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Abstract

Based on the field theory of density fluctuation under Newtonian gravity, we obtain analytically the nonlinear
equation of 3-pt correlation function ζ of galaxies in a homogeneous, isotropic, static universe. The density
fluctuation has been kept up to second order. By the Fry–Peebles ansatz and the Groth-Peebles ansatz, the equation
of ζ becomes closed and differs from the Gaussian approximate equation. Using the boundary condition inferred
from the data of SDSS, we obtain the solution ζ(r, u, θ) at fixed u= 2, which exhibits a shallow U-shape along the
angle θ and, nevertheless, decreases monotonously along the radial r. We show its difference with the Gaussian
solution. As a direct criterion of non-Gaussianity, the reduced Q(r, u, θ) deviates from the Gaussianity plane Q= 1,
exhibits a deeper U-shape along θ and varies weakly along r, agreeing with the observed data.
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1. Introduction

The n-point correlation functions are important tools to study
the statistical properties of matter distribution on the large scale of
the universe and can provide fundamental tests of the standard
cosmological model (Peebles 1980; Bernardeau et al. 2002). The
statistic of noninteracting particles, like CMB, can be well
described a statistically Gaussian random field, the 2-point
correlation function (2PCF) will be sufficient to characterize its
correlation. When long-range Newtonian gravity is taken into
account, the concept of a Gaussian random field has been subtle
in literature so far. Therefore, a criterion of non-Gaussianity is
required to be defined clearly. The equation of 2PCF G(2)(r) of
density fluctuation to lowest order under Newtonian gravity is a
Helmholtz equation with a delta source, and the exact solution has
been given and called the solution in the Gaussian approximation
in Zhang (2007). This is because the equation G(2)(r) shares a
structure similar to the Gaussian approximate equation (Gold-
enfeld 1992) that has been commonly used in condensed matter
physics. Parallelly, the equation of 3-pt correlation function
(3PCF) of density fluctuation to the lowest order (the Gaussian
approximation) is also a linear equation and the exact solution
(Zhang et al. 2019) has been found as the following
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where Q= 1, and r12= |r1− r2|, etc. Thus, Q= 1 holds in the
Gaussian approximation, and any deviation of Q from 1 will be
an indication of non-Gaussianity of the density fluctuation.
Interestingly, the solution (1) in the Gaussian approximation is
exactly the content of the Groth-Peebles ansatz with Q= 1

(Groth & Peebles 1975, 1977). When density fluctuations up to
second order are included, the equations of G(2)(r) becomes
nonlinear (Zhang & Miao 2009; Zhang & Chen 2015; Zhang
et al. 2019), and its solution describes the distribution of
galaxies better than the Gaussian approximation at small scales.
But G(3) has not been analytically studied up to second order of
density fluctuation. Statistically, ¢ ( )( ) r r rG , ,3 describes the
excess probability over random of finding three galaxies
located at the three vertices (r, ¢r , r″) of a given triangle. In
observations and numerical studies, as an extension of the
Groth-Peebles ansatz (1), the reduced 3PCF is often introduced
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As a direct criterion, ¢ ( )r r rQ , , indicates the non-Gaussianity
when it deviates from 1. Galaxy surveys show that Q≠ 1, and
confirm the non-Gaussianity of the distribution of galaxies.
Moreover, Q depends on the scale and shape of the triangle (Jing
& Börner 1998, 2004; Wang et al. 2004; Gaztañaga et al. 2005;
Nichol et al. 2006; Gaztañaga et al. 2009; Marín 2011; McBride
et al. 2011a, 2011b; Guo et al. 2016; Slepian et al. 2017), a
feature also occurring in simulations (Fry et al. 1993; Barriga &
Gaztañaga 2002; Gaztañaga & Scoccimarro 2005) and in the
study by perturbation theory (Fry 1994; Bernardeau et al. 2002).
In this paper, as a continuation of a series of study (Zhang 2007;

Zhang & Miao 2009; Zhang & Chen 2015; Zhang et al. 2019),
we shall derive analytically the nonlinear field equation of G(3) up
to second order of density fluctuation beyond Gaussian
approximation, give the solution G(3). As have been shown
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(Zhang & Li 2021), the evolution effect of correlation function of
galaxies is not drastic within a low redshift range (z= 0.5∼ 0.0),
so for simplicity we study the nonevolution case and compare
with observations (z= 0.16∼ 0.47) (Marín 2011) in this
preliminary work, and the evolution case will be given in future.

2. Nonlinear Field Equation of 3-point Correlation
Function

Within the framework of Newtonian gravity, the distribution
of galaxies and clusters in a static universe can be described by
the density field ψ with the equation (Zhang 2007; Zhang &
Miao 2009; Zhang & Chen 2015; Zhang et al. 2019)
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where ψ(r)≡ ρ(r)/ρ0 is the rescaled mass density with ρ0 being
the mean mass density, and p rº ( )k G c4J s0

2 1 2 is the Jeans
wavenumber, cs is the sound speed, and the source J is used to
handle the functional derivatives with ease. The generating
functional for the correlation functions of ψ is given by
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where δψ(r)= ψ(r)− 〈ψ(r)〉 is the fluctuation field around the
expectation value 〈ψ(r)〉. (See Goldenfeld 1992; Zhang 2007;
Zhang & Miao 2009; Zhang & Chen 2015; Zhang et al. 2019).
To derive the field equation of the 3-point correlation function

¢ ( )( ) r r rG , ,3 , we take the ensemble average of Equation (3) in
the presence of J, and take the functional derivative of
this equation twice with respect to the source J, and set J= 0.
In calculation, the second term in Equation (3) is approxi-
mated by
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where the second order fluctuation (δψ)2 is kept and higher
order terms have been neglected. In this paper on the 3PCF

to the second order of density perturbation, we work only up to
the order (δψ)2, which is consistent with our previous works on
the 2PCF to second order perturbation (Zhang & Miao 2009;
Zhang & Chen 2015; Zhang et al. 2019). The higher order
(δψ)3 terms in the expansion (7) are the third order of
perturbation, and will be the subject of future study. By lengthy
and straightforward calculations, using the definition (6), we
obtain the field equation of ¢ ( )( ) r r rG , ,3 up to the second
order of density fluctuation as the following
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where G(2)(0)≡G(2)(r, r) and ψ0≡ 〈ψ(r)〉J=0= 1, and ∇≡∇r

denoting the gradient with respect to r through out the paper.
When the higher order terms, such as G(2)G(3) and G(4), are
dropped, Equation (8) reduces to that of the Gaussian
approximation. (See Equation (28) in Zhang et al. (2019).)
Yet, Equation (8) is not closed for G(3), as it hierarchically

contains the higher order 4-point correlation function G(4)

terms. To deal with it, we adopt the Fry–Peebles ansatz (Fry &

2
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Peebles 1978) as the following
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where Ra and Rb are constants, Ra and Rb around 1∼ 10
roughly (Fry 1983, 1984; Meiksin et al. 1992; Szapudi et al.
1992; Peebles 1993). In absence of the theoretical knowledge
of G(4), the Fry–Peebles ansatz has been proposed to cutoff the
hierarchy. By definition dyµ ( )( )G 4 4, on the other hand, the
Fry–Peebles ansatz assumes that dyµ µ( ) ( )( ) ( )G G4 2 3 6 and
therefore changes the perturbation order for the two G(4) terms
in Equation (8). This is a price to pay when the ansatz is used to
break the hierarchy. But this order change occurs at higher
orders, and will not change the fundamental, linear order of the
unknown function dy¢ µ( ) ( )( ) r r rG , ,3 3 in the equation. The
error due to the ansatz is small at large distance r 20 Mpc,
where G(2)= 1, G(3)= 1, and G(4)= 1. By the ansatz (9), the
G(4) term in Equation (8) is written as
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Equation (8) also contains the the squeezed 3PCF,
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which is the limit ¢ = ¢ ( ) ( )( ) ( )r r r r r rG G, , lim , ,r r
3 3 (Yuan

et al. 2017). When r″→ r, the two galaxies separated by a
distance |r″− r| will interact strongly via gravity, and

¢( )( ) r r rG , ,3 will mask or distort the signals in observations
and simulations. Some binning schemes are often used to avoid
this difficulty (Gaztañaga et al. 2005; McBride et al.
2011a, 2011b; Slepian et al. 2017). Yuan et al. (2017) treated
the squeezed 3PCF as a function of the pair-galaxy bias,
independent of - ¢∣ ∣r r . However, observations indicate that the
squeezed 3PCF Q depends on scale. Here we adopt the Groth-
Peebles ansatz (Groth & Peebles 1977)

¢ = ¢ + ¢( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )r r r r r r rG QG G QG, , 2 0 , , , 113 2 2 2 2

where Q is a constant and will be treated as a new parameter in
the equation of 3PCF. Even though the Groth-Peebles ansatz is
correct at the Gaussian level, it changes the perturbation
order. The involved terms are the squeezed terms, like

 ¢( ) ( )( ) ( )r r r r rG G, , ,2 3 on the lhs of Equation (8), and the
terms like ¢( )( ) r r rG , ,3 in the delta source. The terms in the

delta source will not affect the computing result, as they are
absorbed by the boundary condition in computation. The

 ¢( ) ( )( ) ( )r r r r rG G, , ,2 3 terms are of higher orders. So the use of
the ansatz will not affect the linear order of the unknown
function ¢ ( )( ) r r rG , ,3 in the equation.
Substituting (10) and (11) into Equation (8) gives the closed

field equation of the 3PCF
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The function  depends on G(2). The structure of
Equation (12) is similar to that in the Gaussian approximation
(Zhang et al. 2019), but contains an extra convection term

 ¢ · ( )( )a r r rG , ,3 . The 2PCF ¢( )( ) r rG ,2 has been solved up
to second order of density fluctuation (Zhang & Miao 2009;
Zhang & Chen 2015; Zhang et al. 2019). In this paper, to be
consistent with observation, we shall use the observed

¢( )( ) r rG ,2 from Marín (2011). There are eight parameters a,
b, c, g, Q, Ra, Rb and kJ in Equations (12) and (13), treated as
being independent, which differ from those in Zhang (2007),
Zhang & Miao (2009), Zhang & Chen (2015), Zhang et al.
(2019) in renormalization.

3. The Solution of 3PCF Equation

In a homogeneous and isotropic universe, it is assumed that
¢ = - ¢( ) (∣ ∣)( ) ( )r r r rG G,2 2 and that ¢ ( )( ) r r rG , ,3 depends

only on the configuration of a triangle with three vertexes
located at ¢ ( )r r r, , . So, ¢ ( )( ) r r rG , ,3 has only three
independent variables, and is commonly parameterized by
Marín (2011)
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Equation (15) of ζ(r, u, θ) in spherical coordinates will be
solved in actual computation. The ratio u= 2 is often taken in
simulations and presentations of observational data, so that ζ(r,
u, θ) has only two variables. We also take this in the following.

To solve Equation (15) for ζ, we need the 2PCF ξ(r). For a
coherent comparison with observation, we shall use the
observed ξ(r) given in Figure 5 of Marín (2011). We plot
Figure 2(a) to show the observed ξ(r) (red with dots) from
Marín (2011), and the nonlinear solution ξ(r) (blue) from
Zhang & Chen (2015). We also plot the function q( ) r u, , of
(16) in Figure 2(b).

Besides, we also need an appropriate boundary condition on
some domain. Marín (2011) has obtained the redshift-space
3PCF of luminous red galaxies of “DR7-Dim” (61,899 galaxies
in the range 0.16� z� 0.36) from SDSS. In Figures 6 and 7 of

Marín (2011), the reduced Q(s, u, θ) are given in the domain
sä [7.0, 30.0] h−1Mpc, θä [0.1, 3.04] at five respective values
s= 7, 10, 15, 20, 30 h−1 Mpc at a fixed u= 2. Specifically, we
shall use the measured Q(s, u, θ) at s= 7h−1 Mpc and
s= 30 h−1 Mpc as a part of the boundary condition, which is
fitted by

⎧
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⎪
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⎩
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q

q q q
q q q

q q
q q q
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Q
s h

s h

1.6563 56.8042 16.7962 6.7985 cos
6.8108 cos 2 0.4031 cos 3 54.9452 sin
2.088 sin 2 0.7494 sin 3 , 7.0 Mpc

86.5647 1040.2889 320.5828 53.4609 cos
136.5958 cos 2 2.3371 cos 3 1049.9285 sin
14.6843 sin 2 17.0408 sin 3 , 30.0 Mpc

2

1

2

1

Also from Figures 6 and 7 of Marín (2011), we give the fitted Q
(s, u, θ) at θ= 0.1 and θ= 3.04 as another part of the boundary
condition

⎧
⎨⎩

q
q

=
+ - =

- + =
( ) ( )

( )
( )

Q s
s s

s s

0.8979 0.039 68 0.000 35 , 0.1

1.607 0.08998 0.004 731 , 3.04 .

18

2

2

(17) and (18) lead to the boundary values of ζ(s, u, θ)
on the domain, by virtue of the relation (2). The redshift
distance s is used in Marín (2011) which may differ from the
real distance r due to the peculiar velocities. We shall
neglect this error in our computation. To match the
observational data (Marín 2011), the parameters are chosen
as the following: ar=−1043.8 hMpc−1, b=−1627.3,
c=−36.4 h2Mpc−2, g=−5586.6, Ra= 1.66, Rb=−0.34,
Q= 1.1, kJ= 0.161 hMpc−1.
Equation (15) is a convection–diffusion partial differ-

ential equation, and we employ the streamline diffusion
method (Elman et al. 2014) to solve it numerically. We
obtain the solution ζ(r, u, θ) and the reduced Q(r, u, θ) by
the relation (2).
Figure 3(a) plots the surface of ζ(r, u, θ) as a function of (r,

θ), which exhibits a shallow U-shape along θ and turns up at
θ π/2. This feature of solution is consistent with observa-
tions (Guo et al. 2014, 2016). ζ(r, u, θ) decreases mono-
tonously along r up to 30h−1 Mpc. The highest values of ζ(r, u,
θ) occur at small r and θ. For a comparison, Figure 3(b) plots
the Gaussian solution ζg(r, u, θ) of Equation (1), which
decreases monotonously along both θ and r, having no U-shape
along θ.
Figure 4 plots the surface of reduced Q(r, u, θ) as a function

of (r, θ), which deviates from the Gaussianity plane Q(r, u,
θ)= 1, exhibits a deeper U-shape along θ, and varies along the
radial r. The highest values of Q(r, u, θ) occur at large r and θ,

Figure 1. The configuration of the triangle of ¢ ( )( ) r r rG , ,3 in the spherical
coordinate. Here we take the azimuth angle f = 0, r″ = 0 as the origin, and the
vector ¢ - r r along with the z-axis.
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Figure 2. (a): the observed ξ(r) (red with dots) from Marín (2011), the solution ξ to second order (blue) from Zhang & Chen (2015). (b): q( ) r u, , in Equation (16) at
fixed u = 2 as function of (r, θ).

Figure 3. (a): The solution ζ(r, u, θ) shows a shallower U-shape along θ, and decreases monotonously along r. (b): The Gaussian solution ζg(r, u, θ) of Equation (1)
decreases monotonously along both θ and r.
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just opposite to ζ(r, u, θ). The variation along r is
comparatively weaker than the variation along θ. These
features are consistent with observations (Marín 2011;
McBride et al. 2011a, 2011b).

To compare with observations, Figure 5 shows Q(r, u, θ) as a
function of θ at respectively fixed r= 10, 15, 20 h−1Mpc.
Q(r, u, θ) agrees well with the data of Marín (2011) available in
the range θ= (0.1∼ 3.0).

Figure 4. The surface of Q(r, u, θ) deviates from the Gaussianity plane Q(r, u, θ) = 1, exhibits a deeper U-shape along θ, and varies weakly along the radial r.

Figure 5. The solid line: Q(r, u, θ) at u = 2 converted from the solution ζ(r, u, θ). The points: the SDSS observational data from Figures 6 and 7 of Marín (2011).
Three plots are for r = 10h−1Mpc, 15h−1Mpc, 20h−1Mpc, respectively. Q(r, u, θ) deviates from Q(r, u, θ) = 1 of Gausianity and forms a U-shape along the elevation
angle θ ä [0, 3], agreeing with the data.
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As an example, Figure 6 plots Q(r, u, θ) with another set of
parameter values, and the fitting is not as good as that in
Figure 5.

4. Conclusions and Discussions

We have presented an analytical study on the 3-point
correlation function of galaxies based on the field theory of
density fluctuations of a Newtonian gravitating system, and
have derived the nonlinear field Equation (8) of G(3) up to the
second order density fluctuation. This work is a continuation of
the previous works on the 2PCF (Zhang 2007; Zhang &
Miao 2009; Zhang & Chen 2015) and on the Gaussian 3PCF
(Zhang et al. 2019).

By adopting the Fry–Peebles ansatz to deal with the 4PCF,
and the Groth-Peebles ansatz to deal with the squeezed 3PCF,
respectively, we have made Equation (8) into the closed
Equation (12) of G(3), equivalently Equation (15) of ζ in
spherical coordinates. For coherency, we have used the
observed 2PCF and the boundary condition from SDSS DR7
(Marín 2011), in solving for the 3PCF.

The solution ζ(r, u, θ) exhibits a shallow U-shape along θ,
agreeing with the observed one. Nevertheless, ζ(r, u, θ)
decreases monotonously along r, at least up to 30 h−1 Mpc of
the domain in our computation. For comparison, we also plot
the Gaussian solution ζg(r, u, θ), which decreases

monotonously along both θ and r, having no U-shape along
θ. The difference between ζ and ζg implies the non-Gaussianity
of the distribution of galaxies.
The non-Gaussianity is directly indicated by the reduced Q(r,

u, θ). The solution Q(r, u, θ) deviates from the Gaussianity plane
Q(r, u, θ)= 1, also exhibits a U-shape along θ, just like ζ(r, u,
θ), agreeing with the observations (Marín 2011). In fact, by its
definition (2), Q(r, u, θ) shares the same θ-dependence as ζ(r, u,
θ), and its denominator consists of θ-independent ξ(r). Along r,
however, Q(r, u, θ) varies non-monotonically, scattering around
1, unlike ζ(r, u, θ). Moreover, the highest values of Q(r, u, θ)
occur at large r and θ, a behavior just opposite to ζ(r, u, θ).
These two features of Q(r, u, θ) are due to the behavior of ξ(r)
which is large at small r and suppresses Q(r, u, θ) thereby.
This preliminary study of 3PCF in this paper should be

extended, and several issues need more investigation in future,
such as the impact of physical parameters, exploration of
parameter space in association with 2PCF, and the effect of
cosmic expansion (Zhang & Li 2021).
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Figure 6. Similar to Figure 5. Q(r, u, θ) is plotted, using another set of parameters: kJ = 0.12822 hMpc−1, ar = 34.03 kJ, b = 3.36, c = 1.8844 h2Mpc−2, Ra = −2.06,
Rb = 6.64, Q = 0.7 with = + ( )g c k1 4 J

2 . The fitting to the data is not as good as Figure 5.
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