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Abstract

We study the complexity of the supergranular network through fractal dimension by using the Ca II K digitized
data archive obtained from the Kodaikanal Solar Observatory. The data consist of 326 visually selected
supergranular cells spread across the 23rd solar cycle. Only cells that were well-defined were chosen for the
analysis and we discuss the potential selection effect thereof, mainly that it favors cells of a smaller size (<20Mm).
Within this sample, we analyzed the fractal dimension of supergranules across the solar cycle and find that it is
anticorrelated with the activity level.
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1. Introduction

Solar convection occurs over a continuum of scales, mainly
around 1Mm, corresponding to granulation, and around
30Mm, corresponding to supergranulation (Hathaway et al.
2000; Rieutord & Rincon 2010). Meunier et al. (2007) show a
low-level intensity contrast and infer a corresponding temper-
ature difference of 0.8–2.8 K between the center of the cells
and boundaries, indicative of a convective origin of super-
granulation. As regards the spread in scale, the kinetic energy
spectrum having a distinct peak at wavelengths of ∼35Mm
consists of cells at least three times larger and extends to much
smaller cells of scales traditionally associated with granulation
(Hathaway et al. 2000).

However, depending on the method chosen, other compar-
able scales for the latter have been reported. For example,
Rieutord et al. (2008) find supergranulation spectrally extend-
ing between scales 20 and 75Mm, while peaking at 36Mm.
Chatterjee et al. (2017), using data from the Kodaikanal Solar
Observatory5 (KSO) similar to those used in this study, report
an average scale in the range of 22–28Mm. Using Doppler-
grams obtained from the SOHO mission and Ca–K filtergrams,
Srikanth et al. (1999) utilizing a tessellation technique report a
supergranular mean scale of 25Mm, with the kurtosis and
skewness of the supergranular scale distribution being 4.6 and
1.1 respectively, in agreement with values derived by other
methods (reported in the above paper).

Interestingly, in contrast to the above estimates for cell size,
Parnell et al. (2009) obtained a characteristic cell diameter in
the range 13–18Mm, almost half the traditional cell sizes
quoted above, by following the boundaries of individual cells

applying a method of tesselating the solar surface. Here, we
may also note that De Rosa et al. (2000) and DeRosa &
Toomre (2004), using local correlation tracking, derived a
rather small diameter in the range 12–20Mm. Also, the average
cell size is 17.06 Mm at cycle minimum and 16.11 at cycle
maximum as observed by Meunier et al. (2008) utilizing the
granule tracking method.
The cycle dependence remarked above is in agreement with the

result of Singh & Bappu (1981), who showed that size of the cells
is smaller by about 5% during the active phase of the solar cycle
in comparison to that at the quiet phase. This is consistent with
the idea that network magnetic elements have a shrinking effect
on supergranules, as hinted by Meunier et al. (2008). However, a
difference in supergranular scales for active and quiet regions of
the Sun, the former being about 1.5Mm larger, has been noted
(Mandal et al. 2017). It is possible that some of the discrepancy in
the reported data about supergranular scales and their properties is
due to a potential bias in studies based on tracers such as Ca II K
for indicating supergranulation (Rincon & Rieutord 2018). A
latitude-dependence of supergranular scales, with a variation as
large as 7%, has been noted (Raju et al. 1998). Supergranules are
generally known to live for about 30 hr or more, with larger cells
living longer (Hirzberger et al. 2008).
Supergranulation has dynamical interactions with the magn-

etic fields of the quiet Sun and, most notably, supergranules are
strongly correlated with the magnetic network (Rieutord &
Rincon 2010). Solar supergranular convection is understood to
play a major role in the global and local structuration and
dynamics of solar magnetic fields at the interface between the
solar interior and corona (Rincon & Rieutord 2018).
Fractal dimension analysis is a powerful mathematical tool

to analyze the shape complexity of geometrical structures, by
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quantifying the degree of self-similarity of a set (Cannon 1984).
The fractal dimension of the supergranulation can give an
indication of the turbulence in the solar magneto-convection. A
fractal dimension D= 1 (resp., D> 1) indicates cells that are
regular (resp., more frazzled and hence space-filling).

Fractal analysis in the context of a solar surface phenomenon
was performed by Muller et al. (1987) who reported a fractal
dimension D= 1.25 for smaller granules and D≈ 2 for larger
ones. Paniveni et al. (2005) obtained a fractal dimension of about
D= 1.24 for supergranules found in the SOHO dopplergrams,
which is closer to the dimension for smaller granules. Building
on the latter result, Paniveni et al. (2011) and Paniveni (2015)
studied the turbulence in solar magneto-convection.

By the Kolmogorov hypothesis in the context of turbulent
convection, the horizontal velocity Vh of a convective cell varies
with scale L as Vh∝ L1/3 (Krishan et al. 2002). A direct relation
between cell fractal dimension and magnetic activity was reported
by Nesme-Ribes et al. (1996), and similarly by Meunier (1999)
using both full disk and high-resolution MDI magnetograms.

While fractal dimension of active region supergranulation is
consistently lower than that of quiet region supergranulation as
reported by Chatterjee et al. (2017), the latter cells can have
higher fractal dimension during the active phase of the solar
cycle, and the former cells contrariwise. It would appear that
the full interplay of global features such as magnetic activity
and solar cycle phase with the supergranular outflow must be
borne in mind to fully unravel the behavior of fractal
dimension, scale or any other cell parameter.

Here, a pertinent question would be whether cell scale has a
role in affecting its fractal dimension across the solar cycle,
which is addressed in part in this work. To this end, we have
adopted the method of cell study used by Paniveni et al. (2005),
which is preferential toward smaller cells. Our analysis,
restricted to the quiet region, suggests that while the cross-
cycle behavior remains qualitatively the same, smaller cells
have larger than average fractal dimension.

2. Data and Analysis

The 23rd solar cycle (1996–2008) at the KSO has been used
for this analysis. The Kodaikanal solar tower dual telescope
houses a K-line spectroheliograph which is a 2-prism
instrument along with 7Åmm−1 spectral dispersion near
3930Å. It works with a 60 mm image formed from a 30 cm
Cooke photovisual triplet. A Foucault siderostat with 46 cm
diameter reflects sunlight onto the 30 cm lens. Exit slits are
centered at K 232 and admit 0.5 A. By employing the photo
digitizing system, the images are digitized in terms of strips
which are running parallel to the equator. The resolution of the
patterns obtained is 2″ which is two times the granular scale.
Further, the data are time averaged over an interval of
10 minutes which is double the 5 minute period of oscillation.
The signal due to granular velocity is largely averaged out by

time averaging and spatial resolution. Similarly, the contribu-
tions to p-mode vibrations are minimized after time averaging.
Cycle 23 lasted during the period August 1996–December

2008. The degree of activity determines the level of dispersal of
magnetic fields, which is expected to influence properties of the
cell network, in particular to lower the fractal dimension in quiet
regions. Ideally, we expect a continuous transition of this property
across the cycle. For our data, this behavior can be broadly
captured by dividing the cycle into three phases—peak, minimum
and intermediate. The maximum or peak phase is identified with
the period 2000–2002, during which large sunspots as well as
other manifestations of activity, such as coronal mass ejections
and solar flares, are found to occur. The minimum phase is
identified with the periods 1996–1997 and 2005–2007 during
which such magnetic activity is minimal. The intermediate phase
is identified with the intervening ascending and descending
phases of the solar cycle. The threefold division here is a
reasonably robust tradeoff between statistical significance of a
phase period and the number of phase periods across the cycle.
An initial selection of frames suitable to estimate the area

and perimeter of supergranular cells is made. Regions in the
quiet Sun, where the supergranules appear to be well
pronounced, are delineated by visual inspection. Out of these
regions, we selected well defined supergranular cells between
15° < θ< 30°, with θ being the angular distance of the cell
from the disk center. Cells below the lower limit show
diminished supergranular flow signature. The upper limit is
chosen to keep the foreshortening effect low. The quiet region
cells were individually selected, extracted and studied as
displayed in Figure 1, in a manner similar to that applied to a
study of dopplergrams (Paniveni et al. 2004, 2010).
The steps involved in detecting and extracting the super-

granules from KSO intensity images are as follows. A typical
full disk image that is the basis of our data is featured in
Figure 1(a), where a few potential cells for our analysis are
encircled. In Figure 1(b), we indicate supergranular cells that
are eventually selected by circles, and those that are eventually
rejected by rectangular enclosures.
Cell selection is based on the requirement that the cells are well

accentuated. Those so obtained are used to determine the area and
perimeter for a given cell, and hence the spectrum for all selected
supergranules. The area-perimeter relation is utilized to derive the
fractal dimension (Paniveni et al. 2005). We analyzed 326
reasonably well-defined cells identified in the quiet region, which
is characterized by a low sunspot number, less solar irradiance and
flare emissions, and hence by a weak magnetic field.
The profile of the visually identified cell was scanned

transversely over the whole length: typically, we choose a
fiducial y-direction on the cell and perform intensity profile
scans along the x-direction for all the pixel positions on the y-
axis (Figure 2). In each scan, the cell extent is taken as the sum
of the distance between two consecutive, expected peaks in the
intensitygram. The sum of these values at all y-levels multiplied

2
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by the pixel dimension gives the area of the cell. Interactive
Data Language is used for data visualization and analysis to
derive area, perimeter and other parameters of the selected
supergranular cell with these data.

This may be contrasted by other methods employed to study
supergranulation, some even of the present authors in their
previous works, such as cross-correlation, tessellation, etc.,
which are typically automated and allow handling large regions

of supergranulation at once. The manual method we opt for
here is thus biased toward cells that are well defined in a
qualitative sense, implying a rejection rate by area of about 4

5
.

Later we discuss potential effects of this selective analysis, and
argue that it is consistent with our fractal analysis.
Since the cell wall is formed by a heating of the overlying

plasma by the magnetic flux swept by the supergranular
convective flow, larger cells typically show more fluctuations

Figure 1. Data and cell selection: (a) Full disk Ca II K filtergram data of KSO where supergranules with well-defined boundaries are encircled. (b) Closeup of a selected
region, where the circles enclose cells that are well-defined, and hence suitable for inclusion in this study, while the rectangles enclose cells that are not so, and hence rejected.

Figure 2. Intensity profile of a selected cell in Ca II K filtergram (inset): the width of the cell at this longitudinal location is the distance between the two peaks,
representing the cell walls. The cell size is derived using the full set of such transverse scans across the cell. (Note: For convenience of display in terms of contrasting
peaks and valleys in the intensity topography, the intensity values are mean-shifted, so that those smaller than the mean intensity are negative-valued.)

3
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and discontinuities in the cell wall. Thus, our requirement for
well defined cells creates a selection effect toward cells that are
smaller than the size scales obtained by other methods, about
which we discuss later.

3. Results

The basic statistical parameters concerning the maximum,
mean and standard deviation for a supergranular cell of area A and
perimeter P for the 23rd solar cycle (1996–2007) are 1082, 269
and 199.7± 11 for area inMm2, and 357, 98.9 and 46.2± 2.5 for
perimeter in Mm respectively. Histograms of the area and
perimeter data are displayed in Figures 3 and 4, respectively.

Skewness of a distribution is a measure of its asymmetry,
and may be either a positive value, negative value or zero
corresponding to a right-skewed, left-skewed or symmetric

distribution respectively (Paniveni et al. 2005). For our present
data, the skewness obtained is 1.2 for the area distribution, and
0.8 for perimeter, indicating asymmetry with a bias toward
larger values. Kurtosis quantifies clustering of a distribution
toward the center relative to the tails, and thus gives a measure
of how peaked a distribution is. For our data, the values of
kurtosis obtained are 1.4 and 0.6 for the area and perimeter
distributions respectively.
The fractal dimension is generally found to be greater than 1,

indicating that the boundary of the cell is not smooth but
craggy, causing greater boundary length to enclose the same
area. The degree to which the fractal dimension exceeds 1 is a
measure of how rugged the cell boundary is. The data on area
and perimeter of the cells are plotted in Figure 5. The linearity
in the log–log relation is quite apparent, indicating a power-law
relation. Figure 5 is then used to read-off the fractal dimension

Figure 3. Histogram for the area of supergranular cells of the present data set. All cells belong to the 23rd solar cycle based on the KSO data.

Figure 4. Histogram for the perimeter of supergranular cells of the present data set. All cells belong to the 23rd solar cycle based on the KSO data.
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Figure 5. Log–log plot of supergranular perimeter (in Mm) against supergranular area (in Mm2) obtained for the (a) cycle minimum, (b) intermediate (middle) and (c)
peak phases (base). The fractal dimensions acquired from the slope of these plots are summarized in Table 1.

5
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D (Hausdorff dimension) of the solar convection cells
according to the relationship

( )=P cA , 1D 2

where P is the perimeter, C is the constant, A is the area of the
cell and D is the fractal dimension.

In our data, the area and perimeter are quite well correlated,
with an average correlation coefficient of 0.99. Fractal
dimension D is calculated as 2× slope and is found to be
1.2± 0.06 using Equation (1).

Our results are comparable to those reported by Paniveni
et al. (2005) for the supergranular fractal dimension with the
SOHO dopplergram data. The slight difference of about 4%
can be attributed to the differences in the data used in that study
(SOHO instead of KSO) and the differing time-frames in the
two studies.

Our main results are summarized in Table 1. This shows that
the fractal dimension of supergranular cells varies with respect
to different phases across the solar cycle. In particular, there is
a marked trend for the fractal dimension to fall with the level of
activity (see Figure 5). The goodness of fit is quantified by the
linear regression R2 measure. The low scatter in the data (as
reflected in the high goodness of fit) suggests that the phase
dependence is unlikely to be an artifact. All the same, a more
extensive investigation of fractal exponents is necessary, with
special attention paid to enhancing the sample size, in order to
obtain dimensions that are statistically more significant.

In this paper, using Ca II K digitized data obtained from
KSO, we investigated the long-term behavior of the super-
granular fractal dimension over a solar cycle. Our results
indicate that the fractal dimension is anticorrelated with

magnetic activity, such that the fractal dimension is just below
1.5 for the minimum phase, 1.3 during intermediate phase and
1.2 at cycle peak. Paniveni et al. (2005) used only a time
window close to the solar cycle minimum, whereas the sample
here spans the cycle, but is confined to low magnetic activity
regions.
Our results are qualitatively consistent with those of

Paniveni et al. (2011) and Chatterjee et al. (2017). In particular,
the latter report a similar anticorrelation for quiet regions across
a number of cycles obtained from KSO. The average over
about three cycles is summarized in Table 2. This agrees with
the anticorrelation found in our data, restricted to the smaller
cells (Table 1), indicating that this behavior is scale-
independent. However, our results pertain to cells that are of
a scale smaller than average. This suggests that the antic-
orrelation between fractal dimension and the activity phase
holds across different scales for the quiet region. On the other
hand, we find that the fractal dimension values we obtain are
slightly larger. This difference may potentially be due to
differences in the data sets and methods used to extract D.
However, in a recent work reported elsewhere (Sowmya et al.
2022), we have been able to verify this scale-dependent fractal
dimension, suggesting that a multifractal process is at play, and
therefore that the properties of the convection may evince a
degree of scale-dependence.
A point worth noting here is the relatively small value of cell

size obtained here, which is comparable to that reported by
Krishan et al. (2002) using the same data analysis method,
which preferentially selects relatively smaller cells. Similar
small scales are reported by other studies that tend to extract
individual cells, e.g., Parnell et al. (2009), which reports a cell
diameter in the range 13–18Mm, half of the generally quoted
cell sizes that are obtained by the autocorrelation method.
These observations underscore that the smaller scale is a
selection effect due to the kind of method used. Here we point
out that this effect can be understood in terms of the relation
between cell size and its boundary properties. The visual
inspection method selects only well delineated cells, which can
broadly be interpreted as cells with lower fractal dimension.
Thus, the selection effect in our data can be explained if it is

the case that cell size and fractal dimension are positively
correlated, which has indeed been reported to be the case
(Srikanth 1999). Solar magneto-convection is acknowledged to
be a turbulent phenomenon (Krishan et al. 2002), which
suggests that small fluctuations in the initial central upflow of
the cell can translate to large irregularities in the cell boundary.
As a result, the boundaries of larger cells can be expected to be
more irregular. Smaller cells are also expected to manifest
boundary irregularities, but to a relatively lesser extent. Thus,
our requirement for cell boundaries to be regular or well-
defined is weighted toward smaller cells. This interpretation
could be tested over a larger sample of cells potentially using a
machine learning based approach.

Table 1
Fractal Dimension with Different Phases of the Solar Activity Cycle

Cycle Phase Fractal Dimension Goodness of Fit

Minimum 1.47 ± 0.02 0.99

Intermediate 1.3 ± 0.01 0.98

Peak 1.2 ± 0.01 0.99

Table 2
Fractal Dimension Across Different Activity Phases Over all Cell Scales,

Adapted from Figure 8 of Chatterjee et al. (2017)

Cycle Phase Fractal Dimension D Average Cell Scale (Mm)

Minimum 1.22 25.4

Intermediate 1.19 24.9

Peak 1.15 24.5

Note. The anticorrelation of scale with activity level here is consistent with a
similar result reported by Singh & Bappu (1981).
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4. Discussion and Conclusions

An isosurface has a fractal dimension given by DI= (Euclidean
dimension) − 1/2 (exponent of the variance) proposed by
Mandelbrot (1975). Thus DT= 2− (1/2× 2/3)= 5/3≈ 1.67 for
an isotherm, considering a two-dimensional surface of super-
granulation. On the other hand, the pressure variance 〈p2〉 is
proportional to the square of the velocity variance i.e., 〈p2〉∝ r4/3

(Batchelor 1953) and hence for an isobar it is Dp= 2−
(1/2× 4/3)= 4/3≈ 1.33. Considering the entire solar cycle,
our analysis gives an averaged fractal dimension value closer to 4

3

than to 5

3
(see Table 1), which indicates that the supergranular

network is closer to being isobaric than isothermal. This is
consistent also with the fractal dimension data derived by
Chatterjee et al. (2017) for supergranulation in both quiet regions
and active regions. Our fractal dimensional data are consistent
with a turbulent origin of the supergranules.

The proximity of the D values that we find to that
corresponding to the isobar limit may be accounted for by
noting that the chromospheric network is situated at the
boundary of supergranules. Assuming that supergranules are
convective cells, they are expected in mixing-length theory to
remain in a full pressure balance with the ambient plasma. This
may also explain the difference between our D values and the
fractal dimension reported by Nesme-Ribes et al. (1996), who
investigated regions demarcated by intensity delimiters that
correspond to isotherm surfaces.

Magnetic fields have the constricting property, by which
charged particles cannot cut across magnetic field lines but are
constrained to spiral along field lines, essentially as a consequence
of the Lorentz force law = ´F v Bq

cLorentz . As a consequence,
the field lines are “frozen in” with the plasma. In the limit of very
high electrical conductivity, plasma flow across magnetic field
lines is prohibited as it would create extremely large eddy currents
(Alfvén 1942). If supergranular cells correspond to convective
cells, then this magnetohydrodynamic effect explains why
magnetic fields are swept to the network boundaries. The effect
can also be expected to smoothen the Ca II K cell boundary by
suppressing fluctuations causing any deviation from the under-
lying supergranular network boundary, thereby leading to a
diminished fractal dimension. Accordingly, during the maximum
phase, when there is a rapid dispersal of magnetically active
regions, this effect should be more pronounced, leading to a lower

value of D. Correspondingly, there would be relatively higher
ruggedness of the network boundaries during the magnetically
quiescent phase, leading to a higher value of D. This provides a
qualitative explanation for the cycle dependence of the fractal
dimension that we report in Table 1.
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