0–C plane (see the left
frame of Figure 6). In the right frame of Figure 6, we show the
near circular family and families near 3:1 resonance in the T–C
plane. The unstable segment (A, B) in the near circular family
and families I3:1 as well as II3:1 bifurcating from them are
vividly shown. We also present one example orbit in each of
the two 3:1 families in Figure 8 (see orbit-10 and orbit-13).
From the orbit shapes, we know that periodic orbits in the

family I3:1 have two perpendicular crossings with the x-axis at
x> 0, while those in the family II3:1 have two perpendicular
crossings with the negative x-axis. In addition, the unstable 3:1
family for greater eccentricity value of the small body is further
studied by Antoniadou & Libert (2018a) and another bifurca-
tion point is found.
Furthermore, a systematic study of periodic families at the

3:5, 5:7, and 7:9 exterior mean motion resonances is performed
by Kotoulas & Voyatzis (2005); Voyatzis & Kotoulas (2005) in
the Sun-Neptune system. Similar to the interior second order
resonance, for each resonance two families bifurcate: one has
two perpendicular crossings with the x axis at x< 0, and the
other has two perpendicular crossings with the x axis at x> 0.
Collision orbits and close encounter orbits occur along the
families, leading to more complex characteristics of the phase
space.

3.1.3. Other Higher Order Resonances

A systematic investigation of the interior resonance in the
Sun-Jupiter-Asteroid system, with frequency ¢n n4: 3 : 
5: 1 has been carried out by Celletti et al. (2002). For each
resonance, the stability of the two families of periodic orbits
(family I and family II) as a function of the averaged
eccentricity e ä (0, 1) is indicated in the work. The 4:1
resonance of the Sun-Jupiter asteroid system is investigated by
Hadjidemetriou (1993b). Continuation of the family Dint near
the 4:1 resonance is possible, but no instability is generated
during the continuation process. Hadjidemetriou indicated that
there is only one critical point named A, from which two
resonant families of periodic orbits (family I4:1 and II4:1)
bifurcate. The family I4:1 is stable and the family II4:1 is
unstable. Besides, families at the exterior third order resonances

Figure 7. The symmetric and asymmetric periodic families near 1:2 and 1:3 resonances in the Sun-Jupiter system. Family AI and AII are symmetric about the y axis.
The red color indicates the unstable orbits, while the blue color indicates the stable orbits.
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Figure 8. Example orbits in the CRTBP model: (1) Column 1: the unstable 3:1 resonant orbit (orbit-10: C = 3.018610188218501) and stable 3:1 resonant orbit (orbit-
13: C = 3.062181617495304). (2) Column 2: the 1:2 symmetric (orbit-11: C = 2.415187005979774) and asymmetric orbit (orbit-14: C = 2.4679972205675615). (3)
Column 3: the 1:3 symmetric (orbit-12: C = 2.166233870424831) and asymmetric orbit (orbit-15: C = 2.624973271833538). The larger and smaller blue dots
represent the positions of P1 and P2, respectively.
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(4:7, 5:8, 7:10) in the Sun-Neptune system are studied in
(Kotoulas & Voyatzis 2005; Voyatzis & Kotoulas 2005). Two
families of elliptic resonant periodic orbits bifurcate from the
circular family at the 4:7, 5:8, and 7:10 resonances. Detailed
bifurcation and stability properties of the families can be found
in Voyatzis & Kotoulas ( 2005). Furthermore, periodic orbits
near the 2:5 resonance, typically corresponding to the Sun-
Jupiter-Saturn system are investigated by Kwok & Nacozy
(1982, 1985), Michtchenko & Ferraz-Mello (2001).

3.2. The Asymmetric Resonant Periodic Orbits

In the context of the planar CRTBP model, asymmetric
periodic orbits have been identified for the exterior MMRs near
1:2, 1:3, 1:4,K as well as for co-orbital motion (1:1 resonance).
For the 1:1 resonance, (Taylor 1981) studied the problem of
horseshoe periodic orbits in the 1:1 resonance for the Sun-
Jupiter system and the asymmetric periodic orbits were found.
The 1:1 asymmetric periodic families also exist and emanate
from L4 in the planar CRTBP model (Zagouras et al. 1996) and
was continued to general planetary system (Giuppone et al.
2010; Hadjidemetriou & Voyatzis 2011).

Message (1958) indicated the existence of asymmetric
periodic orbits near the 1:2 resonances in the Sun-Jupiter
system. Schubart (1964) also detected the existence of
asymmetric periodic orbits near the 1:2 and 1:3 resonances
for the Sun-Jupiter system while investigating the long-period
effects in nearly commensurable motion. Asymmetric periodic
orbits related to the 1:2 and 1:3 resonances in the Sun-Jupiter
system have been verified using numerical integrations by
Frangakis (1968, 1973a). By analyzing many cases of interior
and exterior commensurabilities, Frangakis (1973b) found that
only for±1: n (−1: n means that the orbit is retrograde) would
it be possible to have an asymmetric periodic solution in the
averaged problem. Beaugé (1994) used an analytical approach
to show the existence of asymmetric periodic orbits in the 1: n
exterior MMRs and their absence in other exterior MMRs as
e.g., the 2:3 and 3:4. Furthermore, the existence of asymmetric
periodic orbits associated with the 1: n resonances was clearly
revealed in the Poincare surfaces of the section by Winter &
Murray (1997); Voyatzis et al. (2005). Besides, Bruno (1994)
also confirmed the existence of asymmetric periodic orbits only
for the exterior 1: n resonances when studying the generating
orbits.

The family of asymmetric periodic orbits near the 1:2
resonances was numerically determined by Message (1970)
using a method that detects bifurcations of asymmetric periodic
solutions with the symmetric periodic solutions. Using the
theory derived by Message (1970), Message & Taylor (1978)
indicate that bifurcations of a family of asymmetric periodic
solutions with a family of symmetric periodic solutions exist
near the 1: (n+ 1), (n= 1, 2,K,7) resonances and the complete
family near 1:4 resonance is determined by numerical

integration. Values of eccentricity for which the bifurcation
occurs for 1: (n+ 1), (n= 1, 2,K,7) resonances are also given
in (Message & Taylor 1978). Extensive numerical studies of
asymmetric periodic orbits in the planar CRTBP have been
conducted by Taylor (1983) for the Sun-Jupiter mass ratio.
Taylor showed the existence of bifurcations of families of
asymmetric periodic orbits near the exterior 1: (n+ 1) reso-
nances with n up to 50 and computed the whole families for
(1� n� 5) as well as particular segments for (6� n� 12).
Families of symmetric and asymmetric periodic orbits and their
stability type for the 1:2, 1:3, and 1:4 exterior resonances in the
Sun-Neptune system are studied in Voyatzis et al. (2005).
Asymmetric orbits bifurcating from the corresponding sym-
metric ones are found. We present the 1:2 and 1:3 asymmetric
periodic families in the Sun-Jupiter system (see Figure 7). As
can be seen from the left of Figure 7, an unstable segment
exists in family II1:2, which starts from a low initial eccentricity
value and is extended up to high eccentricity values (small
value of C). A similar pattern of the characteristic curve exists
for the 1:3 resonance (see the right of Figure 7). The
characteristic curve of stable asymmetric periodic orbits
bifurcates from the ends of the unstable segment (critical
points), but along the asymmetric family, the stability type
changes (see the red dashed line in the right of Figure 7). Each
characteristic curve of the asymmetric periodic orbits in Figure
7 contains two families (family AI and AII), Along the family
AI  >y 00 , while along the family AII  <y 00 . The representa-
tive 1:2 and 1:3 symmetric and asymmetric orbits are displayed
in the second and third columns of Figure 8, respectively.
Besides, studies indicate that the asymmetric resonant solutions

also exist in the extrasolar planetary systems (Lee & Peale 2003;
Beaugé et al. 2003; Voyatzis & Hadjidemetriou 2005). Research

Figure 9. The bifurcations near 2:1 resonance of the ERTBP model in the Sun-
Jupiter system (μ = μSJ), shown in the x0- ¢e plane. Blue: Families I2:1e. Red:
Family II2:1e.
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concerning the capture particles into exterior resonances when
considering dissipative effects are conducted by Patterson (1987),
Sicardy et al. (1993), Lazzaro et al. (1994), Beaugé et al. (2003),
Ferraz-Mello et al. (2003).

3.3. Resonant Periodic Families in 3D-CRTBP model

The three-dimensional families of symmetric periodic orbits
in the circular problem bifurcate from the vertical critical orbits
of the corresponding circular problem (Hénon 1973). Numer-
ical computation of resonant families of three-dimensional
periodic orbits are presented in Ichtiaroglou et al. (1989), at the
resonances 3:1, 5:3, 1:3 and 3:5 for μ= 0.001. The three-
dimensional orbits are found by continuation to the third
dimension of the corresponding planar problem. For the Sun-
Neptune system, spatial resonant families are studied in the 3D-
CRTBP, namely for the 1:2 resonances by Kotoulas (2005), for
the 1:2, 2:3 and 3:4 resonances by Kotoulas & Hadjidemetriou
(2002) and for the first order resonances (n: (n+ 1), 2� n� 6),
second order resonances (3:5, 5:7, 7:9) and the third order
resonances (4:7, 5:8, 7:10) by Kotoulas & Voyatzis (2005).

Furthermore, Markellos (1978) indicates that asymmetric
vertical critical orbits contain bifurcation points for the
generation of families of spatial asymmetric periodic orbits.
He investigated the exterior 1:2 resonances by computing the
asymmetric vertical orbits of the planar CRTBP for the mass
parameter μ ä [0.001, 0.5] and some samples of spatial
asymmetric periodic orbits are provided in the 3D-CRTBP
model. Following the approach of Markellos, Voyatzis et al.
(2018) computed the 1: n, n= 2, 3, 4, 5 resonant families of
asymmetric periodic orbits in the 3D-CRTBP model, which can
be related to the dynamics of trans-Neptunian objects.

4. Families of Periodic Orbits in the ERTBP Model

The CRTBP is a simple model to explain the resonant
structure. However, the role of the secondary’s orbit eccen-
tricity cannot be revealed by this model. Therefore, many
attempts were made to have a better explanation of the resonant
structure, using the model of ERTBP. A short review on
resonant periodic families in the elliptic restricted problem was
given in Hadjidemetriou (1988). In the ERTBP model, the
eccentricity of the secondary P2 is not zero ( ¢ ¹e 0). The
periodic orbits are considered in the rotating frame O-xy with
the origin O at the center of mass of the two primaries and the
positive x-axis along the line P1–P2. This is a non-autonomous
Hamiltonian system with two degrees of freedom, which
depends periodically on time, with a period equal to 2π (the
period of the secondary’s orbit) (Hadjidemetriou 1993b;
Kotoulas & Hadjidemetriou 2002). The energy integral no
longer exists, which means that the stability depends on two
pairs of eigenvalues, instead of one in the planar circular case
(Kotoulas & Hadjidemetriou 2002).

Generally, there exist isolated periodic orbits in the ERTBP
model for a fixed value of ¢e . A family of periodic orbits can be
obtained by varying the eccentricity of the second primary ¢e .
Details on the method to compute these families of periodic
orbits and their stability have been studied by Broucke (1969),
which was dedicated to the Earth-Moon system. Families of the
periodic orbits in the ERTBP model bifurcate from the families
in the CRTBP model mentioned in Section 3, at those periodic
orbits whose period is always equal to 2π, or a multiple of it.
This means that periodic orbits in the elliptic problem in the
rotating frame are also periodic in the inertial frame (Broucke
1969; Hadjidemetriou 1992; Kotoulas 2005). Similarly, a
family of resonant periodic orbits in the ERTBP model can be
represented by a characteristic curve in the three-dimensional
space x0– y0- ¢e (Kotoulas & Hadjidemetriou 2002).

4.1. The Symmetric Resonant Periodic Families

4.1.1. The First Order Resonances

For the first order resonances, researchers (Colombo et al.
1968; Hadjidemetriou & Ichtiaroglou 1984; Bien 1980; Ferraz-
Mello 1988) have shown that families of the elliptic problem
bifurcate from orbits of the circular problem which lie on the
resonant elliptic branches 2:1, 3:2,K Besides, Bien (1980)
indicated that for the Sun-Jupiter system the bifurcation takes
place at the orbit with its eccentricity e; 0.73 (T= 2π) in the
2:1 resonance and e; 0.45 (T= 4π) in the 3:2 resonance. Both
of these orbits lie on the stable branch of the corresponding
resonance (Hadjidemetriou 1988). For the interior 2:1 reso-
nance in the Sun-Jupiter system, Hadjidemetriou (1993b)
indicated that there exists only one bifurcation periodic orbit on
the family of periodic orbits of the CRTBP model near the 2:1
resonance, with a period exactly equal to 2π. We present the
bifurcation of the families near the 2:1 resonance from CRTBP
to ERTBP in the Sun-Jupiter system in the x0- ¢e space (see
Figure 9). Families in the ERTBP model near the 2:1 resonance
are denoted as family I2:1e and II2:1e, respectively. The two
families bifurcating from the family I2:1 are also schematically
shown in the x0– y0- ¢e space by Hadjidemetriou (1993b);
Hadjidemetriou & Voyatzis (2000). As an example, we select
the eccentricity of Jupiter ¢ =e 0.2, two isolated periodic orbits
of the family I2:1e and II2:1e are displayed in the first column of
Figure 11 (see orbit-16 and orbit-19). Similarly, the 3:2
resonance has a stable family I3:2 of symmetric periodic orbits
which shows a bifurcation point on the characteristic curve to
the ERTBP model (Hadjidemetriou & Voyatzis 2000;
Antoniadou et al. 2011). Antoniadou indicated that two
families of symmetric periodic orbits originate from this point
and both of them start stable. Antoniadou and Libert justify the
existence of another bifurcation point (denoted as BII ,1

3:2
S

in
(Antoniadou & Libert 2018a)), which lies on the stable parts of
the characteristic curve of family II3:2. From the bifurcation
point, two new families are computed, one being stable and the
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other being unstable. Furthermore, periodic orbits in the 3:2
resonance and their stability of the extrasolar planetary systems
are studied in Varadi (1999).

Ferraz-Mello (1988) found that the eccentricity of the
asteroid becomes larger when we go deeper into the 2:1 and
the 3:2 resonances in the ERTBP, which is verified in
(Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000).
Averaged Hamiltonian valid for high values of eccentricity of
the asteroid is investigated by researchers (Morbidelli &
Giorgilli 1990a, 1990b; Ferraz-Mello et al. 1992;
Hadjidemetriou & Voyatzis 2000). Furthermore, many periodic
orbits for the ERTBP model associated with the dynamics of
asteroids and Kuiper Belt objects have been computed by
Hadjidemetriou (1999), Voyatzis & Kotoulas (2005), Henrard
& Lemaitre (1983a, 1987), Lemaitre & Henrard (1990),
Morbidelli & Giorgilli (1990b).

For exterior resonances, Kotoulas & Hadjidemetriou (2002)
performed a systematic study of periodic orbit families of the
elliptic problem at the 1:2, 2:3, and 3:4 resonance with
Neptune. For the exterior 1:2 mean motion resonance in the
Sun-Neptune system, there are two pairs of families of periodic
orbits bifurcating from the family II1:2 at different eccentricities
of eN (Kotoulas & Hadjidemetriou 2002). Voyatzis et al. (2009)
studied the interior 2:1 resonance and the exterior 1:2
resonance in the Sun-Jupiter system. There are bifurcation
points on the characteristic curve, three of them belonging to
symmetric families and the other two belonging to asymmetric
families. Moreover, an extensive numerical study of the
periodic orbits in the ERTBP model consisting of a star, an
inner massive planet, and an outer massless body in the 1:2
mean motion is made by Haghighipour et al. (2003),
Antoniadou et al. (2011). For the 2:3 and 3:4 resonances in
the Sun-Neptune system, there is only one pair of families of
periodic orbits bifurcating from family II2:3 and II3:4,
respectively (Kotoulas & Hadjidemetriou 2002). The dynami-
cal mechanisms in the 2:3 as well as the 3:4 resonance have
been investigated in several studies (Levison & Stern 1995;
Duncan et al. 1995; Hadjifotinou & Hadjidemetriou 2002;
Kotoulas & Hadjidemetriou 2003). Furthermore, a comparative
study of the 2:3 and the 3:4 resonances is performed in
Kotoulas & Voyatzis (2004). Besides, systematical studies of
bifurcations and stability of exterior first order resonance
p: q= n: (n+ 1), n= 1, 2, K6 are conducted in (Kotoulas &
Voyatzis 2005; Voyatzis & Kotoulas 2005). Bifurcations and
stability of the resonant families at the 4:5, 5:6, and 5:7
resonances in the ERTBP model are presented clearly by
Kotoulas & Voyatzis (2005).

4.1.2. The Second Order Resonances

The numerical computations performed by Hadjidemetriou
& Ichtiaroglou (1984) reveal that the periodic orbits of the first
kind with a period equal to π, 3π, 5π... exist on the circular

branch of the families of periodic orbits of the circular problem.
All these orbits lie on the unstable zone at the resonance 3:1,
5:3, 7:5..., respectively (Hadjidemetriou 1988), from which
families of periodic orbits of the elliptic problem bifurcate.
Numerical computations of Hadjidemetriou (1992) indicate that
there are two pairs of 3:1 resonant families of periodic orbits of
the planar ERTBP model, for the Sun-Jupiter system. Two of
them, (denoted as family I3:1c, II3:1c), bifurcate from a periodic
orbit E1 of the CRTBP model, which lie in the unstable region
AB (see Figure 6) of family of periodic orbits of the first kind
and the period is equal to π. The other two families, (denoted as
family I3:1e, II3:1e), bifurcate from a period orbit E2 of the
CRTBP model, which lies on the stable family of resonant
periodic orbits of the second kind, i.e.,family II3:1 and the
period is equal to 2π. One of the families Ie and IIe is stable and
the other is unstable. The detailed methods of computing the
3:1 resonant periodic families in the ERTBP model are
performed by Hadjidemetriou (1992, 1993a). Besides, the
averaged Hamiltonian has been widely used to explain the 3:1
resonant motion of the ERTBP model in the Sun-Jupiter system
by Wisdom (1982, 1985, 1987); Hadjidemetriou (1991);
Ferraz-Mello & Klafke (1991). Extensive studies combining
the periodic orbits and the averaged model about the 3:1
resonance in the Sun-Jupiter system are made by Hadjideme-
triou (1992, 1993a, 1993b), Grau (1995), Antoniadou & Libert
(2018a). Antoniadou & Libert (2018a) extends the work of
Hadjidemetriou to the high eccentricity of both the asteroid and
the second primary. They indicated that family Ie possesses an
unstable segment before it becomes stable again. Stable
periodic orbits can be found in family Ic when the eccentricities
of both the asteroid and the second primary are high enough.
Furthermore, two new unstable families are generated in the
ERTBP model from the new bifurcation point found by the
authors in the CRTBP model.
Here we give an example of the bifurcations near the 5:3

resonance corresponding to the ERTBP model with the method
developed in Hadjidemetriou (1992) and present the results in
the left frame of Figure 10. Two pairs of 5:3 resonant periodic
families of the planar ERTBP model for the Sun-Jupiter system
are vividly shown in the x0- ¢e plane. Similar to the case of 3:1
resonance studied in Hadjidemetriou (1992), the first orbit of
the family I5:3c and the first orbit of the family II5:3c are the
same orbit of the CRTBP model ( ¢ =e 0) at t= π/2, and t= 0,
which lies in the unstable region AB of the first kind periodic
family and its period is equal to 3π. Therefore, the initial states
of family I5:3c and II5:3c are on the negative and positive x-axis,
respectively. Representative orbits of family I5:3c (orbit-17) and
II5:3c (orbit-20) are shown in the second column of Figure 11.
Family I5:3e and II5:3e bifurcate from a periodic orbit of the
CRTBP model, which lies on the stable branch of the second
kind 5:3 periodic family, and its period is equal to 6π. Example
orbits of family I5:3e (orbit-18) and II5:3e (orbit-21) are shown in
the last column of Figure 11. Different from the case of the 3:1
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resonance, family I5:3c and family I5:3e are actually the same
family in the x0- ¢e plane and in the x0- y- ¢e space.

Besides, exterior second order resonance 3:5, 5:7, and 7:9 of
the ERTBP model in the Sun-Neptune system have been
systematically studied in (Kotoulas & Voyatzis 2005; Voyatzis
& Kotoulas 2005). Three bifurcation points exist in the case of
3:5 resonance, which belong to different families near the 3:5
resonance. There are five bifurcation points for both 5:7 and 7:9
resonances. The generated families of the two families have the
same qualitative features.

4.1.3. Other Higher Order Resonances

Stability of periodic resonance orbits (3:1, 4:1, 5:1, and 6:1)
in the ERTBP model for different values of the eccentricity of
the second primary for μ= 0.1 and μ= 0.5 are investigated in
Kribbel & Dvorak (1988). Detailed bifurcations of the 4:1
resonance of the ERTBP model for the Sun-Jupiter system are
analyzed in Hadjidemetriou (1993b). Hadejidemetriou indi-
cates that there are three periodic orbits of the CRTBP model
near the 4:1 resonance, from which families of periodic orbits
of the ERTBP model bifurcate. Extensive studies about the
stability of these generated families for greater eccentricity
values of the second primary are conducted in Antoniadou &
Libert (2018a). Moreover, the third order exterior resonances
(4:7, 5:8, 7:10) of the ERTBP model in the Sun-Neptune
system are investigated in (Kotoulas & Voyatzis 2005;
Voyatzis & Kotoulas 2005). Bifurcation points and stability
of the generated families are vividly shown. Besides, research
on periodic orbits of the ERTBP model for the Sun-Jupiter-
Saturn system (2:5 resonance) has been conducted by many
researchers (Kwok & Nacozy 1982, 1985; Michtchenko &
Ferraz-Mello 2001).

Taking the 7:4 resonance in the Sun-Jupiter system as an
example, we present the bifurcations of the third order
resonance of the ERTBP model in the right frame of Figure
10. Similar to the case of 4:1 resonance studied in
Hadjidemetriou (1993b), there are three periodic orbits
(denoted as orbit-BP1, BP2 ad BP3) of the circular problem
near the 7:4 resonance, from each of which two periodic
families of the elliptic problem bifurcate (one family with
Jupiter at perihelion, the other with Jupiter at aphelion). The
orbit-BP1 lies on the first kind periodic family and its period
equals 8π/3, from which family I7:4c and II7:4c bifurcate. The
orbit-BP2 and orbit-BP3 are on the second kind periodic family
with their period equal to 8π, from which the other two pairs of
periodic families, family I7:4e and II7:4e as well as family III7:4e
and IV7:4e bifurcate. We present these three pairs of 7:4
resonant periodic families of the planar ERTBP model for the
Sun-Jupiter system in the right frame Figure 10. Six example
orbits belonging to family I7:4c (orbit-19), II7:4c (orbit-22), I7:4e
(orbit-20), II7:4e (orbit-23), III7:4e (orbit-21) and IV7:4e (orbit-
24) are shown in Figure 12. It is not easy to find that family
II7:4c and II7:4e belongs to one family in the x0- ¢e plane, and so
do the family I7:4e and III7:4e. Details of the second and third
order bifurcated families in the ERTBP model and their
stability will appear in our future work.

4.2. The Asymmetric Resonant Periodic Families

Different from the symmetric cases, much less work has
been carried out for asymmetric periodic orbits in the ERTBP
model. (Voyatzis & Kotoulas 2005) find that many bifurcation
points along the symmetric periodic orbits and conjectured the
existence of asymmetric periodic orbits in the elliptic problem.
(Antoniadou et al. 2011) computed and showed the existence

Figure 10. The bifurcations of the ERTBP model in the Sun-Jupiter system (μ = μSJ), shown in the x0- ¢e plane. Left: Bifurcations near 5:3 resonance. Right:
Bifurcations near 7:4 resonance.
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Figure 11. Example orbits in the ERTBP model ( ¢ =e 0.2): (1) Column 1: example orbit in the family I2:1e (orbit-16) and in the family II2:1e (orbit-19). (2) Column 2:
example orbit in the family I5:3c (orbit-17) and in the family II5:3c (orbit-20). (3) Column 3: example orbit in the family I5:3e (orbit-18) and in the family II5:3e (orbit-
21). The larger and smaller blue dots represent the positions of P1 and P2, respectively.
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Figure 12. Example orbits in the ERTBP model: (1) Column 1: example orbit in the family I7:4c (orbit-22: ¢ =e 0.2) and in the family II7:4c (orbit-25: ¢ =e 0.04). (2)
Column 2: example orbit in the family I7:4e (orbit-23: ¢ =e 0.1) and in the family II7:4e (orbit-26: ¢ =e 0.04). (3) Column 3: example orbit in the family III7:4e (orbit-24:
¢ =e 0.1) and in the family IV7:4e (orbit-27: ¢ =e 0.2). The larger and smaller blue dots represent the positions of P1 and P2, respectively. The green dots indicate the
initial phases of the example orbits.
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of such families in the ERTBP model and examined their
continuation to the general model.

4.3. Resonant Periodic Families in 3D-ERTBP Model

There are two ways to compute the resonant families of
periodic orbits in the 3D-ERTBP model, one by bifurcating
from the 3D-periodic families of the 3D-CRTBP model, and
the other by vertically bifurcating from the families of the
planar ERTBP model. In the Sun-Neptune system, (Kotoulas &
Hadjidemetriou 2002) computed families of periodic orbits of
the 3D-RTBP, at the resonances 1:2, 2:3, and 3:4 with both
methods. An extensive study on the 1:2 resonance has also
been done by Kotoulas (2005). Besides, a symplectic mapping
model based on the averaged Hamiltonian is constructed by
Hadjifotinou & Hadjidemetriou (2002), which is used to study
the 2:3 and the 3:4 exterior resonances for the 3D-ERTBP
model in the Sun-Neptune system by Hadjifotinou &
Hadjidemetriou (2002), Kotoulas & Hadjidemetriou (2003),
Kotoulas & Voyatzis (2004).

Spatial resonant periodic orbits corresponding to the
planetary systems are also investigated by researchers.
Resonant periodic orbits in three-dimensional exoplanetary
systems and their stability are analyzed for 2:1 resonance by
Antoniadou & Voyatzis (2013) and for 4:3, 3:2, 5:2, 3:1, and
4:1 resonances by Antoniadou & Voyatzis (2014). Besides,
spatial families which emanate from the circular family for the
5:2 and 7:3 resonances are shown by Antoniadou & Voyatzis
(2017). Extensive studies of Antoniadou & Libert (2018a,
2018b) related to 3:2, 2:1, 5:2, 3:1, 4:1, and 5:1 interior
resonances from 2D-RTBP to 3D-RTBP (circular and elliptic
cases) are also performed by Antoniadou & Libert (2019).

5. Conclusion

Resonant periodic orbits in the restricted three-body problem
are reviewed. Starting from the unperturbed two-body problem,
resonant periodic orbits in two models are presented, including
the CRTBP and ERTBP, each of which includes the planar as
well as the three-dimensional case. Works related to the
symmetric and asymmetric periodic orbits in these two models
are introduced, respectively. Bifurcations of resonant periodic
families and their stability are presented in detail for the first
order, the second order, and other higher order resonances.

In the CRTBP model, the near circular family D continued
from the unperturbed model bifurcates at the first order
resonances, from which two families of symmetric periodic
families are generated, differing in phase only. The continua-
tion of circular family D from μ= 0 to μ> 0 is possible at the
second order resonances. Due to the perturbation of the second
primary, an unstable region exists near the second order
resonance, from which symmetric families of the second order
resonances are generated. In addition to the first and the second

order resonances, families near other higher order resonances
and their properties are also reviewed.
Investigations on the resonant periodic families in the

ERTBP model were made by researchers to reveal the influence
of the secondary’s orbital eccentricity. It is found that families
of the elliptic problem bifurcate from periodic orbits of the
circular problem which reside on the resonant elliptic branches
of the first order resonances and the circular branches of the
second order resonances. The period of these bifurcation orbits
is always equal to 2π, or a multiple of it. Furthermore, families
of asymmetric periodic orbits bifurcating from symmetric
periodic orbits in the CRTBP and ERTBP are determined.
Vertical critical orbits exist in the resonant periodic families of
the planar CRTBP and ERTBP, from which the three-
dimensional families are generated and investigated by
researchers.
MMRs are very important in shaping the current structure of

the solar system, and resonant periodic family is one approach
to study them. Therefore, studies on the resonant periodic
families in the restricted three-body model of the Sun-planet
system, especially for the Sun-Jupiter and Sun-Neptune
systems, are performed by many researchers. These studies
give us a better understanding of these resonance phenomena in
the solar system (e.g., Kirkwood gaps, trans-Neptunian
objects). Meanwhile, there is a growing interest in extrasolar
planetary systems. MMRs are also detected and analyzed with
the resonant periodic orbits in the extrasolar planetary system
by researchers.
One final remark is that: the current review only focuses on

the direct (prograde) resonance orbits, leaving the 1:1
resonance, i.e., co-orbital motion and the retrograde orbits
untouched. These resonances also have their correspondence in
the solar system (for example, the Trojans, and the retrograde
asteroids) and are the research interest of many historical and
current studies.
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