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Abstract

The elliptical power-law model of the mass in a galaxy is widely used in strong gravitational lensing analyses.
However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model
mismatch by simulating and then analyzing mock Hubble Space Telescope imaging of lenses with mass
distributions inferred from SDSS-MaNGA stellar dynamics data. We find accurate recovery of source galaxy
morphology, except for a slight tendency to infer sources to be more compact than their true size. The Einstein
radius of the lens is also robustly recovered with 0.1% accuracy, as is the global density slope, with 2.5% relative
systematic error, compared to the 3.4% intrinsic dispersion. However, asymmetry in real lenses also leads to a
spurious fitted “external shear” with typical strength γext= 0.015. Furthermore, time delays inferred from lens
modeling without measurements of stellar dynamics are typically underestimated by ∼5%. Using such
measurements from a sub-sample of 37 lenses would bias measurements of the Hubble constant H0 by ∼9%.
Although this work is based on a particular set of MaNGA galaxies, and the specific value of the detected biases
may change for another set of strong lenses, our results strongly suggest the next generation cosmography needs to
use more complex lens mass models.
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1. Introduction

Strong gravitational lensing is a phenomenon whereby the
light of a background source galaxy is highly distorted by the
gravitational field of a foreground lens galaxy, such that the
source is observed as multiple images or in extended arc
structures. Over the last few decades, strong gravitational
lensing has become a powerful tool for astronomers, for
example it has been used as a “cosmic telescope” to observe
magnified high-redshift sources (Newton et al. 2011; Shu et al.
2016b; Cornachione et al. 2018; Blecher et al. 2019; Ritondale
et al. 2019a; Cheng et al. 2020; Marques-Chaves et al. 2020;
Rizzo et al. 2020; Yang et al. 2021), as a probe of the mass
structure and substructure of foreground lenses (Treu et al.
2006; Koopmans et al. 2006; Gavazzi et al. 2007; Bolton et al.
2008b; Vegetti & Koopmans 2009; Auger et al. 2010; Bolton
et al. 2012; He et al. 2018; Nightingale et al. 2019; He et al.
2020b; Du et al. 2020), as a tool to constrain the nature of dark
matter (Mao & Schneider 1998; Vegetti et al. 2012, 2014; Li
et al. 2016, 2017; Ritondale et al. 2019b; Gilman et al.
2019, 2020; He et al. 2020a; Enzi et al. 2020) or as an
independent method for cosmological parameters inference
(Suyu et al. 2013; Chen et al. 2019; Birrer et al. 2020; Millon
et al. 2020; Wong et al. 2020).

Currently, thousands of strong lensing candidates have been
discovered in large sky surveys (Bolton et al. 2006a; Cabanac
et al. 2007; Brownstein et al. 2012; Gavazzi et al. 2012; Shu
et al. 2016a, 2017; Paraficz et al. 2016; Petrillo et al. 2017; Cao
et al. 2020; Huang et al. 2020; He et al. 2020c; Li et al. 2020).
When high-resolution imaging is also available, it is possible to
pin down the lens potential at the location of the multiple
images to within a few percent (Chen et al. 2016; Suyu et al.
2017); infer the Hubble constant with ∼7% precision (Suyu
et al. 2010, 2013); detect dark matter subhaloes of masses
∼108–109Me (Vegetti et al. 2010, 2012); and resolve ∼100 pc
morphological structures in high redshift (z 2) source
galaxies (Shu et al. 2016b; Ritondale et al. 2019a).
A key step toward all these scientific goals is to infer an

accurate model of the lens mass distribution. This is
challenging for a number of reasons, for example, the
“source-position transformation” (SPT), whereby different lens
mass models can produce almost the same lensed observations
by simultaneously adjusting the distribution of lens mass and
source light (Schneider & Sluse 2014). A well-known case of
the SPT is the “mass-sheet transformation” (MST, Falco et al.
1985), in which a rescaling of the lens’ surface mass density by
a factor λ, the simultaneous addition of a constant mass sheet
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with convergence (1− λ) and a rescaling of the angular size of
the source by a factor of λ, leaves the resulting lensed image
unchanged except for a time delay. Schneider & Sluse (2013)
show an example of the SPT transformation, where an elliptical
power-law (EPL) mass model is fitted to a mock lens composed
of a Hernquist stellar mass profile (Hernquist 1990) and a
generalized NFW (gNFW, Navarro et al. 1996; Zhao 1996;
Wyithe et al. 2001; Cappellari et al. 2013) dark matter mass
profile. Although the power-law mass model provides a good
fit to the position of the lensed images and the central velocity
dispersion of the lens galaxy, the inferred density profile and
time delays are significantly offset from the truth due to the
mismatch between the EPL and the more complex input lens
mass distribution.

Many studies use the EPL mass model to describe the
density profiles of lens galaxies when modeling galaxy-galaxy
strong lenses. In reality, the structure of the lens galaxies is
more complex and may not exactly follow the power-law radial
profile or conform to assumptions like perfect elliptical
symmetry. This simplified mass model will therefore introduce
systematic errors into the lens modeling. Although Suyu et al.
(2009) found that for the mass profile of lens system b1608
+656, the deviation from the EPL model is less than ∼2%.
Schneider & Sluse (2013) argue that even if the true mass
profile deviates only slightly from a power law, it may have an
impact on the inferred time delay of over ∼10%.

To investigate biases that could be introduced when using a
simple parametric model to describe the mass distribution of
(presumably complicated) observed lenses, one approach is to
generate mock lenses using galaxies from cosmological
hydrodynamic simulations and then measuring the systematic
error caused by fitting a parametric model (such as the EPL
model), by comparing the results with the ground truth values
(Mukherjee et al. 2018; Enzi et al. 2020; Ding et al. 2021). A
limitation of this method is that cosmological simulations may
lack sufficient resolution to resolve the internal structure of the
lens galaxy, with the softening length of these simulations being
usually between 0.3 and 1 kpc (Genel et al. 2014; Vogelsberger
et al. 2014; Crain et al. 2015; Schaye et al. 2015; Nelson et al.
2015; Marinacci et al. 2018; Naiman et al. 2018; Nelson et al.
2018; Pillepich et al. 2018; Springel et al. 2018). Works that
simulate lenses in this way have noted density cores at the center
of the simulated lenses that are not consistent with observed
strong lenses (Rusin & Ma 2001; Keeton 2003; Winn et al.
2004; Boyce et al. 2006; Zhang et al. 2007; Quinn et al. 2016).

Moreover, recent observations of stellar kinematics show
that the hydrodynamic simulations may underestimate the
average density slope within the half-light radius of Early Type
Galaxies (ETGs). Li et al. (2019) analyzed the average inner
density slope of more than 2000 galaxies in the SDSS-IV
MaNGA survey, using the mass reconstructions given by the
Jeans Anisotropic Multi Gaussian Expansion (JAM) dynamics

modeling from Li et al. (2018a). They demonstrated that
hydrodynamic simulations underestimate the average slope by
about 10%–20% for massive ETGs.
In this work, instead of relying on ETGs from cosmological

hydrodynamic simulations to make mock lens samples, we
select 50 ETGs that are similar to The Sloan Lens ACS Survey
(SLACS, Bolton et al. 2006b) lenses in terms of mass and
morphology from the integral field unit (IFU) observations of
the MaNGA project and generate mock lenses based on the
dynamical mass maps derived by the JAM method. We
anticipate that these mock lenses contain many of the
complexities found in the mass distributions of real galaxies
(e.g., non-symmetric mass structures) which the much simpler
EPL mass profile, often assumed for lens modeling, does not.
Thus, this simulated data set will allow us to assess systematic
errors in lens modeling due to assuming an unrealistic mass
model. In particular, we evaluate the morphology of the source
galaxy, the mass model parameters (Einstein radius, shear,
inner density slope) of the lens galaxy, and the time delay
measurement that is vital for studies of cosmography.
This paper is organized in the following way. In Section 2, we

introduce the basic theory of gravitational lensing and the
generation of the mock lenses. The lens modeling methodology
we use is briefly described in Section 3. Our main results are
shown in Section 4. A summary and conclusion are given in
Section 5. Calculations presented in this work assume the Planck
cosmology (Planck Collaboration et al. 2016), adopting
the following parameter values: H0= 67.7 km s−1Mpc−1, Ωm=
0.307 and ΩΛ= 0.693. Throughout this paper, each quoted
parameter estimate is the median of the corresponding one-
dimensional marginalized posterior, with the quoted statistical
error calculated from the 16th and 84th percentiles (that is, the
bounds of a 68% credible interval). The statistical error only
accounts for the contribution of the image noise, and they only
apply to the idealized case where the lens model can perfectly
describe the observational data (Bolton et al. 2008a). Model
biases induced by the imperfect lens model method (such as the
oversimplified EPL mass model in this work) are then described
by the systematic error, which is quantified by comparing values
inferred by the lens model to input true values.

2. Lens Theory and Mock Data Generation

Section 2.1 lists the lensing formulae used in this paper;
Section 2.2 gives an overview of the SPT and lens modeling
degeneracies; Section 2.3 reviews the framework of the JAM
method and Section 2.4 describes how we generate mock
lenses that are similar to real observations.

2.1. Lensing Theory

Gravitational lensing can be described by the following relation,

( )b q a= - , 1

2
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where β is the source-plane position, θ is the image-plane
position of the lensed image and α is the deflection angle
which maps between the two coordinates and depends on the
mass distribution of the lens. In galaxy-scale strong lens
modeling, the lens galaxy density profile is often described by
an EPL surface mass density of the form,

⎛
⎝

⎞
⎠

( ) ( )k =
-

r
t b

r

2

2
, 2

t

where κ is the dimensionless surface mass density (i.e.,
convergence), 0< t< 2 is the power-law density slope4, b> 0
the scale length and r> 0 the radial distance from the center of
the lens. If we let the center of the lens be the origin of the two-
dimensional Cartesian coordinates, then ( ) = +r x y x y, 2 2 ,
and we can use the following transformation, r(x, y)→ r1(x1,
y1), to arrive at

( )
f f
f f

= +
= - +

x x y

y x y

cos sin

sin cos 3
m m

m m

1

1

( ) ( )= +r x y x q y q, , 41 1 1 1
2

1
2

which brings ellipticity into Equation (2), where q is the axis
ratio of the elliptical mass distribution and fm is the position
angle that is counterclockwise from the x-axis to the semimajor
axis (x1) of the mass distribution. The deflection angle, α,
under the EPL mass model can be calculated efficiently using
the hypergeometric function (Tessore & Metcalf 2015). The
environment around a lens galaxy (e.g., mass structures along
the line-of-sight) may also contribute to the deflection angles.
To first order, their contribution can be approximated as a shear
term whose potential, ψshear, can be described in polar
coordinates (r, f) by,

( ) ( ) ( )y f
g

f f= - -r r,
2

cos 2 , 5shear
sh 2

sh

where γsh represents the shear strength and fsh is the position
angle of shear measured counterclockwise from the positive
x-axis.

For a lensed image at position θ on the image-plane (with
corresponding source-plane position β), its light travel time
relative to the unlensed case (i.e., the excess time delay) is
defined as

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )q b q b qy=
-

-Dt
D

c
,

2
. 6t

2

ψ(θ) is the lens potential at position θ, c is the speed of light
and DΔt is the so-called time-delay distance (Refsdal 1964;

Schneider et al. 1992; Suyu et al. 2010), which is given by,

( ) ( )º +DD z
D D

D
1 . 7t l

l s

ls

Here, zl is the lens redshift and Dl, Ds, Dls are the angular
distances from the observer to the lens, the observer to the
source, and between the lens and the source respectively. The
relative time delay between lensed image pairs A and B, ΔtAB,
is given by

⎡
⎣⎢

⎤
⎦⎥

     ( ) ( ) ( ) ( )

( )

q b q b
y q y qD =

-
-

-
- +Dt

D

c 2 2
.
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2 2

Starting from ψ, we can derive the deflection angle, α, and
convergence, κ, by differentiation,

( )a y=  , 9

( )k y= 
1

2
. 102

We can also derive α and ψ from κ via integration,

( ) ( )
∣ ∣

( )òa q q q q q
q qp

k= ¢ ¢
- ¢
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d
1

, 11
IR

2
22

( ) ( ) ∣ ∣ ( )òq q q q qy
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1
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IR

2
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When we generate mock lenses, we use Equations (11) and
(12) to calculate α and ψ, respectively. To calculate the critical
line of a given lens, we use the Jacobian matrix, A(θ)

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )q b
q

d
y

q q
=

¶
¶

= -
¶
¶ ¶

A . 13ij

2

i j

The critical line is defined as the curve of points in the image
plane which satisfy the relation ( )q =Adet 0. Due to their
complex mass distributions it is difficult to give an analytic
Einstein radius for the lenses simulated in this work and we
therefore follow a numerical approach. First, we use the
matplotlib.pyplot.contour module to draw the
critical curve numerically (whereby the contour satisfies

=Adet 0). The Green’s function method is then applied to
calculate the enclosed area of the critical curve, Scrit. Finally,
the effective Einstein radius (see Section 4.1, Meneghetti et al.
2013), θE, is defined according to the following formula,

( )p q=S . 14crit E
2

In this work, we always report the effective Einstein radius for
both the input data and the lens model reconstruction. People
may use a different definition of Einstein radius, i.e., the
“equivalent Einstein radius”, defined as the radius of a circle (or
ellipse, depending on whether the lens is circularly or
elliptically symmetric) within which the average convergence
is 1. For simple axis-symmetric lenses, those two definitions of
Einstein radius give the same result.

4 This is equivalent to 1 < 〈γ〉 < 3, where 〈γ〉 is the three-dimensional
density slope. Throughout this work, we always report the three-dimensional
density slope, unless otherwise stated.
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We use the mass-weighted density slope (Dutton &
Treu 2014) to measure the average density slope, gá ¢ñ, over a
certain radial range. The global density slope in the context of
strong lensing is defined as

( )

( )
( )

ò

ò
g

p r

p r
á ¢ ñ º -

rq

q

r r dr

r r dr

4

4
, 15

R d

d r

Rglobal
0

2 log

log

0
2

E

E

where ρ(r) is the density at radius r and qR E is the physical size
of the Einstein radius. The local density slope measures the
mean density slope near the Einstein radius, which is defined
similarly as

( )
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g
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rr r dr
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4

4
, 16R

R d
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2
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2

1

2

where R1 and R2 are the inner and outer radius of the annulus,
respectively, which encloses the extended lensed arc. Based on
the true mass profile of the mock lenses, we calculate the
“global” and “local” density slopes with the above equations to
represent the true slope value of our mock data. These slope
values are compared with the one reconstructed by lens
modeling under the assumption of the EPL + shear mass model
in Section 4.

2.2. Lensing Degeneracy

The SPT, which describes an intrinsic degeneracy in lens
modeling, shows that different lens mass models can produce
almost the same lensing observable by adjusting the lens mass
and source light in a covariant fashion (Schneider &
Sluse 2014). The well-known MST (Falco et al. 1985, a
special case of SPT) requires the source size5, re, and lens
convergence field, κ, to be transformed according to

( ) ( )k l k l¢ = ´ + -1 , 17

and

( )l¢ = ´r r , 18e e

which keeps the lensed images invariant except for the time
delay and magnification. The relative time delay value, ΔtAB,
between pairwise lensed images A and B changes according to,

( )lD ¢ = ´ Dt t . 19AB AB

Lens modeling constrains the deflector’s mass distribution
by fitting to the lensed emission, which depends upon the
deflection angle field in the extended arc region. For an
azimuthally symmetric lens, the deflection angles are related to

the mean enclosed convergence within θ (¯ ( )k q< ) via

( ) ( ) ¯ ( ) ( )òa q
q

q q k q k q q= ¢ ¢ ¢ = <
q2

d . 20
0

Suppose we have a deflector with a true mass distribution κtrue.
All of the mass-sheet transformed solutions of κtrue, which we
can define as

( ) ( )k l k l= ´ + -1 , 21MST true

provide equally good fits to the image-based lens modeling
because of the MST. When we take the EPL mass model for
lens modeling, the mismatch between κtrue and the EPL model
can often be compensated by a “pseudo internal mass sheet”6

(1− λpseudo). More specifically, the transformed mass distribu-
tion ( )k l k l¢ = ´ + -1pseudo true pseudo can often closely
approximate an EPL model in terms of the deflection angle
field (or ¯ ( )k q< ) near the Einstein ring. The selection of the
EPL functional form therefore drives the lens model to infer the
deflector’s mass distribution as an EPL approximating k¢.
Following the discussion in Xu et al. (2016); Schneider &

Sluse (2013), the specific value of λpseudo can be derived
analytically. We use an annular region between 0.8 and 1.2
times the Einstein radius to represent the extended-arc region.7

The average density slope (s) and curvature (ξ) within the
annular region ([θ1, θ2]) are defined as

( ¯ ¯ )
( )

( )k k
q q

ºs
ln

ln
, 222 1

1 2

¯ ( )
¯ ¯

( )x
k q q

k k
º , 231 2

1 2

where k̄1 and k̄2 are the average convergence of the deflector
within θ1 and θ2 respectively. ξ describes the degree to which
the density profile deviates from the power law. When ξ= 1,
the deflection angle field in the annular region is closest to a
power law. The λ factor which makes the curvature of the
profile ¯ ( )l k l´ + -1 equal to 1 (i.e., ξλ= 1) is then given
by

( ) ¯
( )l

x
x x k

=
+ -

+ - + -
d d

d d

1 2

1 2 1
24

s s

s s

2

2 2
2

where d≡ θ1/θ2< 1, so that ¯ ¯k k = ds
2 1 .

To summarize, the mismatch between the EPL model and
the deflector’s true mass profile could potentially bias the lens
model results via lensing degeneracies. We note that, even
though we only explicitly show how the MST biases the lens
modeling here for clarity; the SPT, which is a generalized
version of the MST, works in a similar fashion.

5 Strictly speaking, the change of source size is a direct result of rescaling the
entire source-plane coordinates from (xs, ys) to (λ × xs, λ × ys).

6 We call it the “pseudo” internal mass-sheet because it does not relate to any
physical mass structure. It purely originates from the mass distribution
mismatch between the ideal EPL model and real lenses.
7 We have also tried a different radial range: [0.5 × θE, 1.5 × θE]. Although
the specific λpseudo value calculated from Equation (24) varies slightly, the
main results in this work remain unchanged.
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2.3. JAM Method

The JAM method decomposes the total mass of each galaxy
into two components: a dark matter halo and a visible galaxy.
The mass profile of the dark matter halo is described by the
gNFW model (Cappellari et al. 2013) as

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )r r= +
g g- -

r
r

R

r

R

1

2

1

2
, 25DM s

s s

3

where ρs is the characteristic density, rs is the scale radius and γ
controls the central density slope of the dark matter halo. For
γ= 1, the gNFW model reduces to the well known NFW
profile (Navarro et al. 1996). For the visible galaxy, the JAM
method utilized the Multiple Gaussian Expansion (MGE,
Cappellari 2002 ) to fit the SDSS r-band image such that

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥( ) ( )å

ps s
S ¢ ¢ =

¢
- ¢ +

¢
¢=

x y
L

q
x

y

q
,

2
exp

1

2
, 26r

k

N
k

k k k k1
2 2

2
2

2

where Lk is the total luminosity of the kth Gaussian component.
σk and qk are the dispersion and projected axis ratio of the kth
Gaussian component and N the total number of Gaussian
components used in fitting. The brightness distribution of
galaxies given by MGE fitting can be transformed into the mass
distribution of galaxy components by assuming a constant mass
to light ratio.

Given a set of model parameters (e.g., gNFW parameters,
MGE parameters, mass to light ratio, etc.) one can derive the
total mass distribution of galaxies and predict the second
moment of the velocity distribution that is observed via the
Jeans Anisotropic model (Cappellari 2008). Using the
ensemble MCMC sampler emcee (Foreman-Mackey et al.
2013) one can find the model solution which best fits the
observed second moment map deduced from the MaNGA IFU
data (Li et al. 2018a).

2.4. Mock Lens Generation

We generate mock lenses using the surface mass density
maps of ETGs in the SDSS-MaNGA project, which are derived
by Li et al. (2019) with the JAM method. The redshifts of
ETGs in MaNGA are from ∼0.02 to ∼0.1 (median value
∼0.06), whereas the typical redshift of the SLACS lens
galaxies (which are also ETGs) is ∼0.2. If the internal structure
of ETGs has a dramatic evolution from redshift ∼0.2 to ∼0.02,
using MaNGA ETGs to represent SLACS lenses would be
unreasonable. Fortunately, results from numerical simulations
(Wang et al. 2019) and observations (Koopmans et al.
2006, 2009; Ruff et al. 2011; Sonnenfeld et al. 2013; Li
et al. 2018b; Chen et al. 2019) indicate that no obvious redshift
evolution exists from z= 1 to z= 0 and we therefore anticipate
that our mock lenses will be representative of SLACS lenses.
To ensure our mock lenses are most similar to those in the
SLACS sample, we “move” a MaNGA ETG to redshift 0.2 and

suppose that it acts as a strong lens with a background source at
redshift 0.6. We require that the final MaNGA ETGs used to
generate the mock lenses meet the following criteria:

1. The Einstein radius of the mock lenses ranges between
0 6 and 2 0.

2. The luminosity-weighted velocity dispersion within the
half-light radius of each ETG is larger than 150 km s−1.

3. The Sérsic index (Sérsic 1963) is larger than 3 to ensure
the galaxy is an ETG.

4. The results of JAM modeling are labeled as Grade-A in
Li et al. (2018a), to ensure that the dynamical
reconstruction is reliable.

We utilize the surface mass density map (Σ) used in Li et al.
(2019) divided by the critical density of the lens system (Σcrit)
to compute the convergence

( )k =
S

S
, 27

crit

where Σcrit is given by

( )
p

S =
c

G

D

D D4
. 28crit

2
s

l ls

We then apply a fast Fourier transform algorithm to κ to
calculate the deflection angle map employing Equation (11). To
reduce the numerical errors of the deflection angle calculation,
we apply the following scheme:

1. The deflection angle is calculated numerically on an
oversampled grid of resolution 2× 2, where the average
is taken to give the deflection angle on the coarser native
image grid (0.05″/pixel).

2. To avoid the boundary effect shown in Van de Vyvere
et al. (2020), we perform the Fourier transform on a grid
of size 40″× 40″ whose half-width is at least 10 times
larger than the typical Einstein radius8.

3. When Equation (11) is used for numerical convolution
operation, the size of the kernel is twice the size of the
deflection angle map.

The deflection angle map derived from the above method is
utilized to generate mock lenses. The ideal lensed image,
Iideal(θ), can be expressed as

( ) ( ) ( ) ( )q b q a= = -I I I , 29ideal s s

where Is(β) is the brightness distribution of the source galaxy in
the source-plane. In this work, we use a single Sérsic
component to represent Is. The expression of a Sérsic profile is

⎜ ⎟
⎧
⎨⎩

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬⎭

( ) ( )= - -I R I b
R

r
exp 1 , 30

n

e n
e

1

8 We demonstrate the necessity of taking a larger convergence map size to
robustly estimate the deflection angle in Appendix B.
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where re is the half-light radius, Ie is the brightness at re, n is
the Sérsic index and bn is a coefficient that only depends on n.
We can introduce ellipticity into Equation (30) via the
coordinate transformation described by Equation (4). To create
our 50 mock lenses, we always assume re= 0.15″, n= 1.0 and
axis ratio q= 0.7 (Newton et al. 2011). The position (xs, ys) of
the source galaxy is drawn from a Gaussian distribution with
mean 0″ and a standard deviation 0 1, and the position angle is
uniformly selected between 0◦ and 180◦. By utilizing this set of
parameters, the final lensed images we generate usually have
extended arc structures. The constraining power provided by
lensing is related to the geometry configuration of the lens
system (cusp, fold, two images, Einstein cross) and the
extended arc can provide more information on a deflector’s
mass distribution, which helps to reduce systematic errors in
the final modeling result (Tagore et al. 2018). Since this work
focuses on evaluating the systematic errors of galaxy-galaxy
lens modeling under the EPL assumption, we choose to model
a variety of lensing configurations and do not specifically
assess the influence of a given lensing configuration on our
modeling results.

To simulate observational effects, the image pixel size is set
to 0 05 (HST-quality). The ideal lensed image derived by
Equation (29) is convolved with a Gaussian Point-Spread
Function (PSF, standard deviation: 0 05). We assume a sky
background of 0.1 counts s−1 and an exposure time of 840 s.
Background noise from the skylight and Poisson noise from the

target source is also added to mock images. We manually
adjust the brightness Ie of the source galaxy to ensure that the
peak signal-to-noise ratio of each lens in our final sample is
∼50, which roughly corresponds to the highest signal-to-noise
observations in the SLACS project (Bolton et al. 2008a).
To compute true time-delay values of our mock lenses at a

given set of image positions, we need true lens potential values
ψ. We use Equation (12) to calculate the lens potential map
from the κ map and apply the strategy described previously to
reduce the numerical error on the fast Fourier transform. The
lens potential at any position on the lens plane can then be
obtained via interpolation.
Figure 1 shows the sample of 50 lenses that we simulated,

which we refer to hereafter as the “MaNGA lenses” for short.
All our lensing images have extended arc structures, which
make them a good probe of the underlying mass distribution.
The green circles mark the lensed positions of the center of the
source galaxies. The time-delay values between these positions
are calculated and used when we test the measurement of H0.
Figure 2 depicts the relationship between the Einstein radius

(measured from Equation (14)) and the half-light radius of the
MaNGA lenses (measured from the Sérsic fit, left panel), and
the probability density distribution of their Einstein mass (right
panel). For comparison, we also show the values of lenses in
SLACS (in orange). One can find that the distribution of
properties of our mocks and those of lenses from SLACS are
quite similar.

Figure 1. Images of 50 “MaNGA lenses”. For each lens, locations marked by the black crosses represent the lensed positions of the source center; the points marked
by the green circle are used to calculate the excess time-delay between different images as shown in Figure 16. The scale-bars mark the angular scale of 1 arcsecond.
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3. Modeling Methodology

We use PyAutoLens (Nightingale et al. 2021b)9 to model
the simulated “MaNGA lenses”, which is described in Night-
ingale et al. (2018, N18 hereafter) and builds on the works of
Warren & Dye (2003), Suyu et al. (2006), Nightingale & Dye
(2015). PyAutoLens uses an empirical Bayes framework and
a technique called nonlinear search chaining to compose
pipelines which break the lens modeling procedure into a series
of simpler model-fits. This allows a user to begin modeling a
system with a simple lens model (e.g., an isothermal mass
profile and a Sérsic source) and, via a sequence of nonlinear
searches, gradually increase the model complexity, so as to
eventually fit the desired more complex lens model (in this
work, an EPL + shear using a pixelized source reconstruction).
Non-linear search chaining is implemented in PyAutoLens
via the probabilistic programming language PyAutoFit10

and it provides three main advantages for lens modeling:

1. For complex lens models, the nonlinear search may not
be able to sample parameter space sufficiently well to find
the global maximum-likelihood solution and may instead
infer an inaccurate local maximum. Fitting simpler lens
models in early searches helps mitigate this, since the
results of fitting a simple model can guide the choice of
prior for the more complex models fitted by subsequent
nonlinear searches. By providing the nonlinear search a
better initialization of where to search the parameter
space, one can therefore reduce the risk of inferring a

local maximum. This allows us to achieve fully
automated lens modeling in this work.

2. The settings of PyAutoLens and the nonlinear search
are customized to give fast and efficient model-fits in
early stages of a pipeline (where a precise quantification
of the model parameters and errors is not required) and
perform a more thorough analysis later on (where a
precise estimate of the lens model parameters and errors
is desired).

3. In addition to the results of the lens model itself, other
results of the model-fit are also passed to the fits
performed later on. For example, we use PyAutoLensʼs
“hyper-mode”, which fully adapts the model to the
characteristics of the imaging data that are being fitted by
passing the model-image of the lensed source galaxy
inferred by earlier fits to later fits.

We use a single Sérsic profile to represent the brightness of
the source galaxy when we simulate the “MaNGA lenses”. We
can therefore in principle “perfectly” represent the source’s
light using a Sérsic source model. However, for real strong lens
observations, the brightness distribution of the source is often
irregular and complex, which necessitates the use of pixelized
source models (Nightingale et al. 2018). To ensure our results
can generalize to observations of real strong lenses, we
therefore use a pixelized source reconstruction to fit the lens
model, even though a Sérsic source would suffice. We use the
adaptive brightness pixelization and regularization scheme
provided by PyAutoLens to do this. The adaptive pixeliza-
tion congregates source-pixels to the regions where the source
is located, effectively improving the resolution of the source
reconstruction. Adaptive regularization makes it so that
PyAutoLens can reduce the regularization strength of the

Figure 2. The left panel features the dependence of the Einstein radius on the half-light radius of the lens galaxy. Each data point corresponds to a lens system, blue
represents “MaNGA lenses” and orange represents SLACS lenses. On the right panel, the blue histogram shows the Einstein mass distribution of “MaNGA lenses”
and the orange histogram represents the distribution of SLACS samples.

9 The PyAutoLens software is open-source and available from https://
github.com/Jammy2211/PyAutoLens.
10 https://github.com/rhayes777/PyAutoFit
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source in its central regions relative to its outskirts, which is
important for reconstructing sources with compact or clumpy
structures.

To perform model-fitting via nonlinear search chaining, we
use the “SLaM” (Source, Light, and Mass) pipelines distributed
with PyAutoLens to model our “MaNGA lenses”. In brief,
our lens modeling pipeline divides the lens modeling process
into three steps:

1. The mass distribution of the lens is modeled by a singular
isothermal ellipsoid + shear. The brightness distribution
of the source is modeled by a Sérsic component. The lens
modeling results of this step tell us the approximate mass
distribution of the lens, which is next used to initialize the
pixelized source model.

2. Based on the results of the mass model in step (i), the
pixelized source model is fitted.

3. Based on the optimal pixelized source model obtained in
step (ii), fit the lens mass with the EPL + Shear model.

This pipeline therefore finishes by fitting the EPL + shear
model, on which the majority of our results are based. During
the lens modeling, we require a feasible lens mass solution to
fulfill the following condition: after tracing positions marked
by black crosses in Figure 1 back to the source plane, those
points should be located within a small range (a circle with a
radius of 0 3).11

This trick can improve the modeling speed and avoid
solutions with non-physical sources. For a more detailed
overview of the modeling procedure, we refer to the flow chart
illustrated in Figure 3.12

The goal of the paper is to study the systematic errors
induced by the EPL mass model when the true mass
distribution of a lens system is more complex. Since the more
flexible pixelized source model can “absorb” some of the
residual signals due to the mass model mismatch, it is
important to check whether this affects the lens mass
parameters we estimate. Therefore we performed an additional
set of model fits whose source light is represented by a
parametric Sérsic. The lens mass parameters determined by
model fits with the parametric source model are statistically
consistent with those derived by assuming the pixelized source
model, hence we only report the results of the pixelized source
model.

4. Results and Discussion

This section presents the lens modeling results of our mock
“MaNGA lenses” under the assumption of the EPL + shear
lens model. Section 4.1 lists the reconstruction results of the
lens mass model, including the measurement of Einstein radius
(Section 4.1.1), shear (Section 4.1.2) and density slope
(Section 4.1.3). Section 4.2 describes how the source
reconstruction is influenced by the EPL assumption. We show
the anatomy of individual lens systems for a typical case and an
outlier in Sections 4.2.1 and 4.2.2, respectively. The statistical
results of source reconstructions are presented in Section 4.2.3.
We will discuss how the EPL mass assumption affects the
estimation of time-delays and H0 in Section 4.3.

4.1. Mass Model Reconstruction

In this section, we discuss the systematic errors caused by
assuming the EPL + shear mass model for measurements of the
Einstein radius (Section 4.1.1), shear (Section 4.1.2) and inner
density slope (Section 4.1.3).

4.1.1. Einstein Radius

Figure 4 displays the inferred Einstein radius of our 50
“MaNGA lenses” under the assumption of EPL + shear mass
model. We find that the relative systematic error of the model is
only 0.05%± 0.17% (68% confidence level), indicating that
the estimation of Einstein radius is unbiased. Given that the
magnitude of the statistical error is only of order 0.01% and its
error bar is almost invisible, we only report the typical value of
the statistical error in the legend of the right panel. Summing
both statistical and systematic errors in quadrature, our results
indicate that lensing can determine the Einstein radius with an
accuracy of ∼0.1%.
As a demonstration, we consider a constraint on the post-

Newtonian gravity parameter γppn, following the method of
Bolton et al. (2006c), Schwab et al. (2010), Cao et al. (2017),
Collett et al. (2018), Yang et al. (2020). This compares the
mass of galaxies from lensing and stellar dynamics

( )
g

=
+

M M
1

2
. 31dyn

ppn
lensing
GR

Assuming that the measurements of stellar dynamics are error-
free, such that the only source of bias is from lensing, our
∼0.1% relative error on Einstein radius translates into an error
of ∼0.004 on γppn (see Appendix C). This is an order of
magnitude smaller than current measurement uncertainty
(γppn= 0.97± 0.09, Collett et al. 2018). Therefore, use of the
EPL mass model does not currently limit this test of gravity.

4.1.2. Shear

The distribution of shear strength measured for each lens
model is displayed in Figure 5. Although we did not add an

11 Although we do not explicitly use the position of the selected lensed images
to constrain the lens mass model (i.e., integrate the position constraints into the
Gaussian-form likelihood function), we found that after tracing the selected
lensed images shown in Figure 1 (marked by black crosses) back to the source
plane (using the best-fit lens model based on the extended arc), the distance
between them does not exceed 0.05″. Therefore, we expect that the extended
arc has already efficiently constrained the lens mass model, and the positions of
the counter images will not provide too much extra contribution.
12 For more specific prior-passing configurations, see the online material:
https://github.com/Jammy2211/autolens_workspace.
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Figure 3. This figure illustrates the modeling process using the advanced pixelized source model provided by PyAutoLens. The middle box shows the purpose of
the current nonlinear search. The model component of the current nonlinear search is recorded in the left ellipse. The bracket on the right shows the prior transfer of the
current nonlinear search, where “instance” represents that the parameters of the model inherit the best-fit results of previous nonlinear searches, and stay fixed during
modeling; while “Model” is similar to “instance”, but inherits parameters in the Gaussian prior way.
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external shear term when generating mock data, we have to
include a shear component when doing lens modeling,
otherwise we get a bad image fit with significant residuals.
The median inferred shear magnitude for our 50 “MaNGA
lenses” is 0.0153 and the standard deviation is 0.0150. Recall
that when we simulated the mock lenses, the surface mass
distribution of their stellar components was given by the MGE
model which did not possess homoeoidal elliptical symmetry.13

For the dark matter the gNFW model was applied, which is
circularly symmetric. The total surface mass density of
simulated lenses therefore does not satisfy elliptical-symmetry
and the EPL lens model by itself is unable to describe this
departure from elliptical symmetry. However, the shear term
can mimic the effect of deviating from elliptical-symmetry to a
first-order approximation (Keeton et al. 1997). This is
illustrated more clearly in Figure 6. For the mock lens depicted
in Figure 6, the critical line of the MGE+gNFW simulated
mass distribution has a “boxy” shape (black line) because it

Figure 4. The left panel compares the model value of Einstein radii (qM
E ) with the ground truth ones (qD

E , defined by Equation (14)). Each data point represents the
model reconstruction of a lens system; a data point lies on the green dashed line if the model value matches the true value perfectly. Since the statistical error on the
Einstein radius is small (only of order 0.01%), we do not include the error bar for each data point on the left panel, and only present the median of the relative statistical
error (μstat) in the legend of the right panel. The right panel depicts the number distribution of relative systematic error. The orange solid vertical line shows the median
value of the relative systematic error distribution, and the two orange dashed vertical lines mark the 68% confidence interval ([16%, 84%] percentile). We show the
median (μsys) and dispersion (σsys) (i.e., the standard deviation) of the systematic error in the legend.

Figure 5. Similar to Figure 4. The shear strength reconstructed by the lens model is compared with the true value. The error bars represent the 3σ limit of each lens.
Given that we do not include the external shear component when simulating mock data, the ground truth value of the shear strength is zero (g = 0sh

D ), which is marked
by the green dashed line. The right panel shows the distribution of the absolute systematic error.

13 Each elliptical Gaussian component in MGE shares a common center and
position angle, but the axis-ratio is allowed to be different.
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does not satisfy elliptical symmetry. The EPL model by itself
gives a critical line (yellow dotted line) with an elliptical shape
that closely traces the black line, but is unable to trace it
perfectly. By including a shear, the EPL+shear model’s critical
line (red dashed line) more closely approximates the true
profile’s “boxy” shape. Therefore, the shear detected in this
work is an internal shear caused by the κ field of the lens
system itself that does not satisfy the elliptical-symmetry, rather
than an external shear caused by line of sight structures.

Cosmic shear can be used to infer the mass perturbations along
the line of sight, making it an important probe of the large-scale
structure of the universe. Birrer et al. (2017, 2018) proposed using
strong gravitational lens systems with extended ring structures to
measure cosmic shear, where a combination of this measurement
with weak lensing can illuminate the different systematic errors
between the two methods. Our results here show that when using
strong gravitational lenses to measure the cosmic shear, it may be
important to ensure the method is not subject to systematic errors
induced by the lens not possessing elliptical-symmetry.

4.1.3. Density Slope

Our lens models accurately recover the global density slope,
defined as the mass-weighted density slope within the Einstein

radius (Equation (15)). Averaging across our mock sample, the
inferred global density slope is smaller than the input value by
only 2.5%, with a root-mean-square scatter of 3.4% (top panel
of Figure 7). However, the local density slope at the Einstein
radius, defined as the mass-weighted density slope within the
radial interval [0.8× θE, 1.2× θE] (Equation (16)) is less
accurately recovered. It is underestimated (on average) by
13.3% with a scatter of 11.2% (bottom panel of Figure 7).
It may seem counter-intuitive that we measure the density

slope better for the whole lens than at the specific radius of the
source flux, and similar results have also been observed in
O’Riordan et al. (2020). Following Kochanek (2020), we had
expected a measurement of global density slope to be just an
extrapolation of the local mass distribution inferred by lensing
with the EPL functional form. Our result is explained by the
mismatch between the ideal EPL model and real lenses. Pure
image-based lens modeling under the EPL assumption will infer
the deflector’s mass profile as approximately the true mass
profile after an SPT transform, because this transformed mass
profile more closely follows the functional form of the EPL
model in terms of the deflection angle field (or approximately
average convergence within radius θ, ¯ ( )k q< , see Equation (20))
near the Einstein ring.

Figure 6. The best-fit lens model of system “3024_9039-1902”. The black line represents the true critical line of the mock data. The yellow dotted line marks the
critical line given only by the EPL model, while the red dashed line is the critical line predicted by the EPL+shear model.

11

Research in Astronomy and Astrophysics, 22:025014 (30pp), 2022 February Cao et al.



This mismatch directly leads to the 11 “outliers” in our
modeling results, whose physical parameters such as the source
size and the lens density slope are significantly misestimated.
Furthermore, we find the modeling results of nine outliers can
be approximately understood via the classical MST, a special
case of the SPT. As an example, we present the anatomy of a
typical outlier (“3485_8153-3701”) in Figure 8, whose local
density slope is significantly misestimated. The left panel of
Figure 8 features the radial density profile ¯ ( )k q< of the
deflector. The black solid line shows the deflector’s true mass
profile while the red solid line represents that inferred by the
best-fit EPL + shear lens model. Clearly, the reconstructed
density profile mismatches the input one although the overall
fitting of the image is good. For this system, the mass
distribution mismatch between the ideal EPL model and
“MaNGA mock lenses” can be compensated by a mass-sheet
transform of ( )lk l¢ = + -k 1 . We apply the MST to the

deflector’s true density profile (black line) and show the
resulting profiles using orange and green lines, where the λ for
the orange line is derived using Equation (24) and the λ for the
green line is l = R Reff

model
eff
data where Reff

model and Reff
data are the

source size of the model and the ground truth value,
respectively (see more discussion in Section 4.2). One finds
that both lines are nearly coincident with the one inferred by
the lens model (red line) near the Einstein ring (marked by the
shaded gray), and by definition, the mass profile of both green
and orange lines can produce the same lensed image as that of
the input mass distribution. Therefore, the mass distribution
mismatch between the EPL model and our “MaNGA mock
lenses” drives our pure image-based lens model pipeline to
approach a biased solution, i.e., an “MST solution” of the
deflector’s true mass distribution. To demonstrate how the
above effect directly affects the inferred local density slope, we
show the κ profile of this lens system in the right panel of

Figure 7. Top panel: Reconstruction of the deflector’s “global density slope” 〈γg〉 within the Einstein radius. Error bars in the left panel show 3σ limits. Bottom panel:
Reconstruction of the deflector’s local density slope 〈γl〉 near the Einstein radius. Green dashed lines indicate the 1:1 relation.
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Figure 8. The local density slope of the deflector (the black
solid line) near the Einstein ring is substantially different from
the value inferred by the lens model (the red solid line).

The measurement of the global density slope is influenced by
a similar effect. However, the global density slope is less
impacted by the MST (or SPT). In other words, when we use
an MST to rescale the deflector’s true mass profile with
Equation (17), the relative change of the local density slope is
larger than the global density slope. We demonstrate this point
via a toy model in Figure 9. We find the relative change of local

density slope reaches beyond 30% in some cases, but the
relative change of global density slope is still below 10%.
Overall, the global density slope recovered by the EPL

model is sufficiently accurate for current tests of galaxy
evolution (Wang et al. 2019, A. Etherington et al. 2021, in
preparation). Accurately measuring local density slope, how-
ever, may require a form of mass distribution that better
represents the target lens (to avoid the mass distribution
mismatch discussed above), or combining with additional
observables to provide extra constraints that break the

Figure 8. The convergence profile of the lens system “3485_8153-3701” whose lens model bias due to the oversimplified EPL mass model can be understood via the
MST. Left: the red solid line represents the radial profile of the average convergence within certain radii (¯ ( )k q< ) predicted by the lens modeling. The intrinsic average
convergence profile of data is shown with the black solid line. Other lines are mass-sheet transformed solutions of the black line. The corresponding λ factor of MST
for the orange dashed line (λ = 1.42) is given by Equation (24), which makes its deflection angle field most similar to the power-law functional form in the vicinity of
the Einstein ring marked by the shaded gray. The λ factor for the green dashed line (λ = 1.49) is the ratio of the model’s source size to the input true value. Right: the
(non-averaged) radial density profile κ, lines with different styles correspond one-to-one to the left panel.

Figure 9. Each data point corresponds to an ideal spherical power-law lens, with the Einstein radius set to 1 0, and density slope ranging from 1.9 to 2.3. An MST
with a λ value in the range from 0.9 to 1.1 (shown with the color bar) is exerted on each lens. We compare the relative change of the deflector’s local/global density
slope before and after doing the MST. The black dashed line marks the relation in which the relative change of local density slope is equal to the global one.
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degeneracy (Koopmans et al. 2006, 2009; Shajib et al. 2020;
Yıldırım et al. 2020).

Note that stellar dynamics constrains the three-dimensional
mass distribution, while lensing measures the projected two-
dimensional mass distribution. To compare these two indepen-
dent mass estimators, one can project the three-dimensional
mass distribution given by stellar dynamics to get the projected
(two-dimensional) mass distribution or deproject the two-
dimensional mass distribution inferred by lensing to infer the
three-dimensional distribution. Here, we choose the latter,
converting the two-dimensional density slope inferred by
lensing to the three-dimensional density slope—which in the
case of a power-law density profile means adding one to the
power-law exponent. We report our findings in terms of the
three-dimensional density slope for consistency with previous

work (He et al. 2020b; Shajib et al. 2020; Newman et al. 2013;
Dye et al. 2008).

4.2. Source Morphology

Gravitational lenses can be utilized as cosmic telescopes to
study the structure of their highly magnified source galaxies.
An important question is whether the lens modeling process
reconstructs the source’s morphology accurately and with high
fidelity? Approaches such as the pixelized source reconstruc-
tions used in this work can reliably recover the structure of
the source when the lens mass model is correct (Warren &
Dye 2003; Suyu et al. 2006; Tagore & Keeton 2014;
Nightingale & Dye 2015; Nightingale et al. 2018). However,
for real lenses the mass model will not perfectly describe the
lens’s true underlying mass distribution and this mismatch

Figure 10. The lens modeling result of a typical system “1344_8263-9102”, which is fit well by an EPL + shear mass model. Top-left: the image of mock data Idata;
Top-right: the reconstruction of lens modeling Imodel. Bottom-left: the normalized residual map of the best-fit model, defined as (Idata − Imodel)/Inoise, where Inoise is the
noise map of the mock data; Bottom-right: the relative error map between the convergence map of the model (κmodel) and the ground truth value (κdata), which is
defined as κdata/κmodel − 1 (in accordance with Enzi et al. 2020). Contours mark the lensed image of the mock data.
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could potentially bias the source reconstruction, in particular
via the way of the SPT. In this section, we rely on our
“MaNGA lenses” test suite to evaluate systematic errors of the
source reconstruction caused by the oversimplified EPL mass
model.

4.2.1. Typical case: “1344_8263-9102”

Our lens models capture the overall structure of almost all
lens systems well. The fit to a typical lens-plane image (using
an EPL + shear mass model and pixelized source) is displayed
in Figure 10. The normalized residuals for this fit, which are
shown in the bottom left panel, are almost within the <3σ limit,
indicating a good lens model. Furthermore, the inferred
convergence broadly agrees with the input values in regions

near strongly lensed images, as shown in the bottom right
panel.
The source morphology is also typically recovered well. To

compare the pixelized model inferred by PyAutoLens to the
input Sérsic model, we fit the model source-plane image with
another Sérsic, by minimizing the following χ2 function
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where Ii
pix and Ii

ser are the pixelized and Sérsic model
intensities at pixel i in the source plane, respectively, and σi
is the corresponding source intensity uncertainties given by the
lens model (Warren & Dye 2003; Suyu et al. 2006). The fit for
a typical lens systems is shown in Figure 11, and the best-fit

Figure 11. The source reconstruction of the MaNGA lens “1344_8263-9102”. Top-left: the pixelized source reconstruction corresponding to the best-fit lens model.
Top-right: the best-fit Sérsic model to the pixelized source reconstruction, displayed using the same Voronoi pixels as used in the source reconstruction. Bottom-left:
the residual map of the best Sérsic fit, i.e., top-left image minus top-right image. Bottom-right: the blue histogram shows the number distribution of the normalized

residual ([ ]
s
-I Ipix ser 2

2 , see Equation (32)) of the best Sérsic fit. A Gaussian fit to this distribution is shown with the black line, and the corresponding best-fit mean (μ),

standard deviation (σ) and amplitude value (amp) are reported in the text label. This distribution has a tail with large normalized residual values (∼100), because the
source uncertainties are typically underestimated in the outskirts of the source.
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Sérsic parameters are compared to the true values in Table 1.
For this lens system, we infer the axis-ratio, position angle and
Sérsic index of the source without any obvious bias. The
relative systematic errors on the axis-ratio and Sérsic index are
0.2% and 1.5% respectively, while the systematic error on the
position angle is only −0.18 degrees. The half-light radius is
marginally underestimated (3.6%). This underestimation of the
source size is predicted by the SPT and is consistent with the
convergence error map shown in Figure 10, specifically in the
regions where the strongly lensed images are located. The
convergence field of the model (κmodel) is larger than the true
value (κdata), such that the lens model’s κmodel can be
qualitatively understood as a re-scaled κdata with the addition
of a positive mass sheet. This corresponds to λ< 1 in
Equation (17), so the source size given by the model shrinks.

Two possibilities might explain why systematic errors are
larger than statistical error. First, the model is over-constrained
because we assume an EPL mass model with insufficient
complexity to represent our mock “MaNGA lenses”. Any
restricted mass model drives a precise but inaccurate source
reconstruction (Kochanek 2020). Second, a recent study has
demonstrated that the advanced pixelized source modeling
provided by Pyautolens leads to stronger discretization noise
compared with other “traditional” methods (e.g., Suyu et al.
2006; Vegetti & Koopmans 2009) without “random pixelization”
features (see Nightingale & Dye 2015), which may also weakly
bias the source reconstruction. A “stochastic likelihood cap” can
mitigate this kind of bias (Etherington et al. in prep.).

4.2.2. Outliers

Except for the typical system described in Section 4.2.1, we
notice that there are some “outliers” in our modeling results.
Although the model still roughly recovers the source’s shape
(axis-ratio, position angle), the source’s size is significantly
misestimated. To make sure these “outliers” are not caused by
bad lens modeling, we visually inspect the normalized residual
map14 (bottom-left panel in Figure 10) and the source
reconstruction image15 (top-right panel in Figure 11) of each
lens system. We find the normalized residuals are typically
within the ∼3σ limit and that every source reconstruction
appears physical, i.e., it does not show the unphysical structure
that is demonstrated in Maresca et al. (2021). Therefore, our
lens modeling results are fairly good.

The cause of outliers is essentially due to the mismatch
between the ideal EPL model and the “true” mass distributions of
our mock lenses, which results in a biased source reconstruction
via the SPT. Figure 12 shows a representative outlier
(“3485_8153-3701”), whose modeling bias can be quantitatively

understood via the MST (a special case of the SPT). Recall the
mass profile of the lens system “3485_8153-3701” we presented
in Figure 8, in which the green dashed line represents the mass-
sheet transformed solution of the deflector’s true mass profile.
The corresponding λ factor is given by the ratio of the source size
inferred by the lens model to the input true value. The
coincidence of the green dashed, orange dashed and red solid
line in the shaded gray region indicates that the degeneracy in this
system can be understood well via the MST. More specifically,
the λ factor corresponding to the orange dashed line is 1.42,
which is consistent with the model’s source size being
overestimated by a factor of 1.49 (recall Equations (17) and (18)).

4.2.3. Population Statistics

For all 50 “MaNGA lenses” simulated in this work, we carry
out the analysis described in Section 4.2.1. The global
morphology properties of our pixelized source reconstructions
are statistically summarized in Figure 13. We find that the lens
models accurately recover the sources’ position angles (fs,
absolute systematic errors with the median value of −0°.0368,
and standard deviation of 1°.2452) and axis-ratio (qs, absolute
systematic errors with the median value of −0.0101 and
standard deviation 0.0088); However, the size of the source (rs)
and its Sérsic index (ns) are underestimated by 6.77% and
3.92% on average respectively. Combining the result of both rs
and ns, sources reconstructed by the lens model are slightly
more compact than their true appearance.

Table 1
A Sérsic Model is used to Fit the Pixelized Source-reconstruction of our Mock

“MaNGA Lenses”

Lens
Identifier

Parameters
(unit) Median ± Error Ground Truth

(1) (2) (3) (4)

1344_8263-
9102

re(″) 0.144 530 ± 0.000075 0.15

ns 0.985 375 ± 0.000714 1.0
qs 0.701 550 ± 0.000078 0.7

fs(°) 172.238 155 ± 0.008920 172.420 115

3485_8153-
3701

re(″) 0.223 250 ± 0.000054 0.15

ns 0.960 752 ± 0.000370 1.0
qs 0.693 070 ± 0.000059 0.7

fs(°) 34.556 441 ± 0.006671 35.742 580

Note. The best-fit parameters are compared to the input source parameters that
generated the data, allowing us to quantify how much the mass model
mismatch biases the source morphology. Column 1 gives the identifier of our
“MaNGA lenses”. Columns 2 and 3 list the source parameter names (units) and
corresponding best Sérsic-fit values (median ±1σ errors). The input true values
of source parameters are given in Column 4.

14 https://github.com/caoxiaoyue/Sim_MaNGA_lens/tree/main/best_fit_
result_subplot
15 https://github.com/caoxiaoyue/Sim_MaNGA_lens/tree/main/src_fit_
image
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Our algorithm tends to reconstruct an overly compact source
galaxy on average because the input mass distributions are
cuspier than can be described by an EPL model (Figure 14). This
mismatch leads to∼7% underestimation of the convergence near
the Einstein ring, and ∼7% underestimation of the source size
via the SPT.16 We find the degeneracy in most lens systems can
be approximated as an MST (see Figure 15). Of our 50 mock
lens systems, the sizes of 39 source galaxies are modeled within
20% of the true value, and we designate the remaining 11
systems as “outliers”. Among the “outliers”, the modeling bias in
nine systems can be understood in terms of the MST (see the
discussion in Section 4.2.2). The remaining two outliers reflect
the more general SPT, where the difference between the model
and the true value of the two-dimensional convergence map in
the region of the lensed arc cannot be compensated by a uniform

mass sheet, in either the radial or angular direction. We further
show those two “Non-MST outliers” in Appendix D.

4.3. Time Delay and H0 Inference

For every pair of multiply lensed images (marked by green
circles in Figure 1), we calculate the relative time delay defined
in Equation (8). By comparing the model value of each
pairwise relative time delay ΔtM with its true value Δt D

(Figure 16), we investigate the systematic error caused by our
assumption of the EPL + shear model. We find relative time
delays to be underestimated, with median relative systematic
error 5% and standard deviation 18%. This underestimation is
qualitatively consistent with the underestimation of κ near the
Einstein radius for most lenses in our sample (see the average
trend in Figure 14), which rescales the relative time delay
according to (19). Furthermore, the six lens systems whose
time delay measurements are discrepant by more than 4 days17

Figure 12. Similar to Figure 11, the source reconstruction of the MaNGA lens “3485_8153-3701”.

16 When lensing degeneracies are manifested as the MST, the underestimation
of the convergence near the Einstein radius is indirectly related to the
underestimation of the source size through the ¯ ( )k q< (see Equation (20)).
Therefore, the consistent ∼7% number here could be just a coincidence.

17 Considering the typical time-domain measurement uncertainty for current
instruments is ∼2 days, 4 days roughly corresponds to 2σ error.

17

Research in Astronomy and Astrophysics, 22:025014 (30pp), 2022 February Cao et al.



also suffer from significantly overestimated or underestimated
κ at the image locations. Thus, although the EPL model can
approximately describe the density profile of the lens in a
statistical sense, the density profile of an individual lens system
may still deviate significantly from the EPL model, resulting in
large discrepancies between the predicted and true relative time
delays.

In time-delay cosmography, a biased estimation in the relative
time delay between pairwise lensed images can be further
interpreted as a biased estimation of Hubble constant (H0

M), via
the following relation (see the derivation in Appendix E)

⎜ ⎟
⎛
⎝

⎞
⎠

( )=
D
D

H
t

t
H , 330

M
M

D 0
D

where we assume a fiducial value =H 67.70
D km s−1 Mpc−1.

Figure 17 displays the probability density function (PDF) of

H0 obtained using the inferred pairwise relative time delays of
every lens system. The width of each PDF is purely governed by
the statistical errors of the lens mass model. They are narrow
because the over-simplified EPL mass model can
drive a very precise but inaccurate lens mass model (Kocha-
nek 2020). We find H0

M measurements randomly distributed
between 40 km s−1Mpc−1 and 110 km s−1Mpc−1. This result is
significantly less homogeneous than state-of-the-art time-delay
cosmography projects. For example, the H0LICOW project
measures H0 using six gravitationally lensed quasars with
measured time delays, and five of them are analyzed blindly
(Wong et al. 2020). In their results, the H0 values predicted by
each lens cluster around 73.3 km s−1 Mpc−1 and yield statisti-
cally consistent results (see Figure 2 in Wong et al. 2020),
indicating that they do not underestimate statistical errors and
successfully control the systematics. Systematic errors are larger
in our results, because our pure image-based lens model is

Figure 13. The top panels depict the distribution of absolute systematic errors for sources’ position angle (fs) and axis-ratio (qs), with the median (μsys) and standard
deviation (or dispersion, σsys) of the systematic error, and the median value of the statistical error (μstat ,purely predicted by the nonlinear search sampler) overlaid on
the legend. The bottom panels show the distribution of relative systematic errors for sources’ effective radius (rs) and Sérsic index ns. Three orange lines mark the
[16%, 50%, 84%] percentiles of the histograms.
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subject to degeneracies of a “pseudo internal mass-sheet” (see
Section 2.2), induced by the mismatch between the ideal EPL
model and the more complex distribution of mass in our mock
“MaNGA lenses”. To reduce this systematic error and obtain an
unbiased H0 measurement, velocity dispersion is crucial
(Sonnenfeld 2018).

We further explore using multiple lens systems to jointly
constrain H0. We write the joint likelihood as

⎛
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⎜
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Figure 14. The residual projected density profile is plotted as a function of radius (normalized by the effective radius of the lens’ light). This shows the difference
between the best-fit model’s surface density and the ground truth values. This was calculated for each of our 50 mock lenses, with the red solid line showing the
median deviation between the best-fit models and the respective truths, while the red shaded region illustrates the 16th–84th percentiles of the residuals at each radius.
The gray shaded region represents the 16th–84th percentiles of the distribution of θE/Reff in our lens sample. The black dashed line represents the curve when the lens
model perfectly recovers the surface density profile that generated the data.

Figure 15. Left: x y r, ,s
M

s
M

e
M represents the position of the source and its half-light radius, inferred by the lens model. x y r, ,s

D
s
D

e
D corresponds to the input true value of the

mock data. Each dot corresponds to a lens system, which is usually found around the black dotted line that represents a 1:1 relationship. This means that for most lens
systems, the position of the source is rescaled according to the relation ( ) ( )l l=x y x y, , .s

M
s
M

s
D

s
D The size of the source (coded by the color bar) also roughly matches the

relationship l=r re
M

e
D. Right: for most lens systems, the λ factor given by the change of the source size (r

r
e
M

e
D ) is roughly consistent with the λ value derived by

Equation (24) (λXu16). Combining the left and right panels, we conclude that the lensing degeneracy in most lens systems manifests itself in an MST fashion.
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Figure 17. PDF of H0 predicted by each individual lens, shown with blue and green histograms. The width of each blue and green histogram is purely governed by the
statistical errors of the lens mass model. Lenses corresponding to green histograms are excluded from the joint H0 inference via the 2σ clipping, to avoid the bias
introduced by these extreme systems. The black histogram is the PDF of H0 constrained by a joint analysis of 37 lenses (indicated by blue histograms). We re-
normalize each PDF to the same height for better visualization. The inset plot shows the zoomed-view around the black histogram. The red vertical dashed line marks
the input true value of the H0. The black vertical dashed line and the shaded gray mark the median value and the 68% confidence interval of the black histogram (i,e,
62.3 ± 1.3 km s−1 Mpc−1) respectively; this prediction of H0 is ∼4σ lower than the input true value (67.7 km s−1 Mpc−1).

Figure 16. Reconstructed measurements of the time-delay between pairs of images of the same source, ΔtM, across our mock lens sample, compared to the true value,
ΔtD. These are underestimated by ∼5% on average.
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where the subscript i runs over all lens systems. We assume
uncertainty on time delay measurements σΔt,i= 2 days, which
is typical for recent time-domain observations, and adopt a
uniform prior for H0 from 0 to 150 km s−1 Mpc−1. Results of a
joint inference on H0 are shown in Table 2 and Figure 17.
Including all lens systems, or with 3σ clipping, we obtain
measurements of H0 whose systematic biases are below the
∼1σ level. However, this result is driven by outliers (green
curves) and is inconsistent with the mass profile trend
(Figure 14) which suggested that H0 should be underestimated
by ∼10%. Aggressive 2σ clipping efficiently removes unreli-
able measurements of H0. A joint analysis of the remaining 37
systems yields a posterior distribution of H0 (black curve)
centered at 62.25± 1.46 km s−1 Mpc−1. This is underestimated
by 9% and ∼4σ lower than the input true value, but consistent
with the mass profile trend (Figure 14).

We interpret the bias in H0 measurements to be dominated
by the mass mismatch between the EPL model and complex
real lenses, coupled with the MST. There are two possible
routes to reduce this kind of bias. First, better-matched lens
mass parameterizations could avoid the pseudo-internal mass
sheet entirely (see Section 2.2). Second, measurements of
stellar dynamics, which provide 2D enclosed mass at a radius
that is different from the Einstein radius, would avoid the bias
by breaking the degeneracy (specifying the value of the
pseudo-internal mass sheet). Recently, Birrer et al. (2020)
applied an internal mass sheet in combination with an EPL
model to produce a more flexible lens mass model, where the
strength of the internal mass sheet is determined exclusively by
stellar dynamics on the population level. Testing this
methodology on mock lenses generated from the cosmological
hydrodynamics simulation (Ding et al. 2021) affirms that an
unbiased H0 measurement can be obtained.

5. Conclusion and Summary

This work provides a new alternative for testing the
systematic error of lens modeling. We use the results of
dynamic mass reconstruction of MaNGA ETGs to simulate

mock lenses that are similar to the SLACS project. We expect
that our test suite reflects many of the complexities of real
observational lensing data, such as radial density profiles that
deviate from a power law and angular structures that do not
possess elliptical symmetry. Comparing with previous similar
works which are typically based on cosmological hydrody-
namics simulations, our data set avoids the limitations of
current simulations (such as insufficient particle resolution and
imperfect subgrid physics). We find that in a statistical sense:

1. The Einstein radius can be recovered well with 0.1%
accuracy for our SLACS-like mock lenses.

2. The non-elliptical symmetry of a lens can produce a
certain level of internal shear measurement, with an
average strength of ∼0.015.

3. Lensing fails to measure the deflector’s local density slope
in the region of the lensed emission, due to the SPT
induced by the mass distribution mismatch between the
ideal EPL model and real lenses. As a comparison, we find
the deflector’s global density slope is better measured; The
relative systematic error has a median value of −2.5%,
with a 3.4% intrinsic scattering. This result demonstrates
by fully exploring the vast information in the extended arc,
the pure image-based lens modeling can measure the
deflector’s global density slope with enough accuracy to
guide the theory of galaxy formation and evolution.

4. The global morphology of the source can be recon-
structed reasonably well (such as axis ratio, position
angle, half-light radius and Sérsic index), although the
sources predicted by lens modeling are typically slightly
more compact than the corresponding true values.

5. Using the pure image-based lens modeling with extended
arcs, the H0 value inferred from a time-delay measure-
ment in a single lens has a large random systemic error,
with inferred values typically ranging from 40 to 110
km s−1 Mpc−1. Combining the model results of 37 lens
systems, the random systematic errors that exist in the
individual lenses cancel at some level. A joint analysis of
37 lenses under-predicts the H0 value by ∼9% and with a
∼4σ bias. This underestimation is consistent with the
trend that the lens model tends to slightly under-predict
the convergence value in the vicinity of the Einstein
radius. The next-generation time-delay cosmography
typically hopes to suppress the systematic error to below
∼1%; in order to achieve this goal, a better form of mass
parameterization and additional information (such as
stellar dynamics) are required to further break the
degeneracy we discussed in Section 4.1.3.

For a large number of lenses, lens modeling reliably gives the
population distribution of source and lens parameters. How-
ever, we emphasize this result is for a particular set of MaNGA
galaxies, and the specific value of the detected biases may
change for another set of strong lenses.

Table 2
H0 Constraints given by the Joint Analysis

Clip Type Nlens H0 (km s−1 Mpc−1) Bias
(1) (2) (3) (4)

No clip 50 68.96 ± 1.26 0.87σ
3σ clip 49 68.77 ± 1.38 0.75σ
2σ clip 37 62.25 ± 1.46 –3.78σ

Note. Column 2 shows the number of lens systems that are used in joint
analyses. The lens systems are selected with clipping schemes shown in
Column 1 (no-clipping, 3σ clipping, 2σ clipping). Prediction values of H0

and corresponding systematic errors relative to the ground truth
(67.7 km s−1 Mpc−1) are listed in Columns 3 and 4, respectively.
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For an individual lens, its mass profile may deviate from the
form of the EPL model significantly, which leads to large
systematic errors in the lens modeling results and becomes the
“outliers”. However, due to the source position transformation,
we may not be able to judge whether a lens is an “outlier” by
checking the goodness of fit of modeling results (such as the χ2

map). To some extent, the existence of “outliers” reduces the
reliability of the model prediction given by an individual lens.

By breaking the lens modeling procedure into a series of
simpler model fits with PyAutoLens, our model pipelines are
fully automated. This allows us to apply our current methods to
future wide-field observations, such as CSST (Gong et al.
2019), Euclid (Amiaux et al. 2012) and LSST (Ivezić et al.
2019), where more than one hundred thousand lenses are
expected to be discovered (Collett 2015). Although our works
are based on relatively ideal mock samples, our conclusions
may still guide the application of future wide-field lensing
observations.

Recently, several studies have shown that the angular
structure of lenses also plays an important role in H0

estimation. Gomer & Williams (2021) found that the surface
mass density of real-life lenses has a component that deviates
from elliptical symmetry, which can be approximately
described by an additional dipole term. If the EPL + shear
mass model is used to do the lens modeling, the systematic
error of H0 prediction can reach ∼10%. Kochanek (2021)
points out that if the mass model used in lens modeling does
not have sufficient degrees of freedom in the angular direction,
the constraint from the Einstein ring on the lens’ angular
structure drives the selection of radial density profile, resulting
in a very precise but inaccurate H0 prediction. The dynamic
reconstruction of ETGs given by the JAM model is more
realistic in the angular direction (i.e., is not perfectly elliptical-
symmetric), which makes our mock sample an ideal play-
ground to test the robustness of the current lens modeling
pipeline, especially for the purpose of H0 inference. We hope
this work can benefit the community, and all the mock data and
its generation scripts used in this work are publicly available
from https://github.com/caoxiaoyue/Sim_MaNGA_lens.
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4. Dynesty (Speagle 2020)
5. Emcee (Foreman-Mackey et al. 2013)
6. Lenstronomy (Birrer et al. 2015; Birrer & Amara 2018;

Birrer et al. 2021)
7. Matplotlib (Hunter 2007)
8. Numba (Lam et al. 2015)
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10. PyAutoFit (Nightingale et al. 2021a)
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12. PyLops (Ravasi & Vasconcelos 2020)
13. PyMultiNest (Feroz et al. 2009; Buchner et al. 2014)
14. PyNUFFT (Lin 2018)
15. Pyquad (Kelly 2020)
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Appendix A
Ancillary Lens Properties

Figure A1 shows the projected stellar mass within the
Einstein radius for both real SLACS lenses and our mock
MaNGA lenses. The stellar mass of the SLACS data is from
Auger et al. (2009), derived by the stellar population synthesis
model assuming the Salpeter initial mass function (IMF). We
find the stellar mass distribution of our mock MaNGA lenses is
also similar to SLACS lenses.
In Figure A2, we use the blue dots to show the relationship

between the luminosity-weighted velocity dispersion within the
half-light radius (sre) and that within the 1 5 (the aperture size
of the SDSS fiber, denoted as σ(< 1 5). We find those two
values agree broadly, which indicate we could use sre

as a
proxy to select SLACS-like ETGs. We do not include any
galaxy rotation requirement for ETGs when generating mock
lenses. The orange dots in Figure A2 illustrate the relationship
between the luminosity-weighted second velocity moment

within re (vrms) and sre. vrms is defined as s= +v v rrms los
2 2

e
,
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Figure A1. The PDF of the projected stellar mass within the Einstein radius of the lens galaxy, for both real SLACS lenses (orange) and our mock MaNGA
lenses (blue).

Figure A2. Blue dots show a comparison between the average velocity dispersion within the half-light radius (sr
2
e ) and that within 1 5 (σ(<1 5)) for our mock

MaNGA lenses. The relationship between the average second velocity moment within the half-light radius (vrms) and sre is shown with orange dots. vrms is defined as

s= +v v rrms los
2 2

e
, where vlos represents the line-of-sight velocity. We can find s»v rrms e, which means our mock lenses are made up of dispersion dominated ETGs.
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where vlos represents the line-of-sight velocity. We can find
s»v rrms e, which means our mock lenses are made up of

dispersion dominated ETGs.

Appendix B
Deflection Angle and Lensing Potential Calculation

In this work, we calculate the deflection angle map
numerically from the convergence map. Van de Vyvere et al.
(2020) show that the truncation of the convergence map
changes the symmetry of the lens’ density distribution at the
boundary, which may result in “pseudo shear”. To avoid this
boundary effect, we need to expand the size of the convergence
map when we calculate the deflection angle numerically. In
Figure B1, we use an ideal EPL lens (slope= 2.1, axis-
ratio= 0.6) to demonstrate this effect. The black line in the left
panel is the critical line drawn based on the deflection angle
given by the analytical formula of the EPL model, while the red
dashed line is the critical line drawn based on the deflection
angle field that is calculated numerically (with convergence
map size 5″× 5″). It is clear the red dashed line does not
coincide with the black line, which proves that the truncation of
the convergence map brings significant “pseudo shear”; The
right panel is the calculation result when the convergence map
size is 40″× 40″ (the scheme described in Section 2.4). We find
that the red line coincides with the black line, therefore the
boundary effect can be ignored for this case.

In Figures B2 and B3, we use an ideal EPL mass model to
test the numerical error of the deflection angle and lensing
potential calculated from the convergence. The parameter

values of the EPL model are set to the typical values of our
simulated lens samples (slope= 2.1, Einstein radius= 1 5,
axis-ratio= 0.8). We find that the numerical scheme described
in Section 2.4 produces a numerical error of ∼1% for the
deflection angle and lensing potential in the annular region
where the lensing signal appears. Since our mock lensing
images are generated from the numerically calculated deflec-
tion angles, the numerical errors we present here mean the lens
galaxies in our mock data actually approach slightly biased real
MaNGA ETGs. Using a higher level of oversampling
(criterion-1 in Section 2.4), and increasing the size of the
convergence map (criterion-2 in Section 2.4) can further reduce
the numerical error of the deflection angle and lensing potential
calculation. However, this requires more computational
resources (currently, it takes ∼20 hr to calculate the
convergence, deflection angle and lensing potential for each
lens). The faster algorithm proposed in Shajib (2019) may be
utilized in the future to overcome the numerical calculation
errors due to limited computational resources.

Appendix C
Estimate the Error of γppn

Equation (31) is equivalent to
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where qE
dyn is the Einstein radius derived from dynamical mass

measurements, which is assumed to be the input true value
(qE

true), presumably the mass measurements of stellar dynamics

Figure B1. The critical line of an ideal EPL lens. Left panel: the black line is the critical line drawn based on the deflection angle map that is given by the analytical
formula of the EPL model, which represents the true critical line; while the red dashed line is the critical line drawn based on the deflection angle map which is
calculated numerically. Right panel: similar to the left panel, the only difference is the convergence map used to numerically calculate the deflection angle map has a
larger size (40″ × 40″ compared to 5″ × 5″ in the left panel).
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are error-free. From our lens modeling results, we had
estimated the relative measurement error (statistical +
systematic) on the Einstein radius to be ∼0.1%, therefore we
have,

( )∣ ( )

q q
q

q q

q

q

q
s

-
º

-

= - ~ s=1 0, C2

E E

E

E E

E

E

E

lensing true

true

lensing dyn

dyn

lensing

dyn
2

0.1%

where ( ) s0, 2 represents the normal distribution with mean 0

and variance σ2. Equation (C2) indicates
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To derive the error of γppn, we resort to the Monte Carlo way.

We generate a set of discrete
q

q
E

E

lensing

dyn samples following the

distribution we derived above. For each sample, we calculate the
corresponding γppn value with Equation (C1). Eventually, the error
of γppn is given by the standard deviation value of γppn samples.

Figure B2. Top-left: the x-component of the deflection angle calculated according to the analytical formula of the EPL model (ax
A). Top-right: the x-component of the

deflection angle calculated from the convergence map using the numerical scheme shown in Section 2.4 (ax
N ). Bottom-left: the relative error (a a

a

-x
N

x
A

x
A ) of the

numerically calculated deflection angle in the region where the lensing signal appears ([0.8 × θE, 1.2 × θE]). Bottom-right: histogram of the relative error shown in the
bottom-left panel.
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Appendix D
Non-MST Lenses

For most outliers (9 of 11) whose physical parameters are
significantly misestimated, we find their existence can be
understood via the MST. In this section, we present the
remaining two outliers which may reflect the more complex
lensing degeneracy.

Figure D1 depicts the azimuthally averaged radial profile of
¯ ( )k q< for lens systems “2211_8077-1902” and “559_8133-
12703”. It is clearly shown that the red line, green line and
orange line do not coincide so that the MST explanation

discussed in Section 4.1.3 is not applicable. We further
compare the deflector’s mass distribution predicted by the lens
model (EPL + shear mass assumption) with that of ground
truth value, and we find the difference between those two mass
distributions (bottom-right panel in Figures D2 and D3) have
significant angular structure particularly in the region where the
extended arc appears. Therefore, a uniform mass sheet is not
sufficient to compensate for the mass distribution mismatch
between the ideal EPL+shear model and our mock lenses. The
degeneracy in these two lens systems manifests the general
Source-Position Transformation.

Figure B3. Similar to Figure B2, the relative error of the numerically calculated lensing potential (y y
y
-N A

A ).
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Figure D1. Similar to Figure 8, averaged radial profile of ¯ ( )k q< for lens system “2211_8077-1902” (left) and “559_8133-12703” (right).

Figure D2. Similar to Figure 10, the best-fit image of the lens system “2211_8077-1902”. We can see from the bottom-right panel that the relative error map is not
elliptical-symmetric, which indicates a significant angular mismatch between the model and data exists.
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Appendix E
H0 from the Relative Time Delay

The relative time delay defined in Equation (8) can be
abbreviated as

( )h
D =t

H
, E1AB

0

where η is a factor only depending on the lens and source
redshift, the position of images A and B, and corresponding
lensing potential values.

For our mock “MaNGA lenses”, suppose the true relative
time delay between an image pair is given as

( )h
D =t

H
. E2D

D

D
0

Since our image-based lens modeling cannot perfectly
reconstruct the lensing potential at the location of the image
pair, ηM is a biased estimation of ηD, hence our model
prediction for the relative time delay ΔtM is also biased, i.e.,

( )h
D =t

H
. E3M

M

D
0

Assume the time-domain observation can perfectly measure the
true relative time delay (Δt D), then we can use Δt D and the
lensing potential measured from the lens model (ηM) to infer
H0,

( )h
=

D
H

t
. E4M

M

D0

Figure D3. Similar to Figure D2, the best-fit image of the lens system “559_8133-12703”.
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We insert Equations (E3) into (E4) to arrive at

⎜ ⎟
⎛
⎝

⎞
⎠

( )

h
=

D

=
D
D

H
t

t

t
H . E5

M
M

D0

M

D 0
D

Therefore, our biased measurement of the relative time delay
can be directly interpreted as a biased measurement of H0 via
Equation (E5).
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