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Abstract

Simultaneous observations from two spatially well-separated telescopes can lead to measurements of the
microlensing parallax parameter, an important quantity toward the determinations of the lens mass. The separation
between Earth and Sun–Earth L2 point, ∼0.01 au, is ideal for parallax measurements of short and ultra-short
(∼1 hr to 10 days) microlensing events, which are candidates of free-floating planet (FFP) events. In this work, we
study the potential of doing so in the context of two proposed space-based missions, the Chinese Space Station
Telescope (CSST) in a low-Earth orbit (LEO) and the Nancy Grace Roman Space Telescope (Roman) at L2. We
show that joint observations of the two can directly measure the microlensing parallax of nearly all FFP events with
timescales tE 10 days as well as planetary (and stellar binary) events that show caustic crossing features. The
potential of using CSST alone in measuring microlensing parallax is also discussed.
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1. Introduction

Gravitational microlensing is powerful in detecting cold
planets, including those beyond the snow line and those that are
unbound to any star (e.g., Mao & Paczynski 1991; Gould &
Loeb 1992; Sumi et al. 2011). Statistical studies have found that
cold planets are abundant (Gould et al. 2010; Suzuki et al. 2016),
and that unbound planets may be as common as main-sequence
stars in the Galaxy (Mróz et al. 2017, 2019). Observational
constraints on unbound planets, or free-floating planets (FFPs),
can provide important constraints on the formation and evolution
of planetary systems (see Zhu & Dong 2021 for a recent review).

The standard microlensing technique usually does not yield
measurements of the lens mass. This is because the microlen-
sing timescale, tE, involves multiple physical parameters
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Here μrel is the relative proper motion between the lens and the
source, and θE is the angular Einstein radius
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source relative parallax, with DL and DS the distances to the
lens and the source, respectively (Gould 2000).

The lens mass can be measured or directly constrained if two
of the three physical quantities—angular Einstein radius,
microlensing parallax and lens flux—are measured (e.g.,

Yee 2015). Microlensing parallax is the lens–source relative
parallax scaled by the angular Einstein radius (Gould 1992)
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For faint microlenses such as FFPs, the only way to directly
measure the mass is therefore the combination of θE and πE.
The microlensing parallax is of particular importance, as it
alone can already yield strong constraints on the lens mass
under general assumptions of the lens kinematics (Han &
Gould 1995; Zhu et al. 2017a).
Many methods have been proposed to measure the

microlensing parallax in general microlensing events (e.g.,
Gould 1992, 1994a; see a brief summary in Zhu et al. 2015). In
the context of FFP events, the ideal way is to obtain
observations from two observatories that are separated by a
large fraction of the projected Einstein radius
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Here the normalization has been chosen for an Earth-mass
object at a typical microlensing distance (DL≈ 4 kpc). A
combination of telescopes at Earth and the Sun–Earth L2 point,
with a maximum projected separation of 0.01 au, is therefore
ideal for the detection of microlensing parallax for free-floating
planetary-mass objects.
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Studies have looked into the feasibility of measuring
microlensing parallax from Earth and L2. The Roman Space
Telescope, previously known as WFIRST, is going to conduct
multiple microlensing campaigns from L2 (Spergel et al. 2015).
With a 2.4 m aperture and 0.3 deg2 field of view, Roman is
expected to detect over one thousand bound planets and
hundreds of FFPs out of its 5× 72 day microlensing campaigns
(Penny et al. 2019; Johnson et al. 2020). The potential of
utilizing a Roman-like telescope for microlensing parallax
observations has long been realized (e.g., Gould et al. 2003;
Han et al. 2004; Yee 2013; Gould et al. 2021). In particular,
Zhu & Gould (2016) and Street et al. (2018) studied the use of
ground-based telescopes, either the Korea Microlensing Tele-
scope Network (KMTNet, Kim et al. 2016) or the Rubin
Observatory (previously known as LSST) to augment the
microlensing parallax measurements of Roman. See also
Bachelet & Penny (2019) and Ban (2020) for the feasibility
of using two L2 satellites (i.e., Euclid and Roman) to determine
microlensing parallax parameters.

The Chinese Space Station Telescope (CSST) is a planned
mission currently scheduled to launch in late 2023 and start
scientific observations in 2024 (Zhan 2011, 2018; Cao et al.
2018). CSST has an aperture of 2 m and a field of view of
1.1 deg2, and it will be in a∼ 400 km low-Earth orbit (LEO)
with an orbital period around 95minutes. The primary science
goal of CSST is to understand the nature of dark matter and dark
energy using a number of cosmological probes, such as galaxy
clusterings as well as weak and strong gravitational lensings (e.g.,
Gong et al. 2019; Zhang et al. 2019). The high resolution and
large field of view of CSST make it also a wonderful mission to
conduct space-based microlensing surveys (Gould 2009). Similar
to those by Euclid and Roman (Penny et al. 2013, 2019; Johnson
et al. 2020), the microlensing survey by CSST will have
sensitivity to low-mass planets on both wide and unbound orbits.

This paper discusses the potential of measuring microlensing
parallax by CSST alone and by combining CSST in LEO and a
Roman-like telescope at L2. We show in Section 2 that such a
joint program can measure microlensing parallax for the
majority of short (and ultra-short) timescale microlensing
events. Section 3 explains the potential of CSST and Roman in
measuring parallax and thus presents a full lens solution of
caustic-crossing binaries (including planetary events). A brief
discussion is given in Section 4.

2. Measuring the Microlensing Parallax of Single-lens
Events

The microlensing light curve arising from a point source and
a single lens is given by Paczynski (1986)
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Here FS is the source flux at baseline, Fbase is the total flux
(source and possible blend) at baseline, and u is the distance
between the source and the lens at a given time t normalized to
the Einstein radius. Because of the microlensing parallax effect,
telescopes at different locations (namely L2 and LEO) see
different values of u
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Here t0 is the peak time and tE is the event timescale. We use
the effective timescale teff≡ u0tE rather than the impact
parameter u0 in describing the event evolution, because teff is
almost always better constrained in observations than is u0.
The microlensing parallax measured from two well separated

observatories can be approximated as (Refsdal 1966;
Gould 1994a)
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where pE and p ^E are the components parallel and perpend-
icular to the source trajectory, respectively. Here D⊥ is the
projected separation between the two observatories, tE
is the event timescale, and Δt0≡ t0,LEO− t0,L2 and
Δu0≡u0,LEO− u0,L2 are the differences in peak times and
impact parameters as seen from two observatories, respectively.
By writing the parallax vector in the form of Equation (7) we

have assumed that (a) the event timescale tE is (effectively) the
same at two locations and that (b) both tE and the projected
separation D⊥ are invariant in the process of the event. The
latter is a reasonable assumption for short (less than a few days)
timescale events, which are the focus of this section. Regarding
the former, the difference in tE arises from the relative motion
between the two telescopes, which we separate into two parts.
The relative motion between Roman and Earth (< 1 km s−1) is
very small compared to the lens-source projected motion,
which is typically -v 200 km shel

1˜ (see Appendix B of Zhu
& Gould (2016)). The relative motion between CSST and Earth
varies within an orbital period of CSST (T≈ 90 min) and caps
at∼ 8 km s−1. For events with tE? T, the time-averaged
relative velocity is negligible compared to the transverse
velocity vhel˜ . For events with tE comparable to T, the relative
motion between CSST and Earth is in fact useful in further
breaking the standard four-fold degeneracy in two-location
observations (Refsdal 1966; Gould 1994a; Zhu et al. 2017b), as
in such cases CSST can be effectively treated as more than one
static telescope. We will further discuss the use of this effect in
Section 2.2.
While πE is an important quantity that is frequently used in

the literature, a better parameter that is more directly
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constrained in observations and better connected to the lens
kinematics is (Dong et al. 2007; Zhu & Gould 2016)
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We therefore rely on this parameter to quantify the detectability
of the microlensing parallax effect in such an LEO+L2
configuration.

We utilize Fisher matrix analysis to evaluate the detectability
of the parallax effect. For the Roman survey, we use 15 minute
cadence and the expected photometric performance out of the
53 s exposure from Penny et al. (2019). For the CSST survey,
we assume a duty cycle of 40% and 8 observations per orbit
(corresponding to ∼5 minute cadence). The photometric
performance of the CSST microlensing survey is derived from
the online CSST ETC simulator.4 We have assumed high
zodiacal light and average Earth shine light for the background
contamination and an extinction law of E(B− V )= 0.94. A
typical M0V star in the bulge is chosen as the microlensing
source. With an exposure time of 60 s and a systematic floor of
0.001 mag, we can then simulate the noise curve of the CSST
microlensing survey. The result is plotted in Figure 1 together
with the noise curve of Roman from Penny et al. (2019).

The parameters used to model the combined data set are

q = t t t
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Here FS,LEO is the source flux at baseline in the bandpass of
CSST at LEO, and we renormalize the flux values such that
FS,LEO= 1 corresponds to a 21 magnitude star. For the other

observatory, we rely on the parameter c to quantify the ratio of
source fluxes in the bandpasses of the two telescopes and it is
related to the observed color of the source mLEO−mL2
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We do not specify the bandpasses of the two space-based
surveys, although for practical reasons we will use H- and I-
band for observations from L2 and LEO, respectively.
Considering the stellar colors from Pecaut & Mamajek
(2013) and assuming an extinction of AI= 1.5 and E
(I−H)≈ 1 (Gonzalez et al. 2012; Nataf et al. 2013), one
finds that a Sun-like star in the bulge will have mLEO≈ 20,
mLEO−mL2≈ 1.8 and c≈ 5.2. Early M-dwarfs, which will
probably be the primary sources of the events simultaneously
observed by CSST and Roman, will have mLEO≈ 23,
mLEO−mL2≈ 2.7 and thus c≈ 12.
Throughout this paper we consider two types of microlen-

sing events: a typical disk event with lens-source relative
parallax πrel= 0.12 mas (corresponding to a lens at≈ 4 kpc)
and a relative proper motion μrel= 7 mas yr−1; and a typical
bulge event with πrel= 0.02 mas (corresponding to a lens
at≈ 7 kpc) and μrel= 4 mas yr−1. These yield typical trans-
verse velocities (Zhu & Gould 2016)
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Figure 2 features example light curves of typical disk and bulge
microlensing events with tE= 0.1 d, u0,LEO= 0.1 and a source
baseline flux FS,LEO= 1 (corresponding to a baseline magni-
tude of 21).

Figure 1. The expected noise curves of the CSST and Roman microlensing
surveys. The dashed curve signifies our analytical approximation of the Roman
noise curve, which is used in Appendix to derive the scaling relations.

Figure 2. Example light curves of typical disk and bulge events with a
timescale tE = 0.1 days. The blue curve shows the light curve seen by CSST at
LEO, for which we have set the impact parameter u0,LEO = 0.1 and a source
baseline flux FS,LEO = 1 (corresponding to 21 mag). The orange and green
curves are what Roman would see. We have adopted πrel = 0.12 mas and
μrel = 7 mas yr−1 for the disk event, and πrel = 0.02 mas and μrel = 4 mas yr−1

for the bulge event.

4 http://etc.csst-sc.cn/ETC-nao/etc.jsp
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The Fisher matrix ij is then defined by
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Here {tl} and {tm} are the time series of the Roman telescope
and CSST, respectively, and σF represents the uncertainty of
the measured flux. We then compute the covariance matrix of
the vector Λ, ΣΛ, based on the relation between Λ and the
direct observables (Equation (8)). The detectability of the
parallax effect is quantified by

c L L= - S -L L
-0 0 , 13T2 1( ) ( ) ( )

where 0 denotes the zero-parallax case.
For any chosen set of microlensing parameters we apply the

above Fisher matrix analysis to numerically evaluate the
detectability of the parallax effect. One example output is
featured in Figure 3, for which we have assumed a maximum
projected separation between LEO and L2 D⊥= 0.01 au.

To gain theoretical insights, we also derive the following
analytical scaling relation in the high-magnification (u0→ 0)
regime (see Appendix for the detailed derivation)
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Here c cº =L Lf c c c 12 2( ) ( ) ( ) captures the dependence of cL
2

on the color parameter c and is normalized by the value of cL
2

at c= 1 (see Figure 4). As affirmed in Figure 3, the above
scaling relation matches the numerical results reasonably well
and breaks down at both large (u0 1) and small u0 values
(u0 0.01). The former is due to the breakdown of the high-
magnification regime. The latter is due to the fact that we have
assumed u0,LEO= u0,L2 in the analytical derivation. According
to Equation (7), Δu0= πE,⊥D⊥. For typical disk and bulge
events, Δu0≈ 0.01 and 0.001, respectively, and thus
u0,L2= u0,LEO+Δu0→ u0,LEO as long as u0,LEO? 0.01.
Additionally, the above scaling typically breaks down at
tE 0.1 days when the event timescale is comparable to the
orbital period of an LEO satellite around Earth.

With Equation (14) and the numerical results from Figure 3,
we can rewrite the detection significance of the parallax effect
in cL

2 as the following expressions

The above expressions can be readily used to evaluate the
detectability of the parallax effect in any given single-lens
event. Specifically, with the maximum projected separation of
D⊥= 0.01 au between Earth and L2, the combination of CSST
and Roman should be able to detect the microlensing parallax
effect for typical bulge (disk) events with 0.1 tE/days 10
(0.1 tE/days 80), if the source is 23 mag at baseline and
the impact parameter is ∼0.3. These values enclose the bulk of
the expected FFPs from Roman, especially those with low-
mass (and thus preferentially terrestrial) lenses (e.g., Johnson
et al. 2020).

2.1. Lens Mass Determinations

Besides the microlensing parallax, another critical parameter
toward a lens mass measurement is the angular Einstein radius
θE, which is usually determined from the finite-source effect
(Yoo et al. 2004). For single-lens events, the finite-source effect
becomes prominent when the impact parameter u0 becomes
comparable to or less than the scaled source size ρ. The fraction
of microlensing events with complete lens mass measurements
out of all events with parallax detections can be estimated as

r q
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u t u
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0
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Here θå= 0.3 μas is the typical value for the source angular
size, which corresponds to an early M dwarf with a radius of
0.5 Re in the Galactic Bulge. The quantity u0

crit is the critical
impact parameter above which the parallax effect is no longer
detectable. For given source and lens properties, it can be
derived from the scaling relations in Equation (15) with a
certain cL

2 threshold for the parallax detection. We use a cL
2

threshold of 10 and set an upper limit on u0
crit at 0.7. The latter

takes into account the fact that the scaling relations are no
longer valid approximations when u0 approaches unity.
Figure 5 shows the estimated fraction of events with

complete mass measurements out of those with parallax
detections. Here we have included the results with typical
sources (FS= 0.16 and c= 12, corresponding to mLEO≈ 23
and mLEO−mL2≈ 2.7) in addition to the results with the
default FS= 1 and c= 1 combination. For events with
timescales in the range of 0.1–10 days, for which the joint
observations of CSST and Roman are most valuable,  0.3%
( 2%) of disk (bulge) events with typical sources and parallax
detections should have complete lens mass determinations. Up
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to ∼40% of ultra-short-timescale events will show the finite-
source effect and thus have complete lens mass determinations.
This fraction is largely independent of the source properties.

For events that do not show the finite-source effect, the lens
mass can be inferred from the microlensing parallax alone (Han
& Gould 1995). Such mass inferences are statistically accurate

at the∼ 30% level for typical disk events (e.g., Yee 2015; Zhu
et al. 2017a), whereas the uncertainty increases to 40% for
bulge events (Gould et al. 2021). Such statistically inferred lens
properties are also valuable in constraining the mass distribu-
tion of isolated microlenses, especially those with low
probabilities of showing the finite-source effect.

Figure 3. The detection significance of the parallax effect as functions of various parameters. From top to bottom, they are source baseline flux FS,LEO, impact
parameter u0,LEO and event timescale tE, respectively. Panels on the left show the χ2 significance between models with and without the parallax effect, whereas panels
on the right display the uncertainties of the kinematic parallax parameters Λ⊥ and Λ∥. In each panel, the solid curve assumes typical disk lenses (with πrel = 0.125 mas,
μrel = 7 mas yr−1 and thus Λ = 6.52), and the dashed curve assumes typical bulge lenses (with πrel = 0.018 mas, μrel = 4 mas yr−1 and thus Λ = 1.63). In the left
panels, the gray horizontal lines represent χ2 = 10, above which the parallax effect is considered to be detected. In the right panels, the gray horizontal lines signify the
values of Λ. Our default parameters are FS,LEO = 1, u0,LEO = 0.3, tE = 10 days and color parameter c = 1.
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2.2. CSST Alone

The orbital motion of CSST around Earth will be useful in
further resolving the four-fold degeneracy in the single-lens
case (Refsdal 1966; Gould 1994a; Zhu et al. 2017b) as well as
detecting the parallax effect by CSST alone. An example light
curve to demonstrate the use of the orbital motion effect of
CSST is displayed in Figure 6.

For simplicity, we will treat the orbital motion effect of
CSST as if two satellites were simultaneously observing with a
separation of an Earth diameter (i.e., R⊥= 2R⊕). With this
approximation, the result from the CSST+Roman analysis
(Equation (15)) is directly applicable
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Note that these scaling relations do not take into account the
finite-source effect. The point-source example featured in
Figure 6 has c =L 1412 , which for the chosen parameters is a
factor of ∼2 smaller than what the above scaling relation
yields. This difference probably comes from the fact that the
real orbit of CSST has an effective projected separation smaller
than 2 R⊕.

Ultra-short-timescale events with relatively small impact
parameters almost always show the finite-source effect, so it is
necessary to take into account the impact of this additional

effect on the detectability of the parallax effect. The finite-
source effect works in two different ways: on the one hand, it
reduces the magnification when the source–lens relative
distance u= ρ; on the other hand, the finite-source effect
increases the magnification at u∼ ρ (Gould 1994b, see also
Yoo et al. 2004; Chung et al. 2017). Whether the finite-source
magnification is less or more sensitive to the variation of
distance u than is the point-source magnification depends on
the ratio between u and ρ. Consequently, the detectability of the
parallax effect can be either enhanced (when there are more
data points with u∼ ρ) or reduced (when there are more data
points with u= ρ). For example, the finite-source example
displayed in Figure 6 has c =L 1612 , slightly higher than the
value of the point-source case. Considering that the source
should be relatively bright, here we have assumed a Sun-like
star in the bulge as the microlensing source.
A more precise and comprehensive evaluation of the parallax

detectability in the case of CSST alone will require additional
knowledge like the position of Earth and the inclination of CSST
orbit, and thus we do not attempt to derive it in the present work.
In short, CSST alone should be able to detect the parallax effect
of ultra-short-timescale events which have relatively high
magnifications and bright sources (see also Mogavero &
Beaulieu 2016). For such events, the joint observations of CSST
and Roman can also be used to break the four-fold degeneracy
that is common in single-lens microlensing events.

Figure 4. The dependence of the parallax detectability on the color parameter c
(defined by Equation (10)). The y-axis shows the relative enhancement in the
parallax detectability, quantified by cL

2 , of a source with a color parameter c
compared to the case with c = 1.

Figure 5. The fraction of microlensing events with full lens mass measurement
out of all with microlensing parallax effect, quantified by the ratio between the
scaled source size ρ and the critical impact parameter for parallax detections
u0

crit. See the main text for more details. Here blue and orange curves
correspond to typical disk and bulge events, respectively. The dashed curves
are for our default set of source parameters (FS = 1, c = 1), whereas the solid
curves are for more typical microlensing sources from the Roman survey
(FS = 0.16, c = 12).
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3. Measuring Microlensing Parallax of Caustic-
crossing Binary Events

For binary and planetary events with caustic-crossing
features, which constitute roughly half of all binary and
planetary events in such well sampled observing campaigns
(Zhu et al. 2014), the joint observations of CSST and Roman
can also measure the microlensing parallax and thus fully
determine the mass and distance of the lens system. The
caustic-crossing features are smoothed on the scales of the
source size, and thus two observers separated by roughly the
(projected) source size should see caustic-crossing features
with measurable time offsets. For typical microlensing events
in the CSST and Roman campaigns, the source stars are sub-
solar in size (e.g., Penny et al. 2019), and thus the LEO–L2
separation, ∼ 0.01 au= 2 Re, is ideal for the microlensing
parallax observations regardless of the event timescale (see also
Gould et al. 2021). Figure 7 illustrates two example light
curves, one of planetary nature with mass ratio q= 10−5 and
the other of binary nature with q= 1. In both examples, the
caustic-crossing features are significantly offset in the light
curves of CSST and Roman.

Besides the LEO–L2 separation, other factors also affect the
detectability of the microlensing parallax. The determination of
the full two-dimensional microlensing parallax requires that
each satellite should capture (at least) two caustic crossing
features. Otherwise there will be a continuous degeneracy in

the parallax vector (Hardy & Walker 1995; Graff &
Gould 2002). This is not rare in reality. For example, some
caustic-crossing events have effectively only one caustic-
crossing feature (e.g., Shvartzvald et al. 2015), or the
observations of one or both satellites may fail to capture some
of the caustic-crossing features (e.g., Zhu et al. 2015). This
latter scenario is probably going to be the dominant factor, as
CSST at LEO has a duty cycle of ∼30%–40% due to (mostly)
Earth’s umbra.
Caustic-crossing events may have their parallax further

constrained by the orbital motions of CSST or Roman
(Honma 1999). Such a complementary constraint will be
especially useful for caustic-crossing events with continuous
degeneracies. We refer to Zhu & Gould (2016) for more
discussion.

4. Discussion

This work studies the potential of simultaneous observations
by CSST and Roman in detecting the microlensing parallax
effect. We have derived the scaling relations that quantify the
detectability of the parallax effect by the two satellites together
and by CSST alone. Our calculations confirm that CSST and
Roman together can measure the microlensing parallax for
short and ultra-short timescale (∼0.1–10 days) microlensing
events, which roughly correspond to brown dwarf and lower-
mass lenses. CSST alone has the capability to detect the
microlensing parallax for ultra-short timescale events with
relatively high magnifications and bright sources. Furthermore,
the separation between CSST and Roman is ideal for
microlensing parallax measurements of caustic-crossing events.
With the angular Einstein ring radius measurements from the
caustic-crossing features (Yoo et al. 2004), these parallax
measurements will lead to direct determinations of the mass
and distance of the lens system.
Although the combination of LEO and L2 is not ideal to

detect the parallax effect of typical Galactic microlensing
events, which usually require a projected separation between
observatories of several au (Refsdal 1966; Gould 1994a), it is
perhaps the best approach to complete the mass measurements
(or inferences) of Galactic microlenses. A space-based
telescope with high spatial resolution like CSST and Roman
can resolve individual bulge stars and thus constrain the
properties of luminous lenses through the lens flux method
(e.g., Bennett et al. 2007). The microlensing campaign by
CSST or Roman alone can therefore measure/constrain the
mass function of (most) stellar lenses. However, as the lens flux
method does not work for sub-stellar microlenses such as
brown dwarfs and FFPs, the microlensing parallax method
becomes the only way to constrain the lens properties.
Therefore, a joint program that can detect the parallax effect
of short and ultra-short timescale microlensing events can

Figure 6. An ultra-short-timescale (tE = 0.1 days) event arising from a typical
disk lens seen by CSST alone. With an impact parameter of u0 = 0.1, the event
with a scaled source size ρ = 0.3 manifests strong finite-source effect (orange
curves), where the peak region of the light curve deviates substantially from the
point source approximation (blue curves). The dashed vertical lines indicate the
locations where the lens–source distance u = ρ. In each set of curves, the solid
one implements the orbital motion of CSST, and the resulting light curve
appears slightly but statistically significantly different from the dashed curve.
Without the finite-source effect, the χ2 difference between the dashed and solid
curves is 141. With the finite-source effect, the χ2 difference increases to 169.
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complement the lens mass measurements/constraints of the
microlensing campaigns of individual missions.

Finally, it is also worth pointing out that although our results
have assumed the configuration of CSST and Roman, they are
generally applicable to any combination of satellites at LEO
and L2.
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Appendix
Fisher Matrix Analysis: Analytics

The scaling relation (Equation (15)) can be derived
analytically in the high-magnification regime, where the light
curve can be modeled with only three parameters (t0, teff, Fpeak)

Figure 7. Typical planetary (upper panels, with mass ratio q = 10−5) and binary (lower panels, with q = 1) microlensing events with caustic-crossing features seen by
CSST in LEO and Roman at L2. The left panels display the expected light curves and the right panels feature the caustic and lens-source relative trajectories. We have
assumed a timescale of tE = 10 days and scaled source size ρ = 10−3 in both cases. Although the light curves seen by CSST and Roman look overall very similar, the
caustic-crossing features show statistically significant differences that can be used to measure the parallax effect.
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(Gould 1996)
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The Fisher matrix in Equation (12) can then be written as
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where L2 and Leo are both 3× 3 matrices.
Penny et al. (2019) performed numerical simulations for the

Roman microlensing campaign and found that most of the
Roman microlensing events, especially those with planetary
signals, should have H 23, for which the photometric noises
are dominated by the source flux (roughly 16–23 mag; see the
dashed curve in Figure 1). We can therefore assume that the
magnitude uncertainty σm∝ F−1/2. The Fisher matrix given in
Equation (A.5) is then integrable, with
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Here ΓL2 and ΓLEO are the observation cadences at L2 and
LEO, respectively, and Ck(k= 1, 2, 3, 4, 5, 6, 7, 8) are
constants that do not depend on the lensing parameters. Then
the covariance matrix ij can be given by
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Here we have assumed that u0,L2≈ u0,LEO. With the definition
of χ2 given by Equation (13), we thus have
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