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Abstract

In a study that attempted to relate solar and human activity to Earthʼs recent temperature change, Connolly et al.
committed a basic error in the choice of statistical methods and so overreported the effect of the Sun. A major
theme of their study was that there are many data sets of past solar activity, and some of these allegedly provide
statistical evidence of “most of the recent global warming being due to changes in solar activity.” We avoid
methods that are known to give inaccurate results and show that for 1970–2005 Northern Hemisphere land the
corrected solar attribution fraction is −7% to +5%, compared with values of up to 64% reported in Connolly et al.
Their higher values are entirely due to mistaken application of statistics. Unfortunately, we cannot test truly
“recent” global warming since most of their solar data sets end before 2015, and two finish in the 1990s, but all
tested post-1970 periods show similarly small solar contributions. The solar-climate linkage is an area of fasci-
nating and ongoing research with rigorous technical discussion. We argue that instead of repeating errors, they
should be acknowledged and corrected so that the debate can focus on areas of legitimate scientific uncertainty.
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1. Introduction

Connolly et al. (2021) recently made unsubstantiated claims
about the evidence for how total solar irradiance (TSI) has
contributed to recent climate change. The specious assertion of
some quantitative evidence in support of their position is pri-
marily because they select a statistical method which is well
known to give inaccurate results in these conditions, namely
sequential rather than simultaneous regression.

In simple terms: if multiple covarying factors are affecting
global temperature ΔT at the same time, then the statistical
methods should calculate their effects at the same time. In this
case, the factors considered are solar forcingΔFTSI and human-
caused (anthropogenic) forcing ΔFanthro. Over 1850–2005
these factors covary, with mean correlation r of 0.55 across TSI
data sets, and a maximum of 0.77 for one ΔFTSI data set.
Rather than calculating the effects of ΔFTSI and ΔFanthro at the
same time, Connolly et al. first regressΔT againstΔFTSI alone,
and due to the correlation between ΔFTSI and ΔFanthro, this
will attribute some of the human-caused warming to the Sun.
They could just as easily have chosen to perform the calcul-
ation first against ΔFanthro, in which case the results are com-
pletely different, and some of the solar-caused ΔT change
would be attributed to human activity. They chose to report the
results of the first erroneous calculation, which overemphasizes
the contribution of the Sun, but not the results of the second
which would understate the solar fraction.

Either sequential ordering is well-known to give inaccurate
results, so the standard approach is to perform a simultaneous
regression (Foster & Rahmstorf 2011; Schmidt et al. 2014;
Saenko et al. 2016; Hu & Fedorov 2017; Folland et al. 2018;
Meng et al. 2021). Here we show using Monte Carlo tests
that the Connolly et al. method is, indeed, strongly biased in
favor of overreporting the solar contribution to warming.
Applying standard multiple regression, which is unbiased in
the Monte Carlo tests, we show that the data support anything
from slight solar-induced cooling to slight warming in recent
decades.
We focus on the sequential regression issue because it is

uniquely necessary to support Connolly et al.ʼs claim of a
major solar role in recent warming, which contradicts other
evidence. This paper will briefly address other statistical
shortcomings to provide more accurate and robust attribution
estimates, but this statistical focus should not be taken to mean
that Connolly et al. is otherwise free of statements that rely on
flawed or selective use of evidence.
There is a fascinating and science-based debate on solar-

weather and solar-climate relationships. However, we strongly
argue that a useful and productive debate requires using data
and mathematical techniques that are tested and shown to be
reliable. Conclusions that have been shown to be false should
be ignored in favor of accuracy, rather than repeated in favor of
maintaining the appearance of a broader debate.
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This comment includes an analysis of the Connolly et al.
data in Section 2, a brief discussion of those and other issues in
Section 3, and conclusions and recommendations in Section 4.

2. Statistical Analysis

The Connolly et al. attribution method is to statistically
decompose ΔT into contributions from TSI (ΔTTSI(t)) and
human-caused factors (ΔTanthro(t)), and then to derive their
linear trends and compare those trends with that of ΔT(t). The
issues and limitations with their approach include:

1. Use of sequential rather than simultaneous regression,
2. Linear regression to quantify changes in the nonlinear

ΔT(t) series,
3. Drawing conclusions using results calculated from other

periods, such as one case where changes in “recent dec-
ades” are based on an 1815–1994 fit,

4. Lack of assessment of any uncertainties,
5. Use of non-global data (e.g., Northern Hemisphere (NH)

land) to make assertions about global changes,
6. That this is a purely correlational analysis and does not

consider physics.

This section will primarily address 1–4 via a combination of
Monte Carlo tests and analysis of much of the same data used
in Connolly et al.

2.1. Order of Regression

2.1.1. Monte Carlo Tests

A standard way to validate statistical methods is to use
Monte Carlo simulations in which a system is constructed
following some model assumptions with known true para-
meters. Proposed statistical methods are then applied to deter-
mine whether they accurately obtain the true parameters or
other relevant information, such as their confidence intervals.
Methods which have large biases should be discarded. In this
case it is assumed that temperature can be decomposed as
follows

D = D + D + D +T T a T a F . 10 TSI TSI anthro anthro  ( )

Here ΔT0 is an intercept that represents an arbitrary temper-
ature offset and will change with the selected ΔT anomaly
baseline period. ΔFTSI and ΔFanthro are linearly related to
temperature by parameters labeled a, and the term ò represents
noise. For these tests noise is generated following an AR(1)
process with lag-1 correlation of 0.3 and a standard deviation of
0.3°C, and for aTSI and aanthro we select several parameter
combinations. The ΔFTSI(t) in this case is that recommended
for the Coupled Model Intercomparison Project, Phase 6
(CMIP6) (Matthes et al. 2017) and ΔFanthro is that for CMIP5
(Meinshausen et al. 2011).

For each combination of properties, we generate 5000
pseudorandom ò(t) series and perform sequential and multiple

regression on each one to provide 15,000 parameter estimates:
5000 for multiple regression, and 5000 for each ordering of
sequential regression. Figure 1(a) shows constructed ΔT(t)
series and Figure 1(b)–(d) confirms that, as stated in Section 1,
sequential regression is biased. The magnitude and direction of
the bias depend on the order in which regression is performed,
and on the relative contribution of each variable. In the case
where the variance explained by solar activity is small (Figure
1(c)), the Connolly et al. method artificially inflates the solar
contribution by approximately 4000%.
This poor performance confirms that the Connolly et al.

method should be discarded, while the standard multiple
regression approach passes this test.

2.1.2. Connolly et al. Results

Figure 2 displays regression results using the Connolly et al.
“urban and rural” ΔT(t) with ΔFTSI(t) from two sources, one
featuring “high-variability” from Hoyt & Schatten (1993),
Scafetta & Willson (2014) (Figure 2(a)–(c)) and one showing
“low-variability” from Steinhilber et al. (2009) (Figure 2(d)–
(f)). These were two of the 16 TSI data sets that were claimed
to support that most of the recent warming is solar-driven.
Figures 2(a) and (d) reproduce Connolly et al. values and

Figures 2(b) and (e) the results they briefly discussed but
elected not to show, which is when the ΔFanthro fit is done first
and the TSI attribution fraction shrinks to below 10%. The
enormous change in conclusion depending on the order of the
calculation further makes it obvious that this is an inappropriate
method. Multiple regression results are in Figures 2(c) and (f)
and affirm that the statistical evidence supports small ΔTTSI
changes in recent decades over NH land.
Figure 2 also demonstrates that variability appears larger

earlier in the record and that the ΔT(t) series are nonlinear. The
uses of ordinary least squares (which assumes time-constant
uncertainties) and linear regression to derive temperature trends
are therefore choices which should have been tested for
robustness.

2.2. Nonlinearities and Uncertainties

For each combination of data sets, Connolly et al. estimated
recent ΔT change from the full-period linear trend. For
example, the Hoyt & Schatten ΔFTSI(t) spans 1700–2018 and
the Urban & Rural NH land temperature data cover
1815–2018. The regression was performed over the longest
common period 1815–2018. These long-term linear trend
estimates were the basis of their attribution statement referring
to temperature change in “recent decades,” or in reference to
the Intergovernmental Panel on Climate Change (IPCC) attri-
bution statement regarding warming since 1950.
The long-term relationship between ΔT and ΔF is expected

to be approximately linear for the magnitude of ΔT considered
here, but it has been clearly demonstrated that global ΔT is

2

Research in Astronomy and Astrophysics, 22:125008 (8pp), 2022 December Richardson & Benestad



nonlinear in time since the 1800s (Cahill et al. 2015). The same
is true of NH land ΔT over 1815–2018, so century-plus linear
trends are poor estimators of recent change. Furthermore, two
of the TSI data sets reported by Connolly et al. to support
>50% ΔTTSI contribution ended in 1994 and 1998. It is a
bizarre choice to exclude the last 20+ yr from the definition of
“recent decades,” so we ignore those TSI series from now on.

Connolly et al. do not define “recent decades” but we will
illustrate by comparing 1970–2018 ΔT from a linear trend, an
1815–2018 linear trend and a 40 yr windowed LOESS (Cle-
veland 1979) which has been shown to reliably capture forced
temperature changes (Clarke & Richardson 2021). Figure 3
demonstrates that recent warming is approximately 200%

larger than estimated from the unsuitable 1815–2018 linear fit.
This Connolly et al. choice inflates the 3% 1970–2018 ΔTTSI
contribution to 9%.
A further consideration is that the physical ΔT change

during 1970–2018 should not depend on changes during, for
example, 1815–1880. However, shifting the regression start
date to 1880 changes the Connolly estimate of 1970–2018
warming by approximately 50%, while the LOESS result
changes by <1%. This linearity refers specifically to trends
in time, i.e., dΔt/dt. As summarized in Equation (1), the
Connolly et al. attribution assumes relationships between ΔF
terms and ΔT to be linear and constant. If true, then it is
desirable to use the longest possible period to derive aTSI and

Figure 1. (a) Example of simulated time series (gray) along with the solar (green), anthropogenic (orange) and summed anthropogenic+solar (blue) ΔT. Each gray
line is a single replicate consisting of the blue line plus pseudorandomly generated AR(1) noise. This panel uses aTSI = 1 and aanthro = 4. (b) Regression estimates of
aTSI derived from 5000 replicates using Connolly et al. sequential regression (blue), with a flipped sequence, i.e., regress against ΔFanthro first (orange) and using
multiple regression (green). (c) The same but with a dominant anthropogenic contribution to ΔT, and (d) with a dominant solar contribution.
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aanthro, since more data generally reduce fit uncertainty. How-
ever, when uncertainty changes in time, standard optimized
least squares (OLS) overfits to the less-certain data. In this case
pre-1900 ΔT(t) data will be overfit relative to the post-
1900 data.

Figure 4 depicts NH land ΔT(t) uncertainty and demon-
strates how OLS-estimated aTSI changes by±50% as regres-
sion start dates are moved between 1815 and 1850. This is
important for consistent comparisons, since the start date of the
solar reconstructions varies. Using weighted least squares to
account for ΔT(t) uncertainty provides more stable estimates of
both aTSI and aanthro. Another notable absence from Connolly
et al. was estimates of regression errors. While aanthro is sig-
nificant and positive in all cases, for several TSI data sets aTSI
is not significant (p< 0.05), i.e., the influence of TSI on long-
term ΔT is statistically indistinguishable from 0.

Now that stable estimates are possible for a variety of start
dates, it is possible to estimate the solar contribution to recent
warming following the principle of Connolly et al.ʼs statistical
method, but by avoiding approaches that give provably inac-
curate results.

2.3. Corrected Statistical Estimates of Warming in recent
Decades due to TSI Changes

Here we recalculate the attribution fraction for 1970–2005
warming with the methodological updates described in
Sections 2.1–2.2, namely:

1. Simultaneous multiple regression to estimate aTSI and
aanthro, over the largest common overlap period, typically
starting in 1815 or 1850,

2. LOESS for 1970–2005 ΔT change,

Figure 2. NH land ΔT and its estimated solar-driven (ΔTTSI) and human-caused (ΔTanthro) decomposition from regression techniques using two TSI series; (a)–(c) a
“high variability” version from Hoyt & Schatten (1993), Scafetta & Willson (2014) and (d)–(f) a “low variability” version from Steinhilber et al. (2009). The column
headed (a) uses Connolly et al.ʼs TSI-first regression. The column headed (b) is the same, but with anthropogenic regression first. The column headed (f) is multiple
regression that does not favor one predictor over the other. The legends report the full-period linear trends for each component, which match the values used in
Connolly et al.ʼs “attribution” in Figures 15 and 16. Note ΔT trends differ because (a)–(c) spans 1815–2008 while (d)–(f) spans 1815–2018.
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3. Weighted-least squares regression using the ΔT(t)
uncertainties.

There are minor changes in numbers but the conclusions are the
same for 1950–2005, 1970–2014 or 1950–2014; 14 of the 16
TSI series extend through 2005 and 9 through 2014. For ΔT(t)
we use validated data sets that span these time periods, namely
the urban and rural NH land series from Connolly et al.
with the extended Berkeley Earth uncertainty estimates as in
Section 2.2, HadSST4 NH sea-surface temperatures (Kennedy
et al. 2019), and HadCRUT5 global land-ocean surface tem-
peratures (Morice et al. 2020).

Figure 5 shows that the conclusions from Sections 2.1 and
2.2 hold across all TSI data sets. The flawed method used by
Connolly et al. generates a wide range of solar attribution
estimates, from 0% to 70%, and supports discussion about the
possibility of a predominant role for solar activity in recent
warming. The orange lines show that part of this is due to their
preference for including data from the 1800s to quantify
warming in recent decades.

Even with the biased simultaneous regression, simply using
data from recent decades to calculate recent-decadeΔT reduces
the mean solar contribution from 40% to 24% for NH land, and
39% to 14% for global data, compared with the Connolly et al.
approach of including data from the 1800s to calculate recent-
decade ΔT changes.

However, the primary reason that Connolly et al. generated
wide ranges in solar attribution fraction was the inappropriate
use of sequential regression. The multiple regression results
provide a more tightly constrained estimate of the solar
contribution to warming which, for NH land, is centered
around 1% of total warming. The highest fraction it is possible
to obtain is 14% of SST warming from the Egorova et al.
(2018) “PHI-MU16” TSI series. The statistically estimated

anthropogenic contribution to global warming over 1970–2005
is 84%–101%, although independent evidence suggests that
higher values are plausible.

3. Discussion

3.1. Interpretation of Attempted Statistical Attribution
Results

In 2013 the IPCC stated that “human influence has been the
dominant cause of the observed warming since the mid-20th
century,” and this conclusion was disputed as being made
“prematurely” by Connolly et al., who claimed that “the use of
many of the “high solar variability” TSI estimates could imply
a much greater role for the Sun.”
This conclusion was surprising given that, as can be seen in

Figure 6, the largest differences between TSI data sets occur
before 1950. Larger ΔFTSI variability implies smaller
aTSI= dΔT/dΔFTSI and therefore smaller recent ΔTTSI.
However, Connolly et al. assert the opposite: 7/8 of the “high-
variability” solar series resulted in >50% of recent solar
warming attribution, compared with 1/8 of the “low-varia-
bility” series. Here we have shown this counter-logical con-
clusion is the result of selecting statistical approaches that
demonstrably fail for this application.
The authors noted that members of their team had in 2015

identified that sequential regression produces unstable results
(Soon et al. 2015) and it seems remarkable that it was not
realized that this instability invalidates their chosen metho-
dology. The reason given for not using more reliable approa-
ches seems to be: “it might be argued that the various
contributions should be estimated simultaneously. We caution
that there is a distinction between the TSI estimates that are
calibrated against empirical measurements (i.e., satellite mea-
surements) and anthropogenic forcings that are usually

Figure 3. NH land ΔT and its simultaneous multiple regression decomposition into ΔFTSI and ΔFanthro using Hoyt & Schatten ΔFTSI and Meinshausen historical-
RCP6.0 ΔFanthro. (a) Full period, (b) since 1970. The 1815–2018 linear OLS fits used for attribution in Connolly et al. are drawn as dashed lines, and LOESS fits
following Clarke & Richardson as thick solid lines. Text on the right reports the 1970–2018 ΔT estimated following Connolly et al. vs. Clarke & Richardson.
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calculated from theoretical modeling.” These comments are
linked grammatically, but not logically.

3.2. Limitations of Approach

Climate change attribution is hugely complex and IPCC
attribution statements rely on multiple lines of evidence. The
only quantitative evidence presented by Connolly et al. to
dispute this was based on the use of inappropriate statistical
methods that are known to give inaccurate results. When
avoiding these errors, there is no quantitative evidence in
support of a large solar activity contribution to recent global
surface warming. Of course, these statistical techniques still
make assumptions, but it is not clear whether or how far vio-
lations of these assumptions translate into errors in attribution
results. Equation (1) assumptions include:

1. ΔFTSI and ΔFanthro effects on temperature are indepen-
dent of each other,

2. all major forcing agents are captured,
3. there is an instantaneous, fixed and linear relationship

captured by aTSI and aanthro.

In the wider literature, physical considerations are used to
assess these assumptions. We are unaware of evidence for an
interaction between solar and anthropogenic effects that is large
relative to ΔFanthro, so assumption (1) should hold to a rea-
sonable approximation. Assumption (2) is not exactly true,
since volcanism can exert large ΔFvolc. Connolly et al. note
that it is episodic and conclude that it will have little effect on
recent-decade attribution; we confirmed this by repeating the
calculations and including ΔFvolc from Meinshausen et al.
(2011). In this case, the solar attribution fraction narrows
slightly, with a range from −2% to +4% of NH land warming
over 1970–2005. The results therefore appear robust to credible
violations of assumption (2).

While assumptions (1) and (2) appear unlikely to greatly
affect the results, assumption (3) is more complex. First, the
relationship between changes in ΔF and ΔT is not instanta-
neous because of the Earthʼs thermal inertia, as discussed in
Connolly et al. However, the similarity of the results when
using a one-box energy balance model suggests that the general
conclusions would not change solely due to Earthʼs inertia.
However, there has been extensive recent research demon-

strating that the efficiency of heat uptake and radiative feed-
backs to temperature change can vary in time. This can be due
to nonlinearities and hysteresis (Schneider et al. 2019), or due to
differing responses to spatially varying warming (Zhou et al.
2016; Andrews et al. 2018). Notably, this modern research
provides specific physical processes to explain the relationships,
many of which have been directly measured. Independent
approaches applied to separate satellite instruments agree on
overall changes in Earthʼs energy budget associated with this
effect (Kramer et al. 2021). Including physical understanding is
crucial context for the discussion of recent climate change, and
is another major reason why the discussion in Connolly et al.
differs from that of the IPCC. However, a full description would
greatly extend this paper and so readers are directed to the IPCC
assessments (Stocker 2013; Masson-Demotte et al. 2021).

3.3. Failure to Account for Relevant Information

Another weakness in the work presented by Connolly et al.
is neglect of important relevant information, or repetition of
results that were later shown to be unfounded without
informing the reader that those results were spurious.
For example, there was no mention of the most recent

comprehensive and state of the art analysis of the solar-climate
link conducted through the European project COST-Tosca that
was assessed in Lilensten et al. (2015), which also explains that

Figure 4. (a) NH land urban and rural temperature series as used in Connolly et al. with ±2σ uncertainties from Berkeley Earth NH land added as shading. Pre-1840
uncertainties repeat the 1840 uncertainties. (b) Regression sensitivity of temperature to TSI forcing as a function of start year of the regression for Connolly et al.
unweighted and error-weighted regression, and (c) same but for anthropogenic forcing sensitivity.
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some of the past debate about the solar-terrestrial link was
based on inappropriate analysis (Benestad 2015). Furthermore,
while Connolly et al. discussed how variations in TSI are
accompanied by similar variations in other solar proxies such
as the sunspot number, galactic cosmic rays (GCR) and the
10.7 cm radio flux (Benestad 2006), it however did not discuss
the missing correlation between GCR and essential climate
variables that would be expected if solar activity was a major
factor in recent warming (e.g., Benestad 2013).

Connolly et al. is also selective in its reporting of past
findings, for example in citing both Scafetta & West (2006a,

2006b) and Benestad & Schmidt (2009), but failing to address
that the latter demonstrated how the former misconstrued their
analysis. While Friis-Christensen & Lassen (1991) was cited
and rightly noted as “disputed,” a crucial unmentioned detail is
that Friis-Christensen & Lassenʼs primary conclusion regarding
recent warming was entirely the result of a “pattern of strange
errors,” and once those errors were corrected the evidence no
longer supported substantial recent solar-induced warming
(Damon & Laut 2004). Another cited study, Humlum et al.
(2013), claimed that much atmospheric CO2 change was not
due to human emissions, but Humlum et al. neglected to report

Figure 5. Kernel-density estimates of ΔT change attribution from the N = 14 Connolly et al. TSI data sets that cover 1970–2005. (a) ΔFTSI and NH land ΔT, (b)
ΔFTSI and HadSST4 NH ocean ΔT, (c) ΔFTSI and HadCRUT5 global ΔT, and (d) ΔFanthro and global ΔT. Blue lines are from the Connolly et al. method, orange
lines the same but with LOESSΔT change. The green and red lines use multiple regression plus LOESSΔT change, with green being OLS and red being least squares
weighted for ΔT(t) error. Legends report the mean and range of attribution fraction across TSI data sets.

Figure 6. The 16 TSI forcing reconstructions in gray and HadCRUT5 global ΔT in red.
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the results relevant to that question. The derived parameters
from their data were actually consistent with a 100%± 1%
human contribution to atmospheric CO2 change (Richardson
2013), i.e., the opposite of their stated conclusion. Neither this
error nor other issues with that paper (Kern & Leuenberger
2013; Masters & Benestad 2013) were mentioned in Con-
nolly et al.

4. Conclusions

Connolly et al. concluded with a series of recommendations,
and we end by arguing strongly in favor of an alternative.
Namely, that when conclusions are based solely upon evidence
that is found to be wrong, the errors should be acknowledged
and corrected. They should not be reiterated solely to further
the appearance of a broader debate than that which is supported
by the available evidence. Effective debate does not progress
by repeating the same mistakes, repeating flawed analyses or
repeating inaccurate results, but rather by updating our under-
standing based on past evidence and exploring new data. In this
case, Connolly et al.ʼs evidence in support of the possibility of
a large solar contribution to warming in “recent decades” was
purely statistical, and based on faulty application of statistical
approaches at that. In order to obtain their results, they made a
series of methodological choices that are known to be flawed,
but which coincidentally increased the reported solar contrib-
ution to warming. This included using data sets that end 2+
decades ago to assess “recent decades,” applying linear fits to
nonlinear data such that estimated warming in “recent decades”
is strongly affected by temperatures in the 1800s and neglecting
any assessment of uncertainties.

Most important was the choice of a sequential regression
whose results are provably wrong in this situation. There are
two ways of doing this calculation incorrectly; the authors
noted the existence of both but elected to report only the results
from the one that gives a large solar contribution to recent
warming. Overall, when modifying the method to remove parts
known to give spurious results, the solar contribution to global
ΔT over 1970–2014 is less than 3% when using eight of the
nine available TSI data sets for that period. The outlier result
comes from using the Egorova “PHI-MU” solar record, a
“high-variability” record whose statistical attribution is 10% of
the 1970–2014 warming. Clearly, a maximum possible value of
10% does not back the claim that there is evidence supporting
“most of the recent global warming being due to changes in
solar activity.”

Given the flaws in the Connolly et al. method, our argument
is that their solar conclusions should not be treated as credible
and the IPCC statements on solar attribution remain intact.
Rather their study should be added to the examples presented
by Benestad et al. (2016), helping future researchers to learn
from mistakes in climate research.
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