
Estimation of HII Bubble Size Distribution from 21cm Power Spectrum with
Artificial Neural Networks

Hayato Shimabukuro1,2 , Yi Mao2 , and Jianrong Tan2,3
1 Yunnan University, SWIFAR, No. 2 North Green Lake Road, Kunming 650500, China; shimabukuro@ynu.edu.cn (HS)

2 Department of Astronomy, Tsinghua University, Beijing 100084, China; ymao@tsinghua.edu.cn (YM)
3 Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, United States of America

Received 2021 December 14; revised 2022 January 12; accepted 2022 January 17; published 2022 February 28

Abstract

The bubble size distribution of ionized hydrogen regions probes information about the morphology of H II bubbles
during reionization. Conventionally, the H II bubble size distribution can be derived from the tomographic imaging
data of the redshifted 21 cm signal from the epoch of reionization, which, however, is observationally challenging
even for upcoming large radio interferometer arrays. Given that these interferometers promise to measure the 21 cm
power spectrum accurately, we propose a new method, which is based on artificial neural networks, to reconstruct
the H II bubble size distribution from the 21 cm power spectrum. We demonstrate that reconstruction from the
21 cm power spectrum can be almost as accurate as being directly measured from the imaging data with fractional
error 10%, even with thermal noise at the sensitivity level of the Square Kilometre Array. Nevertheless, the
reconstruction implicitly exploits the modeling in reionization simulations, and hence the recovered H II bubble
size distribution is not an independent summary statistic from the power spectrum, and should be used only as an
indicator for understanding H II bubble morphology and its evolution.

Key words: methods: data analysis – methods: numerical – (cosmology:) dark ages – reionization – first stars –
(cosmology:) diffuse radiation – cosmology: theory

1. Introduction

The epoch of reionization (EOR) is a unique period of time
in cosmic evolution, during which ultraviolet (UV) and X-ray
photons emitted from the first luminous objects (e.g., first stars
and galaxies) ionize hydrogen atoms first in the surrounding
intergalactic medium (IGM) and form bubbles of H II regions,
and eventually these H II bubbles fill the whole Universe by
z; 6 (e.g., Fan et al. 2006).

To unveil the nature of cosmic reionization, the cosmic 21 cm
background has emerged as a promising probe of the EOR. The
21 cm line of atomic hydrogen results from the hyperfine
transition due to spin coupling (Scott & Rees 1990; Madau
et al. 1997). The tomographic images of 21 cm brightness
temperature can directly tell the spatial distribution of H II bubbles
and the complete history of cosmic reionization (e.g., Furlanetto
et al. 2006; Pritchard & Loeb 2012). However, making three-
dimensional (3D) 21 cm maps requires high sensitivity and spatial
resolution, so it is technically extremely difficult. Instead, ongoing
large radio interferometer array experiments, e.g., the Giant
Metrewave Radio Telescope (GMRT)4, the LOw Frequency
Array (LOFAR)5, the Murchison Widefield Array (MWA)6 and

the Precision Array for Probing the Epoch of Reionization
(PAPER)7, have first attempted to detect the 21 cm power
spectrum from the EOR, a two-point statistic of 21 cm brightness
temperature fluctuations (e.g., Furlanetto et al. 2006; Pritchard &
Loeb 2012), and have put upper limits on the 21 cm power
spectrum (Paciga et al. 2013; Yatawatta et al. 2013; Tingay et al.
2013; Patil et al. 2014, 2017; Parsons et al. 2014; Jelić et al. 2014;
Ali et al. 2015; Dillon et al. 2015; Jacobs et al. 2015; Pober et al.
2015; Mertens et al. 2020). Furthermore, upcoming experiments
such as the Square Kilometre Array (SKA)8 (Mellema et al. 2013;
Koopmans et al. 2015) and the Hydrogen Epoch of Reionization
Array (HERA)9 (DeBoer et al. 2017) promise to measure the
21 cm power spectrum from the EOR for the first time and with
high sensitivity (The HERA Collaboration et al. 2021).
Understanding the morphology and topology of ionized bubbles

(Mellema et al. 2015; Kulkarni et al. 2016, 2017; Hassan et al.
2018) is a key question related to the EOR. While the topological
features of the 21 cm maps can be described by Minkowski
functionals (Gleser et al. 2006; Lee et al. 2008; Friedrich et al.
2011; Hong et al. 2014; Yoshiura et al. 2017; Chen et al. 2019), the
morphology of ionized regions can be quantified by measuring
the size distribution of H II bubbles (Zahn et al. 2007;
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Mesinger & Furlanetto 2007; Zahn et al. 2011; Pan &
Barkana 2012; Majumdar et al. 2014; Lin et al. 2016), which can
be measured from the 21 cm maps (Kakiichi et al. 2017; Giri et al.
2018a, 2018b). For example, Kakiichi et al. (2017) suggested a
novel technique called “granulometry” for such purpose, based on
the idea that granulometry counts the number of ionized bubbles
when their sizes are smaller than some threshold.

However, conventional methods for measuring the H II

bubble size distribution require high signal-to-noise ratio
imaging data of the redshifted 21 cm signal obtained with
upcoming radio interferometers such as the SKA. While it is
indeed one of the major science goals for the SKA (Koopmans
et al. 2015), the 21 cm imaging is observationally more
challenging than the 21 cm power spectrum measurements.
This is because it will take significantly more integration time
to reduce the thermal noise at individual pixels in the 21 cm
images, in order to compensate the information loss in the
process of Fourier transform of visibility data to obtain the
imaging maps. But before the 21 cm imaging data become
available, can we learn more information about reionization
from the 21 cm power spectrum? Specifically, can we
reconstruct the H II bubble size distribution from the 21 cm
power spectrum measurements?

The 21 cm power spectrum and H II bubble size distribu-
tion are distinct statistical quantities, so from an informa-
tional point of view, one quantity cannot be used to infer the
other directly, if no additional information is utilized.
However, if we employ reionization simulations based on
underlying reionization modeling, which can predict both
observables from the same set of model parameters
(“reionization parameters”), then this underlying reioniza-
tion modeling essentially provides additional information on
the connection between the 21 cm power spectrum and H II

bubble size distribution. In principle, we can first obtain the
best fit values of reionization parameters constrained by the
21 cm power spectrum (Greig & Mesinger 2015, 2017a,
2018; Shimabukuro & Semelin 2017), and then the H II

bubble size distribution can be inferred by running the
reionization simulation with the best fit reionization para-
meters. The disadvantage of this indirect approach is that the
degeneracies in reionization parameters may bias the best
fitting parameter inference—because such estimations are
explicitly model-dependent—and thus result in errors in the
estimations of H II bubble size distribution.

Recently, machine learning techniques have been widely
applied to 21 cm cosmology in three regimes—parameter
estimation (Shimabukuro & Semelin 2017; Gillet et al. 2019;
Hassan et al. 2020; Zhao et al. 2022), emulation (Kern et al.
2017; Schmit & Pritchard 2018; Jennings et al. 2019) and
classification (Hassan et al. 2019). These examples of
applications demonstrate that the Artificial Neural Network
(ANN) technique can easily establish the connection
between two multi-dimensional variables, or “vectors”, if

they are correlated. In this paper, we propose a new method
wherein the H II bubble size distribution is reconstructed
directly from the 21 cm power spectrum using the ANN.
Basically, the networks that connect the input (the 21 cm
power spectrum) and the output (the H II bubble size
distribution) are trained to match the predicted output to
their true values, relying on a large number of simulation
samples. Since the intermediate step of reionization para-
meter inference is bypassed, in principle, the reconstruction
of H II bubble size distribution with this direct, data-driven,
method can be more accurate than the aforementioned
indirect approach—we shall test this point herein.
Note that this ANN-based method is implicitly model-

dependent—the training data sets are based on reionization
simulations and their modeling. When this method is applied
to future 21 cm power spectrum observational data, caution
should be taken about the consequence of the model-
dependence—the reconstructed H II bubble size distribution
is not an independent summary statistic from the power
spectrum, and therefore should not be used for reionization
parameter inference. Instead, the reconstructed H II bubble
size distribution should be regarded only as an indicator for
understanding the H II bubble morphology and its evolution.
The rest of this paper is organized as follows. In Section 2,

we describe the modeling of cosmic reionization, the 21 cm
signal, and the bubble size distribution. In Section 3, we outline
the ANN technique. We show our results in Section 4, and give
concluding remarks in Section 5.

2. Simulation Data Preparation

2.1. Reionization Simulations

We perform semi-numerical simulations of reionization
with the publicly available code 21cmFAST (Mesinger et al.
2011). This code is based on the semi-numerical treatment of
cosmic reionization and thermal history of the IGM. It
quickly generates the fields of density, velocity, ionization
field, spin temperature and 21 cm brightness temperature on
a grid. This code utilizes the excursion-set approach
(Furlanetto et al. 2004) to identify ionized regions.
Specifically, cells inside a spherical region are identified as
ionized, if the number of ionizing photons in that region is
larger than that of neutral hydrogen atoms or fcoll(x, R,
z)� ζ−1. Here, ζ is the ionizing efficiency, fcoll(x, R, z) is the
collapsed fraction smoothed over a sphere with radius R and
center at x and redshift z. The smoothing scale R proceeds
from large to small radius until the above condition is
satisfied. If this does not happen with R down to the cell size,
then the cell at x is considered as partially ionized with the
ionized fraction of ζfcoll(x, Rcell, z). While this formalism is
based on several simplified assumptions, the ionized field
obtained by this formalism is in reasonably good agreement
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with that generated with full radiative transfer simulations
(Zahn et al. 2011).

Our simulations were performed on a cubic box of 200
comoving Mpc on each side, with 2563 grid cells. We apply
the Latin Hypercube Sampling method (McKay et al. 1979)
to scan the EOR parameter space, with one realization for
each set of parameter values. This method is designed to be
more efficient than the naive exhaustive grid-based search.
To sample N points in an n-dimensional parameter space, we
first divide the parameter space into Nn equal interval grids,
and then choose a set of parameters from each row and
column exclusively at the Latin Hypercube of the parameter
space, so there are totally N points chosen. While there are
several designs that satisfy that condition, we use the
maximum Latin Hypercube algorithm that maximizes the
minimum distance between the pairs (Morris & Mitch-
ell 1995), which prevents highly clustered regions and
ensures homogeneous sampling.

Our EOR model is parametrized with three parameters as
follows. (1) ζ, the ionizing efficiency. ( )z = +gf f N n1esc rec*
(Furlanetto et al. 2004, 2006), which is a combination of
several parameters related to ionizing photons. Here, fesc is
the fraction of ionizing photons escaping from galaxies into
the IGM, f* is the fraction of baryons locked in stars, Nγ is
the number of ionizing photons produced per baryon in stars
and nrec is the mean recombination rate per baryon. The
values of these parameters are very uncertain at high
redshift (Gnedin et al. 2008; Wise & Cen 2009). In our data
set, we explore the range of 5� ζ� 100.

(2) Tvir, the minimum virial temperature of haloes that
host ionizing sources. Typically, Tvir is about 104 K,
corresponding to the temperature above which atomic
cooling becomes effective. In our data set, we explore the
range of 104� Tvir � 105 K.

(3) Rmfp, the mean free path of ionizing photons. The
propagation of ionizing photons through the ionized IGM strongly
depends on the presence of absorption systems, and the sizes of
ionized regions are determined by the balance between the sinks
and sources of ionizing photons (see, e.g., McQuinn et al. 2011).
This process is modeled by the mean free path of ionizing
photons, Rmfp (Sobacchi & Mesinger 2014), i.e., the typical
distance traveled by photons inside ionized regions before they are
absorbed. Rmfp is determined by the number density of Lyman-
limit systems and the optical depth of ionizing photons to them. In
our data set, we explore the range of 2� Rmfp� 20Mpc in
comoving scales.

In this paper, we adopt the standard ΛCDM cosmology
with fixed values of cosmological parameters based on the
Planck 2016 results (Planck Collaboration et al. 2016),
( )sW W WLh n, , , , ,m b 8 s = (0.678, 0.308, 0.0484, 0.692, 0.815,
0.968).

2.2. 21 cm Power Spectrum

The 21 cm brightness temperature is given by (e.g., Mellema
et al. 2013),
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Here, TS is the spin temperature of the IGM, Tγ is the cosmic
microwave background (CMB) temperature and dv||dr|| is a
peculiar velocity along the line of sight. xHI is neutral fraction
of the hydrogen atom gas, and ( ) ¯d r rº -x z, 1m is matter
density fluctuations. All variables are evaluated at the redshift
z= ν0/ν− 1. We focus on the regime in which the gas has
been significantly heated, so that TS? Tγ. For simplicity, we
compute the 21 cm signal without accounting for the redshift
space distortion.
The simplest observable that radio interferometer arrays can

measure is the 21 cm power spectrum which characterizes the
fluctuations in the 21 cm brightness temperature. The 21 cm
power spectrum is defined by (e.g., Furlanetto et al. 2006)

( ) ( ) ( ) ( ) ( )d d p dá ¢ ñ = + ¢k kT T P kk k2b b
3

21 . We also use the
dimensionless 21 cm power spectrum, k3P21(k)/2π

2.

2.3. H II Bubble Size Distribution

In this subsection, we briefly describe how we measure the
H II bubble size distribution from the 3D ionization field map
directly. While several different methods have been suggested
to measure the bubble size and its distribution (e.g., Mesinger
& Furlanetto 2007; Zahn et al. 2007, 2011; Majumdar et al.
2014; Lin et al. 2016), there is no consensus on method, due to
the fact that the connectivity in 3D ionized regions is highly
irregular and complex. In this paper, after the 3D ionized
fraction field is obtained from the reionization simulation using
21cmFAST, the bubble size distribution can be measured from
the map of ionization field with the method employed by
21cmFAST (for details, please refer to Furlanetto et al. (2004),
Zahn et al. (2007), Mesinger & Furlanetto (2007), Zahn et al.
(2011), Mesinger et al. (2011)). Specifically, after a pixel of an
ionized region is randomly chosen, the distance from this pixel
to the nearest pixel of a neutral region along a random direction
is measured. This Monte-Carlo procedure is repeated 107 times,
after which the bubble size distribution can be obtained by
taking the volume-weighted average (Zahn et al. 2007;
Mesinger & Furlanetto 2007). The probability distribution
function (PDF) is

( ) ( )= =R
dn

dR

dn

d R
PDF R

log
, 2

3
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where n is the number of bubbles with the bubble size in the
range from R to R+dR. Note that the PDF is normalized to
unity.

3. Artificial Neural Networks

In this section, we briefly describe the architecture of the
ANN. The ANN is a machine learning technique inspired by
the natural neuron networks in a human brain. It can be
regarded as approximate functions that associate the input data
with the output data. By repeated “training” with a set of
simulation data (a.k.a. “training data”), the ANN can optimize
itself in terms of its capability of predicting the output for a new
set of data (a.k.a. “test data”). A typical ANN has a simple
architecture that consists of three layers, as illustrated in
Figure 1—an input layer, a hidden layer and an output layer,
with each layer having a number of neurons. More generally,
the number of hidden layers and that of neurons at each layer
can be chosen arbitrarily.

In our paper, for example, we set 14 neurons at the input
layer, corresponding to the number of k-bins in the 21 cm
power spectrum at each redshift. In the output layer, we set 212
neurons, which is the number of radius bins in the H II size
PDF. We set up five hidden layers, each of which contains 212
neurons.

The ANN works as follows. The input data {xj} are fed to
the neurons in the input layer. The ith neuron si in the first
hidden layer is connected to the jth neuron in the input layer
linearly with an associated weight ( )wij

1 , i.e.,

( )( )å=
=

s w x , 3i
j

n

ij j
1

1

where n is the dimension of the input data. In the hidden layer,
the ith neuron is then activated by an activation function f(s),
i.e., the output of this neuron ti= f(si). Generally, the
activation function is a nonlinear function. We employ the
sigmoid function f(s)= 1/(1+ e− s), because it has nice
properties that it saturates to constant values when |s| is large,
and that it is a smooth and differentiable function. Neurons in
the next hidden layer are linearly connected to the activated
neurons in the previous hidden layer, and then activated by f(s)
in a similar manner. Thanks to the nonlinear activation
function, a trained ANN can approximate any function, in
principle. The output data in the output layer is a linear
combination of the activated neurons in the last hidden layer,

( )( )å=
=

y w t , 4i
j

k

ij
L

j
1

where k is the number of neurons in the last hidden layer, and
L− 1 is the number of all hidden layers. Note that the output
data in the output layer are not activated.
The ANN trains its weights in such a manner that, for a set of

training data with known values of input and output vectors,
the output data generated by the networks are sufficiently close
to the true values. Quantitatively, the weights are adjusted to
minimize the cost function which is defined as
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where Ntrain is the number of training data sets, m is the number
of neurons at the output layer, and y and d are the network-
generated and the true values of output data, respectively. We
need to compute the partial derivative of E with respect to the
individual weights ( )wij

l and find the local minimum of E using
gradient descent. For this purpose, we employ the back
propagation algorithm to compute the trained weights
(Rumelhart et al. 1986). The number of iterations for this
algorithm should be large enough to ensure the convergence of
results. Once we have trained the network weights using the
training samples, we can make predictions for the output data
for test samples, or apply the network to observational data.
In our paper, the input data are the 21 cm power spectrum

P21(k, z) at some redshift z, with the wavenumber ranging from
k= 0.12 to 1.1 Mpc−1 in 14 logarithmic k-bins (unless noted
otherwise). We choose to avoid the larger-scale modes
(k< 0.1 Mpc−1) because of foreground contamination (e.g.,
Liu et al. 2014). The output data are the H II bubble size
distribution PDF(R) at the corresponding redshift z, with the
bubble size radius distributed in the range of 0.78�
R� 1000Mpc in Nradius= 212 logarithmic R-bins. Our data
sets consist of N= 1000 realizations of simulations, with one
realization for each set of values in the EOR parameter space
{ζ, Tvir, Rmfp}. For each realization, we sample the data in 50
different redshifts in the range of z= 7–12 (i.e., Δz= 0.1).

Figure 1. Typical architecture of an ANN. The architecture of the ANN
consists of an input layer, a hidden layer and an output layer of neurons. Each
neuron in a layer is connected to the neurons in the next layer.
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Thus our total data sets contain 50,000 samples of input and
output data. We first use Ntrain= 48,000 random samples as the
training data (with 9600 samples as the validation data sets) to
train our neural network. After that, we apply the trained
network to 2000 test samples of 21 cm power spectra, and
generate 2000 H II bubble size distributions. These network-
generated PDFs can be compared with the actual PDFs that are
computed from the ionized maps directly (dubbed with “ANN”
and “true” in figures or subscripts of quantities throughout this
paper, respectively). For the purpose of illustration, unless
noted otherwise, we choose a reference case with parameter
values ζ= 52.0, Tvir= 4.5× 104 K and Rmfp= 18.3 Mpc,
consistent with current observational constraints on the
reionization history (e.g., Greig & Mesinger 2017b). Note that
the allowed regime of mean neutral fraction is 0.01 
x̄ 0.99HI  in our data sets and the data with ¯ =x 0HI and
¯ =x 1HI are excluded from the samples.
For training the networks, we test the convergence of the

back propagation algorithm and plot the mean squared error
(MSE)

[ ( ) ( )] ( )
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´ -
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a a
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R R
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PDF PDF 6

N

i

N

i i

train radius 1 1
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2
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as a function of the iteration number for this algorithm in
Figure 2. Here PDF(Ri,α) represents the number of bubbles
with size Ri,α in the ith R-bin for the αth training sample. We
find that the MSE converges to much below 10−4 after 2000
iterations, corresponding to a numerical absolute error of 0.01
in the value of PDF, so we set 2000 back propagation iterations
for all computations throughout this paper. This means that the
PDF generated by our ANN has a numerical limit of 0.01,
below which the PDF can be dominated by numerical errors.

The networks are tested by evaluating the accuracy of the
recovered H II bubble size distribution in terms of the
Kullback-Leibler (KL) divergence (Kullback & Leibler 1951).
The KL divergence is useful in quantifying the similarity
between two PDFs Pi and Qi (here i is the index for the data
points). It is defined as

( ∣∣ ) ( )å= ⎜ ⎟
⎛
⎝

⎞
⎠

D P Q P
P

Q
log . 7

i
i

i

i
KL

DKL is close to zero if two PDFs are similar. In our case, Pi and
Qi represent PDFtrue(Ri, α) and PDFANN(Ri, α) for a given data
sample α, respectively.

4. Results

We apply our trained ANN to the test samples, and, in this
section, show the results of reconstructing the H II bubble size
distribution PDF from the 21 cm power spectrum, as compared
with the PDF measured from the ionized fraction field. We first
assume that the input 21 cm power spectrum is the pure signal
from the simulation, and will later consider the scenario
wherein the input power spectrum contains the thermal noise
from radio interferometers.

4.1. ANN Recovery with Pure Signal

In the absence of thermal noise, the ANN-reconstructed H II

bubble PDF is compared with the PDF from the ionized
fraction field in Figure 3, for our fiducial test model at the stage
when the mean neutral fraction ¯ =x 0.39HI . The KL divergence
in this case is 9.00× 10−5, and the relative error of the
reconstruction, i.e., systematic error using the ANN, is

Figure 2. MSE evaluated for training samples as a function of the iteration
number.

Figure 3. (Top) H II bubble size distribution measured from the ionization field
(black solid line) and that reconstructed from the 21 cm power spectrum by the
ANN (red dashed line) at ¯ =x 0.39HI for our fiducial test EOR model. The KL
divergence in this case is DKL = 9.00 × 10−5. (Bottom) relative error (“RE”)
of the ANN-reconstructed PDF with respect to the “true” bubble size
distribution. We cut it off at the radius wherein the PDF is smaller than 0.01
(the numerical limit set by our ANN).
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10−3− 10−1. This demonstrates that the reconstruction method
works well. Note that the PDF generated by our ANN has a
numerical limit of 0.01, below which the PDF is comparable to
the numerical error set by the number of iterations in the back
propagation algorithm, so we only calculate the relative error of
the reconstructed PDF at the radii wherein the PDF� 0.01.

We further test the accuracy of reconstruction at different
stages of the reionization, ¯ =x 0.30HI , 0.51, 0.67 and 0.80, in
Figure 4. As reionization proceeds from high to low x̄HI, the
peak of the PDF shifts from small to large radii, due to the
growth of ionized bubbles. This is consistent with the evolution
of the peak of the 21 cm power spectrum which shifts from
large to small k, as depicted in Figure 5. The KL divergence for
the reconstruction of PDF at all stages of reionization is very
close to zero (DKL∼ 10−4), and the relative error is 10% for
R 100Mpc at all time.

Furthermore, we test the reconstruction for different test
models of reionization (see Table 1). For the same mean xHI,
the PDFs and 21 cm power spectra can vary for different
models of reionization. Figure 6 affirms that at the same mean
¯ =x 0.39HI , our fiducial model (Model 1) has the largest radius
of the peak PDF, while the peak radius for Model 2 is the
smallest. This is consistent with the fact that the peak of the
21 cm power spectrum appears in the smallest k for Model 1
and the largest k for Model 2, as displayed in the right panel of
Figure 6. We compare the reconstruction among three different

Figure 4. Same as Figure 3 but for different stages of reionization at ¯ =x 0.30, 0.51, 0.67, 0.80HI . Larger x̄HI corresponds to the earlier stage of reionization. The KL
divergence is DKL = 2.85 × 10−5, 3.54 × 10−5, 1.44 × 10−3 and 2.32 × 10−4, respectively.

Figure 5. The 21 cm power spectrum at different stages of reionization,
¯ =x 0.30 0.39 0.51 0.67 0.80HI (purple/black/red/blue/green), respectively,
for our fiducial test EOR model.

Table 1
Parameter Values of Reionization Models used for Test Samples in Figure 6

ζ Tvir (×104 K) Rmfp (Mpc)

Model 1 (fiducial) 52.0 4.5 18.3
Model 2 93.2 3.8 5.1
Model 3 49.0 3.1 9.1
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reionization models at the same fixed ¯ =x 0.39HI in the left
panel of Figure 6, and find good accuracy for all cases. This
indicates that the ANN can distinguish different H II bubble
size distributions even if the ionization field is at the same
global mean stage.

To evaluate the accuracy for all test data (with different EOR
models and at different redshifts), we plot the distribution histogram
of relative error of the reconstructed PDF with respect to the “true”
PDF, for some fixed bubble sizes, in Figure 7. In most cases, the
relative error is <10%. This demonstrates that the H II bubble size
distribution can be recovered successfully with good accuracy from
the 21 cm power spectrum using the ANN technique, regardless of
the stages of reionization and reionization models.

4.2. Scale Dependence of ANN Recovery

In practical observations, the large-scale power may be lost
due to the removal of foreground contamination. Therefore, it
is important to understand how the minimum wavenumber kmin

of the 21 cm power spectrum affects the reconstruction of the
bubble size distribution, and test this convergence using
simulation data. In Figure 8, we compare the H II bubble size

Figure 6. (Left) Same as Figure 3 but for three different test models given in Table 1 (black/red/blue curves for Model 1/2/3, respectively). The KL divergence for Models
1, 2 and 3 is DKL = 6.78 × 10−5, 4.77 × 10−3 and 2.35× 10−3, respectively. (Right) The 21 cm power spectrum at the same fixed ¯ =x 0.39HI for these models.

Figure 7. Distribution of the relative errors of bubble size distribution from all test models at some fixed bubble radii R = 15 (left), 30 (middle) and 60 Mpc (right).

Figure 8. Same as Figure 3 but using only part of the information
-k k 1.1 Mpcmin

1  in the power spectrum, with =k 0.15min , 0.21, 0.31
and 0.45 Mpc−1 (blue/purple/orange/green dashed, respectively), in compar-
ison with the fiducial case of using all modes = -k 0.12 Mpcmin

1 (red dotted
line). The KL divergence is DKL = 9.00 × 10−5, 4.34 × 10−4, 9.77 × 10−4,
1.31 × 10−3 and 5.77 × 10−2 for =k 0.12min , 0.15, 0,21, 0.31 and 0.45
Mpc−1, respectively.
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distributions recovered by the ANN using the 21 cm power
spectrum with varying =k 0.12min (all bins), 0.15, 0.21, 0.31
and 0.45 Mpc−1, at ¯ =x 0.39HI for our fiducial test EOR model,
while the maximum wavenumber = -k 1.1 Mpcmax

1 is fixed.
We find that the reconstructed PDF from = -k 0.15 Mpcmin

1 is
almost indistinguishable from that using all modes, and the KL
divergence is just as good. This value of = -k 0.15 Mpcmin

1 is
consistent with the peak in the 21 cm power spectrum that
contains information on the characteristic bubble size. Also,
losing more large-scale information (i.e., enlarging kmin) can
hurt the reconstruction and result in a relative error larger than
10%. This implies that the large-scale information in the 21 cm
power spectrum, particularly at the peak of power, is indeed

essential for reconstructing the PDF. We further test the scale
dependence at different stages of reionization in Figure 9. We
find that the largest possible kmin, which compromises to give a
good reconstruction, can depend on the stage of reionization,
because the scale of power spectrum should be large enough,
compared to the typical bubble size at that moment. For
example, powers with = -k 0.21 Mpcmin

1 can also give as
good reconstruction of PDF as powers of all modes, before
reionization proceeds halfway (x̄ 0.5HI  ).
For the complete information, we also vary kmax with fixed
= -k 0.12 Mpcmin

1, and find that the recovered PDF and KL
divergence only weakly depend on kmax.

Figure 9. Same as the top panel of Figure 8 but for different stages of reionization at ¯ =x 0.30, 0.51, 0.67, 0.80HI .

Figure 10. Same as Figure 3 but the reconstruction is made by the indirect
approach (blue dotted) as well as recovered directly by the 21 cm power
spectrum with the ANN (red dashed).

Figure 11. The 21 cm power spectrum signal (black solid), the total noise
power spectrum for the configuration of SKA1 (purple dot–dashed) including
the contributions from thermal noise (red dashed) and cosmic variance (blue
dotted), for the fiducial test model at ¯ =x 0.39HI .
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4.3. Comparison with Indirect Reconstruction Approach

In Section 1, we commented that there could be an
alternative, indirect, reconstruction approach, which is to infer
the H II bubble size distribution from the prediction of the
underlying reionization simulation with the reionization model
parameters that are best fit by the 21 cm power spectrum. This
indirect approach is more interpretable and intuitive than the
direct ANN-based reconstruction. In this subsection, we
compare the accuracies of both approaches in Figure 10. We
find that while the indirect approach can outline the
approximate shape of the PDF, it can only capture the
characteristics in a biased manner, in terms of both location
and height of the PDF peak. Quantitatively, the indirect
approach results in an error of tens of per cent. This should be
due to the degeneracies in reionization parameters that can
result in large errors in best fitting the parameter values, which,
in turn, leads to errors in the H II bubble size distribution in the
indirect approach. In comparison, the direct, ANN-based
approach can have an error within 10%, and is therefore more
accurate than the indirect approach.

4.4. ANN Recovery with Thermal Noise

In previous subsections, we assume that the input 21 cm
power spectrum is the pure signal from simulations. In practical
observations, however, the measurements of 21 cm power
spectrum contain random noise. For large radio interferometer
arrays like the SKA, the noise is dominated by thermal noise at
small scales, but cosmic variance becomes important at large
scales. In this subsection, we will take into account both
thermal noise and cosmic variance, and investigate the effect of

the noise power spectrum on the reconstruction of H II bubble
size distribution.
The thermal noise power spectrum for a mode k is given by

McQuinn et al. (2006); Mao et al. (2008, 2013)

( )
¯ ( )

( )m =
W

^

P k d y
t

T

n L A
, . 8A

k e
th, 1 mode

2 sys
2

Here dA(z) is the comoving angular diameter distance at z,
( ) ( ) ( )lº +y z z H z121

2 , where λ21= λ(z)/(1+ z)= 0.21 m
and H(z) is the Hubble parameter at z. Ω= λ2/Ae is solid angle
spanning the field of view and t is the total integration time.
Tsys is the system temperature of antenna, which is the sum of
the receiver temperature of∼ 100 K and the sky temperature
Tsky= 60(ν/300MHz)−2.55 K. Compact layout of the radio
interferometer array can repeatedly measure one visibility
mode, thereby reducing the thermal noise. ¯ ( )^n L Ak e denotes the
number of redundant baselines ^Lk corresponding to k⊥ within
the baseline area equal to the effective area per station Ae. The
thermal noise for the mode k depends on the projection of k on
the sky plane m= -k̂ k 1 2 , where m q= cos and θ is the
angle between the mode k and the line of sight.
The thermal noise for the spherically averaged power

spectrum over a k-shell is given by Lidz et al. (2011)
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-
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2
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Nc(k, μ) is the number of modes in the ring with μ on the
spherical k-shell with the logarithmic step size δk/k= ò,
Nc= ò k3Δμ × vol/4π2, and vol is the survey volume of the
sky. The sum here accounts for the noise reduction by
combining independent modes. Thus it runs over the upper
half shell with positive μ since the brightness temperature is a
real-valued field, and only half of the Fourier modes are
independent.
The cosmic variance for the 21 cm power spectrum is

estimated by

( ) ( ) ( )=P k
N

P k
1

, 10cv
modes

21

where Nmodes= ò k3 × vol/4π2 is the number of modes in the
upper half k-shell.
In this paper, we consider an experiment similar to the low-

frequency array of SKA Phase 1 (SKA1). Specifically, we
assume a configuration such that 224 stations are compactly
laid out in the core with 1000 m in diameter, and the minimum
baseline between stations is 60 m. We assume that the field of
view of a single primary beam is full width at half maximum
(FWHM) ∼3°.5 at z∼ 8, the effective area per station
Ae≈ 421 m2 at z∼ 8, the total integration time is 1000 hr,
the bandwidth of a redshift-bin is 10 MHz and the step size of a
k-bin is ò= δk/k= 0.1. Figure 11 plots the total noise power
spectrum PN(k)= P thermal (k)+ Pcv(k) as well as the respective

Figure 12. Same as Figure 3 but the reconstruction with the ANN is from the
21 cm power spectrum with total noise including cosmic variance and thermal
noise (with the shaded region representing the 1σ confidence region). The mean
and variance of PDF are computed from 10 realizations of random noise.
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contributions from cosmic variance and thermal noise. Our
result is consistent with previous studies, e.g., Koopmans et al.
(2015). For SKA1, the cosmic variance is always negligible
compared to the signal, and the thermal noise is smaller than
the signal for k� 1Mpc−1. In other words, the 21 cm signal
dominates over the noise except at small scales. Since the
reconstruction is not sensitive to kmax, as shown in Section 4.2,
we expect that the reconstructed PDF should not be
significantly affected by the noise.

We model the measured 21 cm power spectrum as
P(k)= P21(k)+ N(k), where P21(k) is the 21 cm power
spectrum signal, and N(k) is a random draw from a Gaussian

probability distribution with zero mean and variance equal to
the square of total noise power spectrum ( )P kN

2 . For each test
EOR model, we generate 10 independent realizations from the
total noise power spectrum as the input data for the ANN, and
from the 10 different outputs of reconstructed PDFs, compute
the mean and variance. Figure 12 displays the 1σ confidence
level region of the 10 different outputs of reconstructed PDFs
for the fiducial test EOR model at ¯ =x 0.39HI . We also show
the evolution of the reconstruction in Figure 13. We find that
even if the total noise is accounted for at the sensitivity level of
SKA1, the reconstruction of H II bubble size distribution with
the ANN still works well at the relative error level of 10%
(except for large radii 100Mpc). This finding is confirmed for
other test EOR models.
Nevertheless, if we reduce the total integration time from

1000 hr to 100 hr, then the thermal noise will be much larger.
As a result, as depicted in Figure 14, the reconstruction of H II

bubble size distribution will cause significant systematic error,
which is 10% at scales smaller than the peak of PDF, but can
be tens of per cent at larger scales.

5. Summary and Conclusions

In this paper, we propose a new, ANN-based method to
reconstruct the H II bubble size distribution directly from the
21 cm power spectrum. Our method will allow tracing the
evolution of H II bubble size distribution during cosmic
reionization when only 21 cm power spectrum measurements
will be available, but direct measurements of bubble size
distribution cannot be done without 3D 21 cm imaging data.

Figure 13. Same as Figure 12 but for different stages of reionization at ¯ =x 0.30, 0.51, 0.67, 0.80HI .

Figure 14. Same as Figure 12 but for different integration time of 100 hr (red
dot–dashed) and 1000 hr (blue dashed). We only show one realization here, for
illustrative purpose.
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Nevertheless, our reconstruction method implicitly exploits the
modeling in reionization simulations, and hence the recovered
H II bubble size distribution is not an independent summary
statistic from the power spectrum, and should be used only as
an indicator for understanding H II bubble morphology and its
evolution.

We train our neural networks with 48,000 training data sets
and tested the networks with 2000 test data sets. These data sets
are generated by varying EOR parameters for 1000 realizations
with the semi-numerical code 21cmFAST. We use the 21 cm
power spectrum for k= 0.12–1.1 Mpc−1 in 14 k-bins as the
input of the networks, and generate the H II bubble size
distribution PDF(R) for R= 0.78–1000Mpc in 212 R-bins as
the output, at z= 7–12. We train the weights of ANN using the
back propagation algorithm.

We apply the trained networks to the test data sets to test the
accuracy of recovery. We demonstrate that the recovered H II

bubble size distribution can be almost as accurate as that
directly measured from the ionization map with the fractional
error <10% for R 100Mpc at all stages of reionization, with
the KL divergence DKL= 1 at all time. This result is generic
for a number of EOR models.

We further investigate the main contributions to the
reconstruction, and find that the large-scale modes are
particularly important. The reconstruction results are sensitive
to the minimum wavenumber cutoff kmin, while weakly
depending on the maximum wavenumber cutoff kmax. The
kmin should correspond to the scale that is much larger than the
typical bubble size, so it depends on the stage of reionization.
For the early and middle stages (x̄ 0.5HI  ), kmin must be
smaller than 0.21Mpc−1, in order for the reconstruction results
to converge. For the later stage, e.g., at x̄ 0.39HI  , kmin should
be smaller than 0.15Mpc−1.

In principle, the reconstruction of PDF can be achieved
alternatively with an indirect approach, which is to first
constrain the best fit values of reionization parameters from the
21 cm power spectrum measurements and then obtain the H II

bubble size distribution from the prediction of reionization
simulations using the best fit reionization parameters. However,
this indirect approach can result in an error of tens of per cent in
the reconstructed PDF, in comparison with the <10% error in
our direct, ANN-based method.

Our reconstruction is tested when the thermal noise and
cosmic variance at the SKA1 noise level are applied to the
21 cm power spectrum. Since the total noise for SKA1 is
subdominant for k 1Mpc−1, assuming the integration time of
1000 hrs, our reconstruction results are not affected much by
the noise, i.e., the recovered PDF agrees with that directly
measured from the ionization map with the fractional error
<10% for the radii R 100Mpc at all stages of reionization.

Note that this fractional error of 10% refers to the
difference in the reconstructed PDF with respect to the true
value. These are the systematic errors using the ANN.

However, an estimation of statistical uncertainties is not
performed in this paper. In principle, this can be done by
neural network techniques such as the density-estimation
likelihood-free inference (Alsing et al. 2018, 2019; Zhao
et al. 2022). We defer the implementation of this technique to
future work.
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