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Abstract

The taxonomy of galaxy morphology is critical in astrophysics as the morphological properties are powerful tracers
of galaxy evolution. With the upcoming Large-scale Imaging Surveys, billions of galaxy images challenge
astronomers to accomplish the classification task by applying traditional methods or human inspection.
Consequently, machine learning, in particular supervised deep learning, has been widely employed to classify
galaxy morphologies recently due to its exceptional automation, efficiency, and accuracy. However, supervised deep
learning requires extensive training sets, which causes considerable workloads; also, the results are strongly
dependent on the characteristics of training sets, which leads to biased outcomes potentially. In this study, we attempt
Few-shot Learning to bypass the two issues. Our research adopts the data set from the Galaxy Zoo Challenge Project
on Kaggle, and we divide it into five categories according to the corresponding truth table. By classifying the above
data set utilizing few-shot learning based on Siamese Networks and supervised deep learning based on AlexNet,
VGG_16, and ResNet_50 trained with different volumes of training sets separately, we find that few-shot learning
achieves the highest accuracy in most cases, and the most significant improvement is 21% compared to AlexNet
when the training sets contain 1000 images. In addition, to guarantee the accuracy is no less than 90%, few-shot
learning needs ∼6300 images for training, while ResNet_50 requires ∼13,000 images. Considering the advantages
stated above, foreseeably, few-shot learning is suitable for the taxonomy of galaxy morphology and even for
identifying rare astrophysical objects, despite limited training sets consisting of observational data only.
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1. Introduction

Galaxy morphology is considered a powerful tracer to infer
the formation history and evolution of galaxies, and it is
correlated with many physical properties of galaxies, such as
stellar populations, mass distribution, and dynamics. Hubble
invented a morphological classification scheme for galaxies
(Hubble 1926) and pioneeringly revealed the correlation
between galaxy evolutionary stages and their appearance in
optical bands. Hubble sequence principally includes early-type
galaxies (ETGs) and late-type galaxies (LTGs); ETGs mostly
contain older stellar populations and have few spiral structures,
while LTGs hold younger stellar populations and usually
present spiral arms-like features. The above correlation has
been studied widely and deeply in the past decades with
increasing observational data of galaxies. Predictably, relevant
investigations will be significantly advanced with enormous
data from the upcoming large-scale imaging surveys, such as
LSST,6 Euclid7 and CSST.8

Galaxy morphology classification is started with visual
assessment (de Vaucouleurs 1959, 1964; Sandage 1961;
Fukugita et al. 2007; Nair & Abraham 2010; Baillard et al.
2011) and has lasted for decades as the mainstream approach
in the field. In the 21st century, the volume and complexity of
astronomical imaging data have increased significantly with
the capability of the new observational instruments, such as
the Sloan Digital Sky Survey9 (SDSS) and the Hubble Space
Telescopes10 (HST). To make the classification more efficient
and accurate, astronomers developed non-parametric methods
to extract morphological features of galaxies, such as the
concentration-asymmetry-smoothness/clumpiness (CAS) sys-
tem, the Gini coefficient, and the M20 parameter (Abraham
et al. 2003; Conselice 2003; Lotz et al. 2004; Law et al. 2007).
Sets of evidence demonstrate the success of utilizing these
approaches to represent galaxy morphologies, outperforming
traditional human inspection because they eliminate subjective
biases. However, encountering hundreds of millions or
even billions of galaxy images from future surveys, the
performance of the above CPU-based algorithms is inefficient.
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Hence, more effective techniques for Galaxy morphology
classification in an automated manner, e.g., machine learning,
are necessary.

Machine learning algorithms have been widely used to
classify galaxy morphology in the past years, for instance,
Artificial Neural Network (Naim et al. 1995), NN + local
weighted regression (De la Calleja & Fuentes 2004), Random
Forest (Gauci et al. 2010), linear discriminant analysis (LDA,
Ferrari et al. 2015). Recently, deep learning has become more
and more popular for classifying galaxy morphology (Lukic
et al. 2019; Zhu et al. 2019; Cheng et al. 2020; Gupta et al.
2022) as its success has been proved adequately in industries,
especially for pattern recognition, image description, and
anomalies detection. Most cases for classifying galaxy morphol-
ogies are based on supervised deep learning due to its high
efficiency and accuracy. Successful cases include generating the
catalogs of galaxy morphologies for SDSS, the Dark Energy
Survey11 (DES), and the Hyper Suprime-Cam12 (HSC) Surveys
(Dieleman et al. 2015; Flaugher et al. 2015; Aihara et al. 2018).
However, the results of supervised deep learning are strongly
dependent on the volume and characteristics of the training set.
First, requiring a large volume of data for training is determined
by the complexity of the convolution neural networks, which
typically comprise millions of trainable parameters. Hence, to
make the training procedure converge correctly, one has to
provide data points with a comparable amount to the number of
parameters of the Convolutional Neural Network (CNN).
Second, the best trained CNN model reflects the properties of
the feature space covered by the training set. Thus, if the training
set (simulated or selected by astronomers) is considerably biased
from the real universe, supervised deep learning may conse-
quently give biased results. Unsupervised learning has been
adopted to avoid those disadvantages, but the corresponding
classification accuracy is ∼10% worse than that of supervised
manners (Cheng et al. 2020, 2021).

In this study, we attempt few-shot learning (Wang et al. 2019)
to classifying galaxy morphologies by proposing a model
named SC-Net inspired by CNNs and the siamese network
model (Chopra et al. 2005). Concisely speaking, our method
pairs images and compares the metrics between features of input
images, which expands the sample size of the training set
compared to feeding images directly into the CNN. Further-
more, the region of feature space covered by the training set can
be enlarged more effectively by involving rare objects and
pairing them with other objects. Thus, in principle, SC-Net
model simultaneously improves the two drawbacks of tradi-
tional supervised deep learning. To quantify the improvements,
we designed an experiment with adopting galaxy images from
the Galaxy Zoo Data Challenge Project on Kaggle13 based on

Galaxy Zoo 2 Project (Willett et al. 2013), then compared the
classification results to those with AlexNet (Krizhevsky et al.
2012), VGG_16 (Simonyan & Zisserman 2014), and
ResNet_50 (He et al. 2015). The outcomes show that our
method achieves the highest accuracy in most cases and
requests the most miniature training set to satisfy a given
accuracy threshold (see Section 5 for more details). Therefore,
foreseeably, SC-Net model is suitable for classifying galaxy
morphology and even for identifying rare astrophysical objects
in the upcoming gigantic astronomical data sets. The code and
data set used in this study are publicly available online.14

The paper is organized as follows: Section 2 introduces the
data sets and data enhancement. Deep learning models,
including CNNs and siamese Network, are described in
Section 3. Section 4 presents the experimental process of this
study. Results of this work are analyzed and summarized in
Section 5. Finally, we draw discussion and conclusions in
Section 6.

2. Data Sets

The SDSS captured around one million galaxy images. To
classify the galaxy morphology, the Galaxy Zoo Project was
launched (Lintott et al. 2008), which is a crowd-sourced
astronomy project inviting people to assist in the morphological
classification of large numbers of galaxies. The data set we
adopted is one of the legacies of the Galaxy Zoo Project, and it
is publicly available online for the Galaxy-zoo Data Challenge
Project.
The data set provides 28,793 galaxy morphology images

with middle filters available in SDSS (g, r, and i) and a
truth table including 37 parameters for describing the
morphology of each galaxy. The 37 parameters are between
0 and 1 to represent the probability distribution of galaxy
morphology in 11 tasks and 37 responses (Willett et al. 2013).
Higher response values indicate that more people recognize
the corresponding features in the images of given galaxies.
The catalog is further debiased to match a more consistent
question tree of galaxy morphology classification (Hart
et al. 2016).
To simply the classification problem, we reorganize 28,793

images into five categories: completely round smooth, in-
between smooth, cigar-shaped smooth, edge-on, and spiral,
according to the 37 parameters in the truth table. The
filtering method refers to the threshold discrimination criteria
in Zhu et al. (2019). For instance, when selecting the
completely round smooth, values are chosen as follows:
fsmooth more than 0.469, fcomplete,round more than 0.50, as
shown in Table 1.
We then build six training sets with different numbers of

images to test the dependence of the performance of11 https://www.darkenergysurvey.org/
12 https://www.naoj.org/Projects/HSC/
13 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge 14 https://github.com/JavaBirda/Galaxy-Morphologies-
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classification algorithms on the volume of training sets, details
of the training sets are shown in Table 2. In Section 4, we will
train all the deep learning models with 28,793, 20,000, 15,000,
10,000, 5000, and 1000 images, respectively, and compare
their performances thoroughly.

3. Methodology

The few-shot learning proposed in this study is based on a
model named SC-Net, including a CNN and a siamese
network. We use CNNs to extract features, and then train the
model according to the idea of the siamese network for
classifying galaxy morphologies. Explicitly, the CNNs section
introduces the feature extraction process and several traditional
CNNs (LeCun et al. 1998; Krizhevsky et al. 2012; Simonyan &
Zisserman 2014; He et al. 2015) for classification; the siamese
network section describes the few-shot learning method and the
structure of the siamese network.

3.1. Convolution Neural Networks

CNN is a feed forward neural networks which includes
convolutional computation and deep structure, and is one of the
representative algorithms of deep learning. CNN is essentially
input-to-output mappings that learn mapping relationships
between inputs and outputs without requiring any precise
mathematical expressions so that CNN has been widely used in
the field of computer vision in recent years.

The schematic of image feature extraction with CNN mainly
consists of the following three main layers: convolution layer,
pooling layer and fully connected layer. The convolution layer
for feature extraction of the image is built by dot multiplication
operation of the image and convolution kernel. Each pixel of

the image and the weight of the convolutional kernel are
computed through convolution layer and the calculation
process is shown in Equation (1)
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where the f function is an activation function. We usually use
Rectified Linear Units (Relu) (Glorot et al. 2011) as the
activation function defined in Equation (2). wm,n means the
weight, xi+m,j+n means input data of current layer, wb

represents bias, and ai,j describes the output data of current
layer.

x xRelu max 0, . 2=( ) ( ) ( )

Relu turns a negative value into zero. The image size obtained
by the convolution operation is related to certain factors, such
as the size of the convolution kernel, the convolution step size,
the expansion method and the image size before convolution.
The formula description of convolution operation is shown in
Equation (3)

W W F P S2 1 32 1= - + +( ) ( )
H H F P S2 1 42 1= - + +( ) ( )

where W1 means the width of input data, H1 means the height
of input data, F represents the size of convolution kernels, P
describes the padding size and S means stride, W2 and H2

denote the value of W1 and H1 after being calculated. The
pooling layer is applied to reduce the image size while retaining
important information. Max-pooling retains the maximum
value of feature map as the resulting pixel value, while
average-pooling retains the average value of feature map as the
resulting pixel value. The fully connected layer acts as a
“classifier” for the entire CNN after convolution, activation
function, pooling and other deep networks. The classifying
results are identified by the fully connected layer.
In the past 20 yr, traditional CNN algorithms for image

classification have made breakthroughs (LeCun et al. 1998).
AlexNet for ImageNet competition was proposed by Hinton’s

Table 1
The Classification of 28,793 Samples

Class-name Thresholds Number

Completely round smooth fsmooth � 0.469 8436

fcompletely round � 0.50
In-between smooth fsmooth � 0.469 8069

fin-between � 0.50

Cigar-shaped smooth fsmooth � 0.469 579
fcigar-shaped � 0.50

Edge-on ffeatures/disk � 0.430 3903
fedge‐on,yes � 0.602

Spiral fedge‐on,no � 0.715 7806
fspiral,yes � 0.619

Total 28,793

Note. The first column is the name of categories, the second column is the
threshold selection for filtering data, and the third column is the size of each
category.

Table 2
The Amount of Data in Each Category Under Different Data Sizes

Total Size 0 1 2 3 4

28793 8436 8069 579 3903 7806
20000 5237 5071 371 2420 4901
15000 3887 3785 283 1811 3734
10000 2601 2516 197 1219 2467
5000 1298 1261 87 607 1247
1000 269 241 19 121 250

Note. The first column represents the size of the data, and the next five columns
represent the size of the data of completely round smooth, in-between smooth,
cigar shaped smooth, edge-on and spiral, and the above five categories are
represented by 0, 1, 2, 3 and 4, respectively.
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student Alex Krizhevsky (Krizhevsky et al. 2012), which
established the status of CNNs in computer vision. VGGNet
(Simonyan & Zisserman 2014) was proposed by the Oxford
University Computer Vision Group in 2014, which has good
generalization ability and can be easily migrated to other image
recognition projects. Kaiming He et al. proposed the ResNet
(He et al. 2015) in 2015, which solves the problem of gradient
explosion due to depth of model layers.

Although the development of deep learning has made great
achievements, deep learning models are strongly dependent on
the size and quality of the data set. Traditional deep learning
models cannot get a better result when lacking plenty of
samples. To solve this problem, some researchers introduced
data augmentation methods and generate simulated samples,
such as GAN (Goodfellow et al. 2014), which alleviates the
difficulty of insufficient samples to a certain extent. However,
its result is not very ideal because of the deviation between the
real world data and simulated samples. Therefore, a new
method is needed to solve this problem.

3.2. Siamese Network

To solve the problem of lacking of enormous samples with
high quality mentioned in Section 3.1, this study introduces the
few-shot learning (Wang et al. 2019). Few-shot learning is an
application of Meta Learning (Schweighofer & Doya 2003) in
the field of supervised learning, which is mainly used to solve
the problem of model training with a small number of classified
samples. Few-shot learning is divided into three categories:
model-based method, optimization-based method (Wang et al.
2019) and metric-based method.

The model-based methods aim to learn the parameters
quickly over a small number of samples through the design of
model structure, and directly establish the mapping function
between the input value and the predicted value, such as
memory-enhancing neural network (Santoro et al. 2016), meta
networks (Munkhdalai & Yu 2017). The optimization-based
methods consider that ordinary gradient descents are inap-
propriate under few-shot scenarios, so they optimize learning
strategies to complete the task of small sample classification,
such as LSTM-based meta-learner model (Ravi & Larochelle
2016). The metric-based methods measure the distance
between samples in the batch set and samples in the support
set by using the idea of the nearest neighbor, such as the
siamese network (Koch et al. 2015). Considering the
universality and conciseness of metric distance, this study
chooses the metric-based method.

The siamese network is a metric-based model in few-shot
learning, which was first proposed in 2005 (Chopra et al. 2005)
for face recognition. The basic idea of the siamese network is to
map the original image to a low-dimensional space, and then
get feature vectors. The distance between the feature vectors is
calculated through the Euclidean distance. In our study, the

distance between the feature vectors from the same galaxy
morphology should be as small as possible, while the distance
between the feature vectors from the different galaxy morph-
ology should be as large as possible. The framework of the
siamese network is shown in Figure 1 (Chopra et al. 2005).
In the siamese network, the structures of two networks on

the left and right share the same weights (W). The input data,
denoting (X1, X2, Y), are two galaxy morphology and the label
that measures the difference between them. The label Y will be
set to 0 when X1 and X2 belong to the same galaxy
morphology, and it will be set to 1 when X1 and X2 belong
to different galaxy morphology. The feature vectors Gw(X1)
and Gw(X2) of low-dimensional space are generated by
mapping X1 and X2, and then their similarity is computed by
Equation (5)

E X X G X G X, . 5W W W1 2 1 2= -( ) ∣∣ ( ) ( )∣∣ ( )

The SC-Net makes Ew(X1, X2) as small as possible when
Y= 0 and makes Ew(X1, X2) as large as possible when Y= 1.
Contrastive Loss (Hadsell et al. 2006) is selected in SC-Net as
the loss function, which makes the originally similar samples
are still similar after dimensionality reduction and the original
dissimilar samples are still dissimilar after dimensionality
reduction. The formula for the contrast loss function is shown
in Equation (6)

L W Y X X Y L E YL E, , , 1 . 6G W I W1 2 = - +( ) ( ) ( ) ( ) ( )

When the input images belong to the same galaxy morphology,
the final loss function depends only on LG(EW), and when the
input images belong to different galaxy morphology, the final
loss function depends on LI(EW). LG(EW) and LI(EW) are
defined in Equations (7) and (8). The constant Q is set to the
upper bound of EW

L E
Q

E
2

7G W W
2=( ) ( ) ( )

L E Qe2 . 8I W
EQ W

2.77
= -( ) ( )

As so far, we can train the SC-Net model according to the
architecture and loss function as described above. Then the
classified results will be obtained. The advantage of this
method is to fade the labels, making the network have good
extension. Moreover, this approach increases the size of the
data set by pairing data operation, so that deep learning
network will achieve better effect with the small amount of
data. For the above reasons, we adopt the siamese network and
put forward the SC-Net model.

4. Experiments

The workflow of our SC-Net model is shown in Figure 2.
The whole procedure includes four stages: the first stage is to
preprocess data with the method introduced in Section 4.1; the
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second stage is to generate the training set via re-sampling or
sub-sampling the preprocessed data; the third stage is to train
model based on the networks described in Section 4.2; the last
stage is to classify the images using the trained model.
Section 4.3 describes the details of the implementation of these
experiments.

4.1. Data Pre-processing

The experiment data sets consist of 28,793 images with
424× 424× 3 pixels in size. The training time is sensitive to
the size of images, and the features of galaxies are primarily
concentrated at the centers of the original images. Therefore,
we crop and scale the original images first, then arrange them to
training sets. The workflow of data preprocessing is shown in
Figure 3, which is the same as shown by Zhu et al. (2019). We
first crop the original images from 424× 424 pixels to
170× 170 pixels, considering the image centers as origins.
Then, the images with 170× 170 pixels are resized to 80× 80
pixels. Finally, we repeat the first step to crop the images with
80× 80 pixels to 64× 64 pixels.

As is mentioned in Section 2, we have divided the 28,793
images into five categories according to the truth table with the
approach used in Zhu et al. (2019) and organized six data sets

to implement comparative experiments for quantifying the
advantages of the SC-Net over traditional CNNs. The six data
sets contain 1000, 5000, 10,000, 15,000, 20,000, and 28,793
images. The preprocessed data sets have the same organization
but images with 64× 64× 3 pixels, and examples from each
category are shown in Figure 4.
The data form that the SC-Net model takes is (X1, X2, Y),

where X1 and X2 represent a pair of images, and Y is the label of
the correlation between X1 and X2. For example, X1 is in
category edge-on, and X2 is selected in the same category, then
Y was set to 0. To balance positives and negatives in training
sets, every time we create a positive data point, we create a
negative data point by randomly selecting an image from other
categories.

4.2. Deep Learning Models

For comparison, we first build three approaches based on
traditional CNNs: (1) AlexNet (Krizhevsky et al. 2012), (2)
VGG_16 (Simonyan & Zisserman 2014), and (3) ResNet_50
(He et al. 2015). (1) AlexNet consists of five convolutional
layers and three fully connected layers. The network structure
is successively conv11-96, max pool, conv5-256, maxpool,
conv3-384, conv3-384, conv3-256, maxpool. (2) The network

Figure 1. Siamese Architecture. The left and right input different data, and calculate the similarity between them after feature extraction.
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structure of VGG_16 is constructed by modularization. The
first and second modules are divided into two convolutional
layers and a max-pooling layer, and the last three modules are
composed of three convolutional layers and a max-pooling
layer. The number of channels in the convolutional kernel
increases from 64 to 512, and finally, three fully connected
layers are added, with the number of neurons being 4096,
4096, and 1000 successively. There are 13 convolution layers
and three full connection layers in total. (3) Resnet_50 consists
of a convolutional layer, 16 residual modules, and a full
connection layer. The residual module has an identity block
and a convolutional block composed of three convolutional
layers and a shortcut. The difference lies in that the identity
block ensures the consistency of input and output data. The
input images of all CNN models are of 64× 64 pixels in three
channels, and the outputs are vectors of 1× 5. The remaining
parameters, such as the network hierarchy and hyperpara-
meters, were referred to in the original papers.

The architecture of SC-Net is shown in Figure 5, which
consists of two parts. The first part is for extracting features
with a CNN, and the second part calculates the similarity
between the feature vectors obtained from the first part. The
outputs of the SC-Net are the Euclidean Distances between
feature vectors of input images in the feature space, which are
to be used in the classification stage of Figure 2.

The feature extraction module consists of six convolutional
layers and two fully connected layers, details are shown in
Table 3. The convolutional layers all use 3× 3 convolutional
kernels. To avoid overfitting, we inserted BatchNormalization
layers following each convolution layer, which shrinks
the neuron inputs to a normal distribution with a mean of
0 and a variance of 1, rather than a wider random distribution.
After every two convolution layers, maximum pooling and
dropout layers are added to reduce input data size for the
next block. Details of the maximum pooling layers are given
in Section 3.1, and the essence of dropout layers is to
randomly discard a certain number of neurons to improve the
generalization ability of the model. The output of the fully
connected layer is a feature vector in the form of 128× 1,
which will be passed to the second part for the distance
calculation.

The Euclidean distance of two feature vectors is given by

D x y x y, , 9v
i

n

i i
1

2å= -
=

( ) ( ) ( )

where xi is the ith element of the first feature vector x, and yi is
the ith element of the second feature vector y. When Dv is less
than 0.5, the two images are identified to be sufficiently similar,
then classified to be “from the same category.” Otherwise, the
images are classified to be “from different categories.” Overall,
one needs to train about 9 million parameters in the entire

Figure 2. The workflow of the SC-Net model, including data preprocessing,
sample generating, model training, and image classifying.
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SC-Net model, including the modules of feature extraction and
classification.

4.3. Implementation Details

The hardware system utilized in this study contains: Intel(R)
Core(TM) i5-9300H CPU @2.40 GHz 2.40 GHz; NVIDIA
GeForce RTX 2060 6 GB. Software environment comprises
python 3.7.3, Keras 2.3.1, NumPy 1.16.2, Matplotlib 3.0.3,
OpenCV 3.4.2.16. The total runtime is about 128 h for ten
replicates of 30 experiments.

In each epoch, the batch-size is set to 32; the loss function is
contrastive-loss introduced in Section 3.2; the optimizers
adopted in the methods based on CNNs are Adam, while we
use both Adam and rms for the SC-Net; the initial learning rate
is 0.01, which decreases by ten every ten iterations. Each group
experiment was iterated 100 times, and the chosen model was
selected according to the ACC and Loss curve. Figure 6 shows
ACC and Loss curves of the SC-Net model under the Adam
optimizer and 20,000 samples in the data sets, we choose a
model between 40 and 50 epochs because, at that time, the
distance between the validation-loss and training-loss begins to
grow, and validation-loss becomes stable, as descried in
Figure 6(a). Likewise, the chosen models based on deep CNNs
are selected between 30 and 40 epochs, and the chosen model

based on the SC-Net with rms optimizer is selected between 50
and 60 epochs.

5. Results

The experiment is performed under six data sets and five
models, including three traditional CNNs (AlexNet, VGG_16,
ResNet_50) and two SC-Net models, i.e., 30 experiments in
total. Specifically, the sizes of training sets are 1000, 5000,
10,000, 15,000, 20,000 and 28,793, respectively. The details of
organizing the data sets with different sizes are introduced in
Section 2. The five methods are AlexNet, VGG_16,
ResNet_50, SC-Net rms, and SC-Net Adam. We adopt
accuracy (ACC) as the metric for quantifying the classification
performance, which is defined as

N N

N N N N
ACC 10TP TN

TP TN FP FN
=

+
+ + +

( )

where NTP stands for the number of true-positives, NTN stands
for the number of true-negatives, NFP denotes the number of
false-positives, and NFN denotes the number of false-negatives.
As is shown in Table 4 and Figure 7, the SC-Net model

achieves the highest accuracy results with all experimental data
sets. The most significant gap is 21% compared to AlexNet
when the training set contains 1000 images. Considering the
results displayed in Figure 8, when the training set size is

Figure 3. Data processing for the image (ID 11,244) from 424 × 424 to 64 × 64.

Figure 4. Images sample from five categories.
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Figure 5. Architecture of the SC-Net model. The meaning of each icon is explained at the bottom of the figure.
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28,793, the ACC of SC-Net is 6% higher than that of AlexNet,
one can conclude that less training data lead to more significant
excellence of the SC-Net model. This reveals the superiority of
the SC-Net model compared to traditional CNNs because the
SC-Net model takes paired images and labels (Krizhevsky
et al. 2012; Simonyan & Zisserman 2014; He et al. 2015), but
the CNNs take images and labels directly. Taking paired
images and labels enlarges the size of data sets and magnifies
the difference between the images from different morphologi-
cal categories. In addition, the ACC given by the SC-Net rms
method trained by 10,000 images is as high as that given by
ResNet_50 trained by 28,793 images. If one plans to acquire a
classification ACC of no less than 90%, the SC-Net model
needs ∼6300 images for training, while ResNet_50 requires
∼13,000 images. The reduction of the requirements of training
sets enables the usability of the SC-Net model to detect rare
objects (such as strong lenses) potentially.

We additionally explore the dependence of the classification
performance of the SC-Net model on the characteristics of the
data. Figure 8 presents the confusion matrix of the SC-Net
model, which shows that the SC-Net model can achieve
97.85%, 97.34%, and 98.50% ACC in the three categories of
completely round smooth, in-between smooth, and spiral,
because these galaxies have well-identified features. However,
the ACC decreases to 78.33% and 82.59% for cigar-shaped and
edge-on galaxies because of their similarity in the case of the
Point Spread Functions (PSFs) of SDSS. As is mentioned
above, the SC-Net model takes paired images and labels to
measure their similarity. Thus, its performance may be
suppressed when the features of categories are alike. Expect-
edly, this issue will be less noteworthy when the image quality

is improved. For instance, with the data from space-born
telescopes, smeared substructures in galaxies will be well
resolved, such as bugles, disks, and clumps. Then, the SC-Net
model can still separate the cigar-shaped and edge-on galaxies.
Moreover, we draw Figure 9 to analyze the correlation

between the classification predictions and the distance between
testing images and those in different categories in the training
sets in feature space. Five panels, (a), (b), (c), (d), and (e), stand
for that: the images listed along the column are completely

Table 3
SC-Net Structure in Feature Extraction Process

Layer Output-shape

Input Layer 64 × 64 × 3

conv-3-32 BatchNormalization 64 × 64 × 32
conv-3-32 BatchNormalization 64 × 64 × 32
max-pooling Dropout 0.5 32 × 32 × 32

conv-3-64 BatchNormalization 32 × 32 × 64
conv-3-64 BatchNormalization 32 × 32 × 64
ma×-pooling Dropout 0.5 16 × 16 × 64

conv-3-256 BatchNormalization 16 × 16 × 256
conv-3-256 BatchNormalization 16 × 16 × 256
max-pooling Dropout 0.5 8 × 8 × 256

Flatten 16,384 × 1
dense 512 512 × 1
dense128 128 × 1

Note. It consists of three convolutional layers, three pooling layers and two
fully connected layers and makes the data from size 64 × 64 × 3 to 128 × 1.

Figure 6. The ACC (a) and Loss (b) curves of the SC-Net model under the Adam optimizer with 20,000 samples in the data set. In 30 groups of experiments, the
iteration times of each experiment was determined according to this figure. We chose the position between 40 and 50 where val-loss gradually flattened with iteration
time increasing.
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round smooth, in-between smooth, cigar-shaped, edge-on, and
spiral, respectively. The values describe the similarity between
the images in the columns and rows. The smaller the value is,
the more similar the two images are. In each panel, the first row
shows an example of correct classification; the second row
shows an example of incorrect classification. Blue boxes
denote the ground truth, and fonts in red represent the predicted

labels. When the classification is correct in the three categories
with apparent features, the similarity between the testing and
training images in the corresponding category is quite different
from that between the testing images and training images in
other categories. For instance, the similarity score in
Figure 9(a) is 0.06 in the case of correct classification, while
the other distance of feature space scores are above 0.80.

Figure 7. Comparison of experimental results of five methods of ACC. The vertical axis represents the classification performance, the horizontal axis represents the
size of the data set, and the broken lines with different colors represent different methods.

Table 4
30 Groups of Experiments, Each Group of Experiments was Carried out 10 Times, and the Median and Standard Deviation were Taken as the Final Results

Data Sets AlexNet VGG_16 ResNet_50 Sc-Net Rms Sc-Net ADAM

28793 88.89% ± 0.63% 91.32% ± 0.27% 92.53% ± 0.43% 94.36% ± 0.25% 94.47% ± 0.23%
20000 88.49% ± 0.63% 90.05% ± 0.78% 91.75% ± 0.51% 93.67% ± 0.42% 93.93% ± 0.30%
15000 87.30% ± 0.69% 88.89% ± 0.87% 91.29% ± 0.64% 93.31% ± 0.56% 93.23% ± 0.28%
10000 85.50% ± 0.80% 86.10% ± 0.64% 87.81% ± 0.60% 92.36% ± 0.63% 91.13% ± 0.46%
5000 83.79% ± 1.21% 84.20% ± 0.89% 85.72% ± 0.59% 89.13% ± 0.35% 87.62% ± 0.37%
1000 52.00% ± 1.11% 70.00% ± 0.50% 69.00% ± 0.50% 72.69% ± 0.62% 73.12% ± 0.56%

Note. The first column represents the size of the data sets, and the next five columns represent the classification performance of the five methods.
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However, for the types of cigar-shaped and edge-on galaxies,
the differences are only 0.005 and 0.036, which can be
calculated by 0.116–0.111 and 0.465–0.429, see panel (c).
These outcomes further prove that similarity between the data
points in different categories in the training set considerably
influences the accuracy of galaxy morphology classification.
Hence, it is critical to organize training sets sensibly to avoid
such similarities as much as possible when one plans to adopt
the SC-Net to solve their problems.

6. Discussion and Conclusions

Traditional supervised deep learning methods are currently the
mainstream for the morphological classification of galaxies, which
request a considerable volume of training sets. Suppose it
demands simulations to create sufficient training sets, which
potentially brings model-dependence problems. Thus, we intro-
duce few-shot learning based on the SC-Net model to avoid these
drawbacks. Our results present that few-shot learning reduces the
requirement of the size of training sets and provides an efficient
way to extend the coverage of the training sets in latent space,
which can be used to avoid the model-dependence problem.

To illustrate the improvements of our method, we conduct
comparative experiments between few-shot learning and

Figure 8. Confusion matrix for classification results. The ordinate is the real
category of the data, and the ordinate is the category predicted by the model. The
diagonal lines represent the percentage of correctly predicted data in each category.
The remaining values represent the percentage of predictions that were wrong.

Figure 9. The illustration of the distance of feature space between images
measured by the SC-Net. Here (a)–(e) stand for that, the images listed along the
column are completely round smooth, in-between smooth, cigar-shaped, edge-
on, and spiral, respectively. The values describe the similarity between the
images in the columns and rows. The smaller the value is, the more similar the
two images are. In each image matrix, the first row shows an example of correct
classification; the second row shows an example of incorrect classification.
Blue boxes denote the category of the data itself, and the fonts in red represent
the category predicted by the SC-Net model.
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approaches based on traditional CNNs, such as AlexNet,
VGG_16, and ResNet_50. The results show that few-shot
learning achieves the highest accuracy in most cases, and the
most significant improvement is 21% compared to AlexNet
when the training sets contain 1000 images. In addition, to
guarantee the accuracy is no less than 90%, few-shot learning
needs ∼6300 images for training, while ResNet_50 requires
∼13,000 images. The request for fewer training data can avoid
simulation as much as possible when constructing training sets,
which bypasses the model dependence problem. Further,
suppose we design a recursive strategy to enlarge the training
set for galaxy morphology classification by starting with a
small training set. Then, few-shot learning can start with
extensively fewer data points with known labels than those
based on traditional CNNs, which remarkably decreases the
workload on creating the primary training set, especially for the
case of labeling images by human inspection.

Notably, the performance of few-shots learning is sensitive
to the similarity between the images with different labels,
though it is still better than that of the methods based on CNNs.
For instance, the classification accuracy of completely round
smooth, in-between smooth, and spiral are higher than that of
cigar-shaped and edge-on. Specifically, the classification
accuracy reaches 97.85%, 97.34%, and 98.50% in completely
round smooth, in-between smooth, and spiral. However, in the
two categories of cigar-shaped and edge-on, the accuracy is
78.33% and 82.59%, respectively. It is reasonable because the
SC-Net adopts the Euclian distances between images in latent
space as the classification metric, while higher similarity leads
to shorter distances, which causes mis-classification. This issue
is primarily due to the limitation of Galaxy Zoo images
observed by ground-based telescopes, presenting few small-
scale structures because of large PSFs. After all, the difference
between cigar-shaped and edge-on is also hard to identify by
human inspection. Expectedly, future high-quality images with
detailed structures captured by space-born telescopes can
improve the classification performance significantly.

In summary, this study presents the feasibility of few-shot
learning on galaxy morphology classification, and it has certain
advantages compared to traditional CNNs. Next, we plan to
apply the method to observations such as DESI Legacy
Imaging Surveys,15 the Dark Energy Survey, and the Kilo-
Degree Survey.16 Also, to further improve the performance of
this approach, we will optimize its architecture and hyper-
parameters while implementing the above applications.
Besides, considering the characteristic of the SC-Net, few-shot
learning can also be utilized to identify rare objects, e.g.,
merging galaxies, ring galaxies, and strong lensing systems,
which draws our interests intensively as well.
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