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Abstract

We generalize Einstein’s General Relativity (GR) by assuming that all matter (including macro-objects) has
quantum effects. An appropriate theory to fulfill this task is Gauge Theory Gravity (GTG) developed by the
Cambridge group. GTG is a “spin-torsion” theory, according to which, gravitational effects are described by a pair
of gauge fields defined over a flat Minkowski background spacetime. The matter content is completely described
by the Dirac spinor field, and the quantum effects of matter are identified as the spin tensor derived from the spinor
field. The existence of the spin of matter results in the torsion field defined over spacetime. Torsion field plays the
role of Bohmian quantum potential which turns out to be a kind of repulsive force as opposed to the gravitational
potential which is attractive. The equivalence principle remains and essential in this theory so that GR is relegated
to a locally approximate theory wherein the quantum effects (torsion) are negligible. As a toy model, we assume
that the macro matter content can be described by the covariant Dirac equation and apply this theory to the simplest
radially symmetric and static gravitational systems. Consequently, by virtue of the cosmological principle, we are
led to a static universe model in which the Hubble redshifts arise from the torsion fields.
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1. Introduction

In physics, when contradictions between the predictions of a
fundamental theory and the credible experimental observations
are unavoidable, one may modify the theory or assume some
new types of matter, and both approaches must be verified by
experiments. It is now well established that when Einstein’s
General Relativity (GR) is applied to galaxies (always in
Newtonian form) we need some mysterious matter called dark
matter, and when applied to cosmology we need even more
mysterious element called dark energy in addition to the dark
matter. While more and more experimental instruments are
constructed to probe the direct or indirect evidences of dark
matter and dark energy, it is equally important for physicists to
investigate the theories of gravity alternative to GR. In such a
theory, we hope that there is no need to assume the existence of
dark matter or dark energy or both. For example, it was shown
by Lovelock (Lovelock 1971, 1972) that a polynomial form of
the Lagrangian is possible leading to higher order curvature
corrections to GR known as the Lovelock theory of gravity.
Specifically, second order Lovelock or Einstein–Gauss–Bonnet
gravity has been investigated recently (Boulware & Deser 1985;
Kobayashi 2005; Oikonomou 2021; Brassel et al. 2022).
Another important extension to GR was achieved by
constructing the so-called nonlinear Lagrangians, which are
some arbitrary but well-defined functions of the Ricci
scalar (Buchdahl 1970), and now this theory has been developed
into the well-known f (R) gravity (e.g., Goswami et al. 2014).

In this paper, however, we attempt to extend GR in a quite
different way. Note the fact that GR has been tested with high
precision only for the gravitational systems with spatial size
equal to or smaller than the solar system (e.g., compact
objects) when gravity is relatively strong. Therefore, it is
possible that the astronomical observations for larger
gravitational systems (galaxies, cluster of galaxies until the
whole universe) may suggest that GR should be extended or
modified when the gravitational field is weak (except for the
very early universe). We first assume that macro bodies have
observable quantum effects on large scales and then attempt to
extend GR to describe them (which are usually believed to be
negligibly small in actual practice), and we require that GR is
recovered on small scales.
Up to date, it is well known that quantum effects are believed

to be the exclusive properties for microparticles which are the
subjects of quantum mechanics and quantum field theory.
When gravity is present, there are so-called quantum gravity
and quantum field theory in curved spacetime, and all such
theories are significant only under the extreme conditions like
very strong gravity and very high energy, as in the cases when
we study the phenomena near the horizons of black holes and
in very early universe. Although all macro bodies come down
to microparticles as their final compositions, physicists believe
that the quantum effects of macro bodies are “averaged out”
and thus negligibly small compared with other kinematic
quantities. Note, however, that the preceding conclusions are
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based on an implicit assumption that the quantum effects of
macro bodies arise only from their microconstituents, while the
macro bodies themselves remain classical. We thus ask a
question: what if we assume that the quantum effects of macro
bodies arise from their own quantum randomness which are
independent of their microconstituents? In order to understand
our assumption, we need to know what the quantum effects of
microparticles may imply. The quantum effects of electrons, for
example, can be attributed to their quantum randomness (or
called intrinsic randomness), this distinguishes remarkably
from classical randomness (or called apparent randomness) of
which the Brownian motions is a typical example. It is well
known that the random motions of pollen grains in water result
from the frequent collisions of the molecules of water
according to Newtonian dynamics, while quantum random
motion is the intrinsic property of a particle itself that cannot be
attributed to any external reasons and thus Newtonian
dynamics fails to describe. Our assumption is that, like
electrons, all macro bodies (including galaxies if we treat them
as “particles”) have the quantum random motions and thus
should exhibit quantum effects.

An immediate doubt about our assumption is: why we have
never observed such quantum effects of macro bodies? The
answer is simple: if the macro bodies and an observer (also an
“macro body”) are located near the same (but arbitrary) point of
spacetime manifold, then they have approximately the same
randomness (due to gravity) and quantum effects cannot be
observed. The locally “classical” behavior of macro bodies is a
familiar scientific fact, however, this fact does not necessarily
require the macro bodies to behave classically on arbitrary
large scales. It is believed that gravity makes disorders order,
and order is fundamental for space and time and spacetime, or
as we can say, spacetime is nothing else but continuous order
of events. Thus no gravity, no spacetime. In any local inertial
frames, the gravity is still present but the net gravity force is
canceled by inertial force, so order or flat spacetime remains. In
special relativity, rigid rods are employed to form coordinate
lattices so that any event has a position at any given time.
According to GR, the global structure of curved spacetime can
still be described by arbitrary curved rigid rods (depending on
the matter distributions) with arbitrary length. However,
quantum mechanics tells us that microparticles can escape the
order depicted by the spacetime and thus get out of control of
gravity. Therefore, if we extend the quantum randomness
owned by microparticles to macro bodies, gravity of one body
(or system) cannot make remote bodies in order. So we should
give up the averaged background curved spacetime determined
by all matter in the universe. Instead, we assume a spacetime
formed by sewing together infinitely many local pieces of
spacetime depicted by GR. That is to say, if the observed macro
bodies and an observer are separated by a finite spatial distance,
the quantum effects appear, and the strength of the quantum
effects increases with the increasing distances between them.

So the rods are rigid only approximately on small scales (i.e.,
rigid locally), but are flexible on large scales. Consequently,
GR is correct only approximately in a sufficiently small local
region around any point of the spacetime manifold, wherein
quantum effects can be ignored. For large systems, quantum
effects appear among different parts, and thus GR should be
replaced by a new theory of gravity that can account for them.
As a summary, we aim to extend GR to a theory of gravity
based on the following hypotheses:

1. Equivalence principle: frames of reference undergoing
acceleration and frames of reference in gravitational fields
are equivalent.

2. The principle of general covariance: any physical
predictions are independent of the frames of references
employed, i.e., any physical theory can be written in a
covariant form.

3. All matter has quantum random motion irrespective of
its mass.

Clearly, compared with GR, the only added hypothesis is the
quantum effects of macro matter, since the quantum effects of
micromatter have been verified and well known. At the present
stage, we emphasize that our extra hypothesis is compatible
with Einstein’s equivalence principle in the sense that, at any
local point, a freefall macro body has no quantum effects at its
own rest inertial frame, so that its trajectory is well-defined
locally.
We cannot go further until we have an optimal mathematical

language to describe our assumptions in a natural way. We find
that geometric algebra (GA) is just what we seek. GA is
rediscovered and greatly promoted by David Hestenes
(Hestenes 1966; Hestenes & Sobczyk 1986; Hestenes 2002),
and among other things, it provides a unified mathematical
language for relativity (both special and general theories) and
quantum mechanics (Hestenes 2003a, 2003b; Doran et al.
2003). We summarize the main results of spacetime algebra
and Dirac theory for free particles in Appendix A. Fortunately,
we have a theory of gravity based on GA as we need at hand.
More than twenty years ago, a new gauge theory of gravity
constructed on flat spacetime alternative to GR was developed
by Cambridge group (Lasenby, Doran, and Gull) called gauge
theory gravity (GTG) (Lasenby et al. 1998). When applying
GTG for our purpose, we still use the Dirac spinor to describe
the macro matter content. The only modification to GTG is
that, when gravity is absent, we require that the gauge invariant
equations for Dirac spinor are reduced to a conservation law for
“classical ” (i.e., no spin) pressure free ideal fluid, rather than to
the usual Dirac equation in flat spacetime (which is required for
electrons). Unfortunately, up to date, we do not know the
spinor field equations that macro bodies may satisfy. So as a
first try, we still employ the Dirac equation for free particles as
a toy model for our macro bodies. We outline the main idea and
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the prime processes followed by GTG for the matter content
that can be described by Dirac equation in Appendix B.

In what follows, we first apply GTG to cosmology and the
brief conclusions and discussions are given at the end of the
paper. We employ natural units (G= ÿ= c= 1) throughout
except stated otherwise.

2. Cosmology: Static Universe Model and Hubble
Redshift

The simplest application of our theory that can be tested with
credible observational data is the study of cosmology. The
standard ΛCDM cosmology model is based on GR, in which
the universe is expanding (accelerating at the present stage),
the quantum effects are important only in very early
universe (Challinor et al. 1997). However, according to the
assumption in this paper, macro bodies also have quantum
effects, we expect that the quantum pressure (torsion field, or
spin field) will balance the gravity, so that the whole universe is
in a state of equilibrium all the time. So we should try a static
universe model, in which h̄ field is independent of time, and the
average matter density ρm=Nmρ is a constant parameter,
where N is the number of macro bodies of mass m for a finite
system and is suppressed in our subsequent calculations. Thus
the Dirac spinor ψ(r) is a function of r only, although the
probability density ˜r yy= is also a constant due to the
constant value of ρm. As for the magnitude of the spin density
S, we assume that it is proportional to ρm, and since it has
dimension of ÿ, we simply take the proportionality coefficient
to be unity to match the covariant Dirac equation and the matter
stress-energy tensor (see below).

We start by defining a set of spherical coordinates. From the
position vector of the flat spacetime

x t r rsin cos sin cos 10 1 2 3( ) ( )g q fg fg qg= + + +
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define

e r e r, sin . 3ˆ ˆ ( ) ( )q f qº ºq f

With these unit vectors, we further define the unit bivectors
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For our purpose, we next try a form of h̄ field that satisfies a
static, radially symmetric matter distribution. We assume that it
takes the form (Lasenby et al. 1998; Doran et al. 2003)
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where f1, f2, g1, g2 and α are all functions of r only. From (B25)
and (B26), we write a( )w¢ as (Lasenby et al. 1998)
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where new functions G, F, X and Y are also all functions of r
only, their introduction circumvents the unnecessary complex-
ity when derived directly in terms of the functions f1, f2, etc.
With the ω function at hand, the curvature tensor can be
calculated directly from (B16), the torsion free part is (Lasenby
et al. 1998)
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where B is a bivector, and α1,K,α6 are given by
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From (8), the torsion free part of Ricci tensor and Ricci scalar
are given by
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In order to solve Einstein Equation (B22), we need write out
T(a) given by (B24) explicitly, which is
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The term ir 3 1
˜y g yá¶ ñ in the last equation can be calculated

straightforward from Dirac Equation (B23). We obtain
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Now set a= et and a= er in (B22) respectively, we obtain the
following set of equations:
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Recall that the functions G(r), F(r), X(r) and Y(r) are
introduced only for the torsion-free parts w¢ of ω function, they
thus should be related to the functions f1, etc. in h̄ field under
the same conditions (i.e., torsion free). Note also that
L e h e gt t r2· ˆ ( )= ¶ = ¶m

m and L e h e gr r r1· ˆ ( )= ¶ = ¶m
m , we

further adopt the suggestions in Lasenby et al. (1998) that
f2= 0, α= 1, g1= Lrr= Yr and g2= Ltr= Xr. Applying all
these relations to the equations in (14), and defining
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L M g S r M S r
3

8
, or

3

8
. 15r Q r Q1

2 2 2 2 2 2 ( )k k= ¶ =

Since S i1

2 3
˜y g y= and due to our special choice of ψ= ρ1/2R,

we have S 02 1

4
2r= - < . For a static homogeneous universe

with constant matter density ρm= ρm, S2 is also a minus
constant. By integrating (15) we get
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where we have set the integration constant to zero since we
require MQ=0 when r= 0. Remarkably, if we interpret MQ as
some kind of “mass” within r, then it provides a repulsive
force! In our gauge choice, we can define a Bohmian quantum
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As mentioned, we should relate G to the functions f1, g1 in h̄
field under torsion-free condition. In this case, the torsion
Equation (B21) is reduced to the “Wedge equation”
D h a 0¯ ( )¢  = . Let a= et in this equation we obtain (the

same result is obtained by Lasenby et al. (1998) in a different
way)
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Substituting this expression into (18) and applying (17) we get
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is the Hubble constant. We are now ready to study the redshifts
of light signals emitted from some source at distance r.
According to the equivalence principle, the line element of
events given by (B13) is still valid in our theory. From (B8),
g h e f et t t

1
¯ ( )= = , we thus get g h e f et t t

1
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1( )= =- - . Then
from (B13), the period of the light signal at the source is
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where Δτ is the invariant proper value of the period. So the
redshift we observed is
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Clearly, the redshifts derived in this manner arise purely
from the time dilations induced by the “quantum potential”

r S rQ
1

8
2 2 2( ) kF = rather than the gravitational potential or

expanding of the universe, since the matter distribution is
homogeneous and the whole universe is static. According to
quantum mechanics, however, the result we obtained here is
not a surprising. As indicated by David Hestenes (Hestenes
1997), when negative muons are captured in atomic s-states
their lifetimes are increased by a time dilation factor
corresponding to the Bohr velocity. Clearly, such a time
dilation results from quantum potential, or quantum pressure or
zero-point energy so to speak. We emphasize that all the
quantum effects of matter are the same irrespective of the mass
of the matter (i.e., no matter the matter is macro or micro). So
an observer located at any place in the universe would observe
the redshifted light signals emitted from the sources located far
away from the observer in arbitrary directions. This explains
the observations of Hubble redshifts. It should be also pointed
out that the concepts of quantum potential or quantum force
originally proposed by David Bohm correspond to the
“quantum pressure” or “zero-point energy” usually referred to
by the major physicists according to their “standard” viewpoint
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of quantum mechanics. It is not helpful for us to indulge in the
controversies between the two different interpretations of
quantum mechanics, it suffices to know the fact that the causal
or particle (trajectories or histories) interpretations of quantum
effects of matter are the very natural results if one employs GA
as the mathematical language: the spinor R

1
2y r= determines a

unique family of matter trajectories and all other conclusions
follow.

3. Summary and Discussion

We attempt to generalize Einstein’s GR by adding the third
hypothesis concerning the quantum effects of macro bodies to
form a new theory of gravity. This must be a “spin-torsion”
theory of gravity, except that we require the torsion field (or the
spin of source matter) to vanish locally according to the
equivalence principle when only macro matter is involved.
GTG is such a theory in the sense that it can define the
gravitational strength corresponding to ω field self-consistently
both from a Dirac spinor field ψ(x) or a multivector field M(x).
Consequently, the obtained curvature tensor R(a ∧ b) may or
may not contain the torsion depending on whether or not the
source matter having spins. Employing spinor field in the form

x x R x
1
2( ) ( ) ( )y r= to represent the macro matter distributions

is essential to our theory. The reason is that this form of spinor,
obtained by setting β= 0 in the more general canonical form

e Ri 1 2( )y r= b , naturally ensures the neutral matter current in
the free falling frames. Although GTG incorporates quantum
effects in gravity only for microparticles, and the minimal
coupling procedure (gauge principle, which results in or
replaces Einstein’s equivalence principle) ensures that the
minimally coupled Dirac action yield the minimally coupled
Dirac equation, one can manage to derive some spinor
equations such that torsion vanishes naturally in an approx-
imate way in any sufficiently small local regions. This is
equivalent to say that the quantum spin of macro matter cannot
be observed locally. Therefore, in our new theory of gravity,
GR is valid only approximately in local regions or on small
scales.

Before finding out a correct spinor equation for macro
matter, we are eager to know the possible results for practical
applications. Dirac equation has been well-studied when
gravity is present, although we know that it does not meet
our demand. As a toy model, we have employed the covariant
Dirac equation for free particles to describe the spherically
symmetric and static gravitational systems. Remarkably, we
find that such a system has a negative mass determined by the
spin density. We then applied the results to cosmology and find
that the repulsive force provided by the negative mass can
balance the gravity and we achieve a static universe model. We
have arrived at an expression for the Hubble redshift as a
function of the distance to the light source. Interestingly, from
this expression we can take the constant average density of the

universe ρm as a fundamental physical constant (like
gravitational constant G, the speed of light c, etc). The
disadvantages of the toy model are obvious. The procedure we
followed to define the mass of the system is similar to the
torsion-free ideal fluid model, however, the obtained mass is
negative, which is nothing else but the spin of the system.
Surprisingly, the real (positive) mass is “lost” in our
calculations, so the balance condition (17) has to be put by
hand! Further more, for z= 1, our formula gives z∼ r2, which
is not linear of distance r as usually declared by astronomers.
These disadvantages are the evidence that Dirac equation is not
the correct one we are seeking.
From a spinor field we can always form vector currents

e ˜r yg y=m m . In any local free-falling frames, we require these

currents to be constant, so that if we identify e R R3 3
˜g= as the

spin axis vector s/|s| and e1∧ e2 as the spin plane, then the
angular velocity in the spin plane is zero, and thus no spin can
be observed, which is just what we need for macro matter. This
may suggest a equation ∇ψ= 0, but its solutions do not satisfy
the Dirac equation unless m= 0. This can partly explain why
we cannot employ the Dirac equation directly in our new
theory. On the other hand, when gravity is present, covariant
derivative of spinor fields would produce non-zero spin or
torsion fields. Like the torsion-free Riemann curvature fields,
torsion fields constructed in this way would ensure that the
redshift or relative time dilation originated from macro
quantum effects increases with increasing distances between
observers and light sources.
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Appendix A
Spacetime Algebra and Dirac Theory

The geometric algebra (GA) that is generated by a four-
dimensional Minkowski vector space is called spacetime
algebra (STA). The inner and outer products of the four
orthonormal basis vectors in Minkowski vector space {γμ,
μ= 0K3} are defined to be

1

2
diag
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2
. A1

· ( ) ( )

( ) ( )

g g g g g g h

g g g g g g

º + º = +---
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A full basis for the STA is
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5

Research in Astronomy and Astrophysics, 22:125019 (9pp), 2022 December Chen



where σk≡ γkγ0, k= 1K3, and i= γ0γ1γ2γ3= σ1σ2σ3. The
STA is a linear space of dimension 1+ 4+ 6+ 4+
1= 24= 16. We call the general elements of STA multivectors,
and each multivector decomposes into a sum of elements of
different grades. The grade-r multivectors A are denoted by Ar.
We call grade-0 multivectors scalars, grade-1 vectors, grade-2
bivectors and grade-3 trivectors. The geometric product of a
grade-r multivector Ar with a grade-s multivector Bs is defined
simply by ArBs, which decomposes into

A B A B A B A B... , A3r s r s r s r s r s r s r s2 ( )∣ ∣ ∣ ∣= á ñ + á ñ + +á ñ- - + +

where 〈X〉r denotes the projection onto the grade-r part of X.
The grade-0 (scalar) part of X is written 〈X〉. We employ “·”
and “∧” symbols to denote the lowest-grade and highest-grade
terms in (A3), so that

A B A B , A4r s r s r s· ( )∣ ∣= á ñ -

A B A B , A5r s r s r s ( ) = á ñ +

which are called inner and outer products respectively. The
simple example is the geometric product of two vectors a and b

ab a b a b. A6· ( )= + 

We define the reverse of a geometric product AB by
AB BA( ) ˜ ˜=~ , so that for vectors a1, a2,...,ar, we have a a1 1˜ =
and

a a a a a a... ... . A7r r r1 2 1 1( ) ( )=~
-

It is easy to show that

A A1 . A8r
r r

r
1 2˜ ( ) ( )( )= - -

Thus suppose r� s, the inner and outer products satisfy the
symmetry properties

A B B A1 , A9r s
r s

s r
1· ( ) · ( )( )= - -

A B B A1 . A10r s
rs

s r( ) ( ) = - 

The scalar product is defined by

A B AB . A11( )* = á ñ

From (A4), A Br s* is nonzero only if r= s, thus the scalar
product (A11) is commutative

AB BA . A12( )á ñ = á ñ

This commutative property of the scalar product is very useful
in later calculations. We further define the commutator product

A B AB BA
1

2
, A13( ) ( )´ = -

which satisfies the Jacobi identity

A B C B C A C A B 0. A14( ) ( ) ( ) ( )´ ´ + ´ ´ + ´ ´ =

The advantages of STA are that it enables coordinate-free
representation and computation of physical systems and
processes, and it incorporates the spinors of quantum
mechanics along with the tensors of classical field theory.

Geometric calculus (GC) is the extension of a geometric
algebra (like STA) to include differentiation and integration.
Let multivector F be an arbitrary function of some multivector
argument X, then the derivative of F(X) with respective to X in
the A direction is defined by

A F X
F X A F X

lim
0

, A15X ( ) ( ) ( ) ( )
t

t
t

* ¶ º


+ -

where the multivector partial derivative ∂X inherits the
multivector properties of its argument X. We have

XA P A , A16X X ( ) ( )¶ á ñ =

where PX(A) is the projection of A onto the grades contained in
X. For vector argument x and constant vector a, (A15) and
(A16) give

a x a x a . A17x x· ( · ) ( )¶ = = ¶

For a vector variable a= aμγμ= a · γμγ
μ= a · γμγμ, where γ

μ

constitute the reciprocal basis and satisfy ·g g d=m
n

m
n , the

vector derivative can be defined as

a
, A18a ( )g¶ º

¶
¶

m
m

For the derivative with respect to a spacetime position vector x
we use the symbol x x

g º ¶ = m ¶
¶ m , if x= xμγμ. From (A17)

and (A18) we can obtain useful results

b . A19a b a a· · ( )g g¶ = ¶ ¶ = ¶m
m

Once again, one great advantage of GC is that it eliminates
unnecessary conceptual barriers between classical, quantum
and relativistic physics.
We now discuss the Dirac theory in terms of STA. Recall the

symbols sg¢ and ss¢ in (A1) and (A2), which stand for the basis
vectors of four-dimensional Minkowski space and the relative
three-dimensional space, respectively. The same symbols are
used in Dirac theory of relativistic quantum mechanics, but
therein they are matrices (4× 4 for Dirac γʼs and 2× 2 for
Pauli σʼs). This is not a coincidence, since they satisfy exactly
the same algebraic equations. In view of STA, this
correspondence reveals the geometric properties of Dirac
spinor, and leads to the causal interpretation of quantum
mechanics (i.e., micro particles have the well-defined
trajectories in spacetime), which are of prime importance for
the present work. We call the elements of the even subalgebra
of STA defined in spacetime as Dirac spinor fields, denoted by
ψ(x), and can be written in the canonical form

x e R x , A20i 1 2( ) ( ) ( ) ( )y r= b

where ρ(x) is the proper probability density, i= γ0γ1γ2γ3, β(x)
is a scalar field and R(x) (called a rotor) satisfies the
normalization condition RR 1˜ = . The rotor R(x) determines a
Lorentz rotation of a given fixed frame vectors γμ into a frame
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eμ given by

e R R, A21˜ ( )g=m m

and according to this we write

e . A22˜ ( )r yg y=m m

We identify e0= v as the proper velocity of a particle of which
the spinor (wave function) is ψ, so that v2= 1 and

v e A230 0 ˜ ( )r r yg y= =

is the Dirac current. We interpret another vector field as
e R R s s3 3

˜ ∣ ∣g= = , where s
2

∣ ∣ = is the magnitude of the spin
vector s (we recover the Planck constant ÿ from unity in this
section). The spin angular momentum S(x) is a bivector field
related to s(x) by

  
S isv ie e Ri R R R

2 2 2
. A243 0 3 2 1˜ ˜ ( )s g g= = = =

In STA, the Dirac equation for a free-particle of mass m
is (Hestenes 1967, 1973)

i m , A253 0 ( )y s yg =

which admits plane wave solutions of the form (Hestenes 1997)

x e R e R e , A26i i i p x
0

1
2

1
2 3( ) ( ) ( ) ( )·y r r= =b b s-

where R0 is independent of position vector x and p is the
momentum vector of the free particle, so the rotor R has been
decomposed to explicitly exhibit its spacetime dependent in a
phase factor. Inserting this into (A25) and using (A17), we
obtain

p m . A270 ( )y yg=

Right multiplying by ỹ we get

p me R R mve , A28i i
0 ˜ ( )g= =b b-

where we have used iγ0=−γ0i and iR Ri iR Ri, ˜ ˜= = . Since
e icos sini b b= +b , to ensure the momentum p to be a
vector, we must have β= 0 or π. We can identify these as
corresponding to the electron or positron wave functions (i.e.,
spinors) respectively. Since we want to use spinor field to
describe neutral macro body, this result suggests that we should
set β= 0 in this paper. Thus for a free electron, p=mv, i.e., the
momentum is collinear with the proper velocity, which in
general is not true.

We now consider the expected trajectories (streamlines) of a
free electron. The position vector is x(τ), where τ is the proper
time, so we have

v
dx

d
x e R R. A290 0 ˜ ( )

t
g= = = =

Then the spinor associated to the trajectory is





R e

R e

R e , A30

mv x

m

0

0

0
2

1
2 2 1

1
2 2 1

1
2 2 1

( )

( )

( · )y t r

r

r

=

=

=

g g

g g t

g g wt

-

-

-

where τ= v · x and ω= 2m/ÿ is the angular velocity in the spin
plane e2e1. Since ψ(τ)= ρ1/2R(τ), (A30) implies

R R e . A310
1
2 2 1( ) ( )t = g g wt-

Clearly, the proper velocity of the free particle v R R0 0 0˜g= and

the spin vector s R R
2 0 3 0˜g= are constant, however, for

k= 1,2,

e R R

R e e R

R e R

R R R e R
e e0 , A32

k k

k

k

k

k
e e

0 0

0 0

0 0 0 0

1
2 2 1

1
2 2 1

2 1

2 1

2 1

( ) ( ) ˜( )
˜

˜
˜ ˜

( ) ( )

t t g t

g
g
g

=

=
=
=
=

g g wt g g wt

g g wt

g g wt

wt

-

where e R R0k k0 0( ) ˜g= . Thus, the expected trajectories are
straight lines (v is constant), and as the electron moves along
the straight trajectory, the spin is constant and e1 and e2 rotate
about e3 (spin axis) with angular velocity ω.
We conclude that, for free electrons, the probable trajectories

x(τ) are well-defined, and along them, the proper velocity v is
constant and satisfies v2= 1 and the spin vector s is also
constant with magnitude 

2
. Further studies of this particle-

interpretation of Dirac theory show us that, quantum effects can
be determined by the spins of electrons, so that no spins, no
quantum effects (Hestenes 2003b). Surprisingly, when gravity
is present, Hestenes has applied the spinor approach to compute
the gravitational precession of a gyroscope and found that
gravitational effects on electron motion are exactly the same on
the classical rigid body motion (Hestenes 1986). Encoura-
gingly, these studies are very close to our aim since we want to
extend GR to describe quantum effects of macro bodies. So it is
natural for us to choose Dirac spinor field to represent matter
field

x x R x . A33
1
2( ) ( ) ( ) ( )y r=

According to our hypotheses, however, in any local inertial
frames, quantum effects of macro bodies should vanish, so we
cannot directly employ Dirac equation for our spinor fields.
The classical spins such as that for gyroscopes will not be
considered since they have nothing to do with quantum effects.
So what we seek is a differential equation for the spinor of the
form in (A33), such that, in local inertial frames it describes a
pressure-free (classical) ideal fluid, and when gravity is present
quantum effects appear naturally. However, before finding out
the correct equations, it would be interesting to apply the Dirac
equation to a system of N identical macro particles of mass m,
so that matter density is Nmm

˜r yy= . We know that Dirac
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equation does not meet our demand, but as a toy model, we
apply it to cosmology and see what can be learned from this.

Appendix B
GTG and Matter

By virtual of GC, GTG is constructed such that gravitational
effects are described by a pair of gauge fields, h a h a x,¯ ( ) ¯ ( )=
and ω(a)= ω(a, x), defined over a flat Minkowski background
spacetime (Lasenby et al. 1998), where x is the STA position
vector and is usually suppressed for short.

The first of them, h a¯ ( ), is a position-dependent linear
function mapping the vector argument a to vectors. The
introduction of h a¯ ( ) ensures covariance of the equations under
arbitrary local displacements (or an arbitrary remapping
x f x( )¢ = ) of the matter fields in the background spacetime.
In order to understand the physical meaning of the h̄ field, we
first define the covariant displacement transformation as

M x
x f x

M x M x , B1( )
( )

( ) ( ) ( )¾ ¾¾
¢ =

¢ = ¢

so that the equations A(x)= B(x) and A x B x( ) ( )¢ = ¢ have
exactly the same physical content. Suppose we have a vector
field b(x)=∇f(x), where f(x) is a scalar field that is already
covariant under displacement, i.e., x x( ) ( )f f¢ = ¢ . Now can we
write b x b x( ) ( )¢ = ¢ or x xx( ) ( )f f ¢ =  ¢¢ ? By the chain rule
we find

a x a x a f x x

a x a x , B2
x

x x

· ( ) · ( ) ( · ( )) · ( )
( ) · ( ) · ¯( ) ( ) ( )

f f f
f f

 ¢ =  ¢ =   ¢
=  ¢ =  ¢

¢

¢ ¢f f

where f(a)= a ·∇f (x) is a linear function of a and an arbitrary
function of x, and f xx x¯( ) ( ) · =  ¢ ¢f , and we call f̄ the
adjoint of f, satisfying a b a b· ( ) ¯( ) ·=f f , or a b ab¯( ) ( )= ¶ á ñf f .
It follows that x xx( ) ¯( ( ))f f ¢ =  ¢¢f , or

and , B3x x x x
1¯( ) ¯ ( ) ( ) =   = ¢

-
¢f f

which shows us that b(x) is not covariant under displacement.
In order to make the objects such as b(x) covariant, we must
introduce a position-gauge field a x,¯ ( )h , which is a linear
function of a and arbitrary function of x, so that

a x
x f x

a x a x, , , . B41¯ ( )
( ) ¯ ( ) ¯ (¯ ( ) ) ( )¾ ¾¾

¢ =
¢ = ¢-h h h f

Now if we redefine b x x( ) ¯ ( ( ))f= h , then

b x x
x f x

b x x

x x b x , B5x
1

( ) ¯ ( ( ))
( )

( ) ¯ ( ( ))
¯ (¯ ( ( ))) ¯ ( ( )) ( ) ( )

f f
f f

=  ¾ ¾¾
¢ =

¢ = ¢  ¢
=  ¢ =  ¢ = ¢-

¢

h h
h f h

which becomes covariant. The h a¯ ( ) field plays the same role of
vierbein in the tensor calculus approach of gauge theory of
gravity (Hehl et al. 1976; Lasenby et al. 1998). We now give
the relationship between h a¯ ( ) and the metric tensor gμν in GR.
We define a position gauge invariant directional derivative

as (Hestenes 2005)

a h h a , B6· ¯ ( ) ( ) · ( ) = 

where h is the adjoint of h̄ defined by h b h c bc( ) ( ¯ ( ) · )º ¶ , and
a is an invariant vector (i.e., for x f x( )¢ = , a(x) is transformed
to a x a x( ) ( )¢ = ¢ ). So h maps tangent vectors to tangent vectors
and h̄ maps cotangent vectors to cotangent vectors. For a given
set of coordinates {xμ, μ= 0, 1, 2, 3}, we introduce the basis
vectors

e
x

x
e x, , B7( )º

¶
¶

º m m
m m

which satisfy e e· d=m
n

m
n . From these vectors we further

define vectors

g h e g h e, . B81( ) ¯ ( ) ( )º ºm m
m m-

These vectors satisfy the relation

g g h e h e e h h e e e .

B9

1 1· ( ) · ¯ ( ) · ¯ ( ¯ ( )) ·
( )
d= = = =m

n
m

n
m

n
m

n
m
n- -

The metric tensor then is given by

g g g . B10· ( )ºmn m n

Let x(τ) be a time like curve (where τ is the proper time), a
mapping f x x f x: ( ) ¢ = induce the transformation

x
dx

d
x

dx

d

dx

d
f x . B11· ( ) ( ) 

t t t
=  ¢ =

¢
= 

Comparing (B11) with (B6), we introduce an invariant velocity
v= v(x(τ)) as (Hestenes 2005)

x h v v h x, . B121( ) ( ) ( ) = = -

From the known formula dx= dxμeμ, the invariant normal-
ization v2= 1 induces the invariant line element on a timelike
curve in GR

d h dx g dx dx . B132 1 2[ ( )] ( )t = = mn
m n-

Another gauge field, ω(a), is a position-dependent linear
function mapping the vector argument a to bivectors. Its
introduction ensures covariance of the equations of physics
under local Lorentz rotations. Under local Lorentz rotations,
the multivector M transforms as M RMR̃¢ = and the spinor ψ
transforms as Ry y¢ = . To ensure covariance of the quantities
like h M¯ ( ) and h̄ ( )y under local Lorentz rotations, h̄ ( )
should be replaced by the covariant derivative D which is given
by (Lasenby et al. 1998)

DM a DM a h M a M , B14a a· ( · ¯ ( ) ( ) ) ( )wº ¶ = ¶  + ´

and

D a h a
1

2
. B15a⎛

⎝
⎞
⎠

· ¯ ( ) ( ) ( )y y w yº ¶  +
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The field strength corresponding to the ω(a) gauge field is
defined by

R a b L b L a a b , B16a b( ) ( ) ( ) ( ) ( ) ( )w w w w º - + ´

where L a ha · ¯ ( )º  and a, b are constant vectors. Ricci tensor
R(a), Ricci scalar R and Einstein tensor G(a) are defined,
respectively, as:

R a R b a , B17b( ) · ( ) ( )= ¶ 
R R a , B18a · ( ) ( )= ¶

G a R a aR
1

2
. B19( ) ( ) ( )= -

The overall action integral is of the form

S d x Rdet
1

2
, B20m

4 1⎛
⎝

⎞
⎠

∣ ∣ ( ) ( )ò k= --h

where m describes the matter content and κ= 8π. As
mentioned at the end of Appendix A, due to lacking of
appropriate differential equations governing the spinor field for
macro bodies, we temporally “borrow” m from Dirac theory
of electrons, which has been well-studied (Challinor et al.
1997; Doran et al. 1998; Lasenby et al. 1998). From (B20) we
obtain the following equations describe the field coupled self-
consistently to gravity (Doran et al. 1998):

D h a h a Storsion: , B21¯ ( ) ¯ ( ) · ( )k =
G a T aEinstein: B22( ) ( ) ( )k=

D i mDirac: , B233 0 ( )y s yg=

where D h a¯ ( ) is the gravitational torsion which is
determined by the matter spin density, S i1

2 3
˜y g yº is the spin

trivector, κ= 8π, and

T a a D i B243 1( ) · ˜ ( )y g y= á ñ

is the matter stress-energy tensor. We can solve (B21) for ω(a)
to obtain (Doran et al. 1998)

a a a S H a

a H b a S

1

2
1

2

1

2
, B25b

( ) ( ) · ( )

· [ ( )] · ( )

w w k

k

= ¢ + = -

+ ¶  +

this defines a( )w¢ as the ω-function in the absence of torsion,
and

H a h h a h h h a , B26
1 1( ) ¯ ( ¯ ( )) ¯ ( ) ¯ ( ¯ ( )) ( )   º   = -  

- -

where “overdot” notation is employed to denote the scope of a
differential operator. It proves convenient if we employ the
primed symbols to denote the torsion free part of the curvature
tensors, we obtain (Doran et al. 1998)

R a b R a b a b S S

a b D S

1

4
1

2
, B27

2( ) ( ) [( ) · ] ·

[( ) · ] · ( )

k

k

 = ¢  + 

- 

R a R a a S S

a D S

1

2
1

2
, B28

2( ) ( ) ( · ) ·

· ( · ) ( )

k

k

= ¢ +

-

R R S
3

2
. B292 2 ( )k= ¢ +
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