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Abstract

An ensemble pulsar timescale derived from the traditional Wiener filtration still contains some high level noise. To
improve this situation we developed a Wiener filtration algorithm of the ensemble pulsar timescale based on a
power-law model of power spectrum for pulsars. Our algorithm has three strengths: (1) mitigating spectral leakage
between frequency bins for Fourier techniques; (2) using a power-law model for power spectrum; (3) signal
realization in original residuals of data set by the power-law model. According to improved algorithm we
constructed an ensemble pulsar timescale EPT−TAI using timing data with respect to International Atomic Time
(TAI) about 16 yr time span of ten pulsars from International Pulsar Timing Array second data release (version A).
The results show that EPT−TAI detected correctly the differences TT(BIPM2015)−TAI between terrestrial time
TT(BIPM2015) and TAI. Fractional frequency stability σz analysis shows that EPT−TAI does not indicate red
noise for 16 yr time interval, and fractional frequency stability for 8 yr and longer time intervals is slightly better
than that of TT(BIPM2015)−TAI. Stability for short time intervals of TT(BIPM2015)−TAI is better than that of
EPT−TAI, but TT(BIPM2015)−TAI shows red noise for longer time intervals. Using the same algorithm we also
derived an ensemble pulsar timescale EPT−TT(BIPM2015) with respect to TT(BIPM2015). The fractional
frequency stability curve of EPT−TT(BIPM2015) shows similar characteristics as that of EPT−TAI but with
slightly lower values.
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1. Introduction

International Atomic Time (TAI) is the basic timescale kept
by the Bureau International des Poids et Mesures (BIPM) using
time keeping data of atomic clocks over the world. In order to
further improve TAI (Guinot 1988), BIPM developed terrestrial
time TT(BIPMXXXX) where XXXX indicates publishing
year. For convenience in the following text, TT also denotes
terrestrial time, and TT−TAI is quadratically fitted timescale in
order to make comparison with pulsar timescale.

Atomic time is the integrated timescale based on atomic
clocks. Pulsar time based on rotation phase of millisecond
pulsars is entirely different from atomic time by their
physical mechanisms. Pulsar timescale can supply a valuable
independent check on atomic time. An ensemble pulsar
timescale can be constructed using long term timing data of
millisecond pulsars. Rodin (2008) introduced Wiener filtra-
tion algorithm for constructing an ensemble pulsar timescale
and showed result using early timing data of two pulsars.
Hobbs et al. (2012), Hobbs et al. (2020) described general-
ized least square fitting and Bayesian analysis methods for
ensemble pulsar timescale and have shown that developed
ensemble pulsar timescale correctly detected errors of TAI.

Long term stability of ensemble pulsar timescale is compar-
able to that of atomic timescale. Today, the International
Pulsar Timing Array (IPTA) (Manchester et al. 2007; Hobbs
et al. 2010; Manchester 2011; Hobbs 2012) has obtained long
term timing data for more than 60 ms pulsars. Among them
there are about 20 yr long continuous timing data available
for some pulsars. IPTA timing data for 49 ms pulsars were
released in 2016 (Verbiest et al. 2016) and timing data for 65
pulsars were released in 2019 for the second data release
(Perera et al. 2019).
Time of arrival (TOA) of electromagnetic radiation from

pulsars can be measured by radio telescopes in reference to an
atomic timescale, for example TAI or TT. Transformation
between measured TOAs and the times of radiation from
pulsars is described by a timing model (Edwards et al. 2006).
The timing model characterizes astrometric properties of the
observed pulsar, such as position and proper motion as well as
its timing properties such as spin period, and additional orbital
parameters if the pulsar is in a binary. Dispersion measure
(DM) and possible variation of the interstellar and planetary
medium must be measured. For timing data analysis an
accurate ephemeris of solar system objects is used.
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For any pulsar, we adopt a model for the observed TOAs
which we denote d, that results from a number of contributions
and physical effects according to

t t t t t t t= + + + + + +d .
1

TM WN RN DM CLK EPH GW

( )

In Equation (1) (Lentati et al. 2015), τTM represents the
deterministic timing model, which can be fitted by joint
analysis including the timing model and noise model
parameters. τWN denotes white noise of pulsar timing which
is stochastic contribution due to the combination of instrument
thermal noise and intrinsic pulsar white noise. The original
measured errors of TOAs must be modeled and corrected. τRN

is stochastic contribution due to red spin noise which can be
estimated by a power-law model of power spectrum. τDM is
stochastic contribution due to changes in the dispersion of radio
pulses traveling through the interstellar and interplanetary
medium. τDM can be measured by multi-frequency observa-
tions (Keith et al. 2013; Lee et al. 2014). These four terms
above depends on the pulsar, but they are independent across
pulsars included in a timing array. τCLK, τEPH and τGW

represent respectively stochastic contributions from clock
signal, errors in a solar system ephemeris used and a
gravitational wave. These three terms belong to “common
noise” present across all pulsars in a timing array, but they have
distinguishable characteristics due to their different correlation
across pulsars in an array.

Our purpose is to construct an ensemble pulsar timescale, in
other words, we hope to extract clock signal from a long term
timing data set of pulsars in a timing array. So we must
accurately determine timing model parameters for each pulsar
in the data set used, remove any systematic errors dependent on
observational system or DM variation, and mitigate other
stochastic contributions such as red spin noise and possible
noises from solar system ephemeris and gravitational waves.
The key technique of constructing an ensemble pulsar
timescale is about design on a suitable algorithm employed.
Traditional Wiener filtration can be used, but the ensemble
pulsar timescale derived usually contains some high level
noise. It is still not convenient to extract clock signal from
residuals of pulsars in an array by Wiener filtration. To improve
this situation we developed a Wiener filtration algorithm based
on a power-law model of pulsar power spectrum.

In Section 2, we describe data set used to construct an
ensemble pulsar timescale. In Section 3, we introduce the
traditional Wiener filtration algorithm and show results of
analysis by this method. In Section 4, a detailed description on
the improved Wiener filtration algorithm is given. An ensemble
pulsar timescale computed by our improved algorithm is
shown. Fractional frequency stability for timescales are
analyzed. Finally in Section 5, some discussions and conclu-
sions are provided.

2. The Data Set Used

Initial TOA data series for ten pulsars with longest time span
in the same period were selected from the IPTA second data
release (version A)4 (Perera et al. 2019). Considering the effect
of possible DM error on the data, the observations below 1000
MHz were removed. So selected TOA data set for the ten
pulsars covers a period from MJD 50,639 to MJD 56,759. In
this period the largest spacing between any adjacent two initial
TOA points is less than 390 days for any pulsar in the selected
data set. The general characteristics for the selected ten pulsars
are given in Table 1. The rotation period, rms of post-fit
residuals and total number of TOAs in the selected common
period for each pulsar some are shown in Table 1. Post-fit
residuals with respect to TAI and to TT(BIPM2015) were
formed respectively for each pulsar in the selected data set
using TEMPO2.5 We will use post-fit residuals with respect to
TAI to calculate an ensemble pulsar timescale EPT−TAI.
Similarly an ensemble pulsar timescale EPT−TT(NIPM2015)
will be computed using post-fit residuals with respect to
TT(BIPM2015). For satisfying requirements of the Wiener
filtration algorithm, we further process the post-fit residuals of
each pulsar in the data set as follows:
(1) Combining data points of residuals with the same MJD

and then rearranging the residual series in order according to
corresponding MJDs.
(2) Removing data points with absolute value of residual

larger than three times of the rms of residuals.
(3) Making moving average (Petit & Tavella 1996) of

residual series to obtain average data points with equal spacing

Table 1
General Characteristics of Timing Data with Common Period from MJD
50,639 to MJD 56,759 for Ten Pulsars from IPTA Second Data Release

(Version A)

Pulsar Pulse
rms of

Residuals Number Weight Weight
Name Period with Respect to of (EPT1− (EPT−

(ms) TAI(μs) TOAs TAI) TAI)

J0437-4715 5.757 0.166 4598 0.5952 0.2238
J0751+1807 3.479 2.419 1491 0.0015 0.0026
J1012+5307 5.256 1.404 7266 0.0024 0.0001
J1022+1001 16.453 2.158 1256 0.0301 0.0015
J1640+2224 3.163 1.877 2451 0.0067 0.0004
J1713+0747 4.570 0.256 12 242 0.3294 0.5618
J1730-2304 8.123 2.277 566 0.0094 0.0123
J1744-1134 4.075 0.689 5217 0.0169 0.1839
J2124-3358 4.931 3.080 1103 0.0070 0.0066
J2145-0750 16.052 1.707 4525 0.0013 0.0071

Note. The last two columns show normalized weight of each pulsar for
constructing ensemble pulsar timescale EPT1−TAI and EPT−TAI respectively
(see Section 4.2).

4 http://www.ipta4gw.org
5 https://bitbucket.org/psrsoft/tempo2
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of 30 days. Each average data point of residuals is computed
within a time interval of 60 days. Corresponding MJD of the
middle point of the first 60 days interval is taken as MJD of the
first average point. Then the second average data point is
computed within 60 days interval with the current and next
30 days data, and so on.

(4) If no observational data are available in any 60 days
time interval, linear interpolation between two adjacent data
points available from data computed by moving average is
implemented to make up absent data points. For example,
because of missing observations of TOA data especially for
the early period of pulsar J1730-2304, there are several time
intervals about 1 yr with no data available. Figure 1 shows
distribution of residuals for J1730-2304. Blue points repre-
sent initial post-fit residuals with observations below 1000
MHz removed. The red curve indicates equal spacing data
points after removing outliers, moving average and linear
interpolation. Since the clock signal that we concerned
consists of low frequency components, moving average and
linear interpolation perturb high frequency components
but leave low frequency signal (Petit & Tavella 1996;
Rodin 2008).

Finally the equal spacing residual series with sample interval
30 days and 203 data points for each pulsar are quadratically
refitted for consistency with the classical timing fitting.

3. Wiener Filtration Algorithm and Results

3.1. Wiener Filtration Algorithm

Wiener filtration has been used for pulsar timing data analysis
for a long time. For example, when a signal concerned in timing
residuals was modeled and model parameters were properly
determined, then signal waveform can be constructed by Wiener
filter (Lee et al. 2014; Hobbs et al. 2020). This usage of Wiener
filter is extended to irregular spacing data set. For constructing an
ensemble pulsar timescale by Wiener filtration, post-fit timing
residuals of each pulsar in the data set selected are required and
correctly formed by Tempo2 package. Through further processing
one acquires the same equal spacing data set of the post-fit
residuals for all pulsars in the data set. We denote the equal
spacing data for each pulsar as vector rI, where subscript I
indicates the Ith pulsar. rI usually contains clock signal, timing
noise and other possible stochastic noises such as gravitational
wave and errors of the used ephemeris of solar system bodies.
Assuming that Qss is covariance matrix of the clock signal
interested in, QrI is covariance matrix of the vector rI and wI is
normalized weight for the pulsar I, if the number of pulsars is n,
the optimal estimator for the clock signal can be written as (Zhong
& Yang 2007; Rodin 2008)

å=
=

-s Q Q rw . 2ss
I

n

I rI I
1

1ˆ ( ) ( )

Figure 1. Timing residuals with respect to TAI of pulsar J1730-2304 which has sparsest TOA distribution in the ten pulsar data set. The blue points represent initial
residual series with the data below 1000 MHz observations removed. Red * represents equal spacing data points after removing outliers, moving average and linear
interpolation.
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The key technique for the Wiener filtration is how to form
covariance matrix QrI and Qss. First we calculate covariance
function, then covariance matrix is easily formed by covariance
function. The clock signal concerned has the same correlation
with each pulsar in the data set selected. Obviously at least two
or more pulsars are needed to calculate covariance function for
clock signal. For n pulsars, the number of the independent pair
of pulsars that can be formed is m, where m= n(n− 1)/2. We
calculate their respective cross-power spectrum using post-fit
residuals rI and rK(I≠ K ) and then cross-covariance function is
derived for each pair of pulsars. Finally we take the average
cross-covariance function of all the pairs of pulsars as estimated
covariance function for the clock signal. Because their timing
noise for the different pulsars are independent, the average
cross-covariance function can better remove the effect of
timing noise and also mitigate other possible disturbing noises.
Similar auto-covariance function for each pulsar can be
calculated from their respective vector rI of the post-fit
residuals.

For calculation of auto- and cross-covariance functions the
following algorithm (Rodin 2008) is used. Rewriting vector rI
as rI,t, where I is the index of pulsars as before, and t is the
index of data points in the vector. If N is length of the vector
rI,t, Fourier transformation for the pulsar I is given by

åv = v

=

-r hx e , 3I
t

N

I t t
j t

1
,( ) ( ) ( )

where ht is smoothing window function used to mitigate
spectral leakage problem (Rodin 2008). The auto-power
spectrum (I = K ) and the cross-power spectrum (I≠K ) for
the data set of pulsars used to construct an ensemble pulsar
timescale are calculated from the formula

v v v=X x x . 4I K I K, *( ) ∣ ( ) )∣ ( )

In formula (4), (. )
*

indicates complex conjugation. The auto-
covariance function (I = K ) and the cross-covariance (I≠ K )
are calculated by the formula

å v=
v

v

=

r r X ecov , . 5I K

N

I K
j t

1
,( ) ( ) ( )

3.2. Results

Figure 2 shows the ensemble pulsar timescale EPT1−TAI
(blue curve) derived by Wiener filtration method introduced
above using the data set with ten pulsars described in Section 2.
The red curve is the clock signal TT(BIPM2015)−TAI. Clearly
the EPT1−TAI contains much noise. In order to separate the
clock signal from the EPT1−TAI, we need to design a suitable
filter to further filter out clock signal from noisy
EPT1−TAI data.

4. Wiener Filtration Algorithm Based on a Power-law
Model of Power Spectrum and Results

4.1. Description of the Algorithm

The Wiener filtration algorithm based on a power-law model
of power spectrum is an improved algorithm of the traditional
Wiener filtration. We improve the Wiener filtration algorithm
for ensemble pulsar timescale following three aspects.
(1) Mitigating spectral leakage between frequency bins for

Fourier techniques
For the Wiener filtration method both auto-power spectrum

and cross-power spectrum of pulsar residuals are based on
Fourier techniques. In order to effectively mitigate spectral
leakage between frequency bins for Fourier techniques, power
spectrum is analyzed with “pre-whitening” and “post-darken-
ing” (Coles et al. 2011). One applies a linear pre-whitening
filter which is implemented in the time domain. If x(k) is the
input residuals and y(k) is the output, a first difference is y
(k)= x(k+ 1)− x(k). Fourier transformation for the whitened
data y(k) is implemented. We then correct the estimated
spectrum of the whitened data by dividing it by p df2 sin 2∣ ( )∣ ,
where f is Fourier frequency and δ is the sample time interval of
residuals x(k). Figure 3 shows power spectrum for the atomic
timescale TT(BIPM2015)−TAI. In Figure 3, the black curve is
the result from Fourier transformation according to
Equation (3), where smoothing window function ht is
calculated by formula (9) in Rodin (2008). The red curve is
result from analyzing with “pre-whitening” and “post-darken-
ing” (Coles et al. 2011). In Figure 3 one can see that the black
curve is still affected by spectral leakage into the high
frequency components of Fourier techniques, the red curve
effectively mitigated spectral leakage problem. From Figure 3
we can also conclude that power spectrum of the
TT(BIPM2015)−TAI is better described by a power-law
model.
(2) Using a power-law model for power spectrum
Auto-power spectrum of residuals for each pulsar contain

timing noise and clock signals. The common clock signal can
be extracted through cross-power spectrum of pulsar pair. So
cross-power spectrum is considered as power spectrum of the
clock signal. Because timing noise depends only on the pulsar,
for different pulsars, their timing noises are independent.
Timing noise may be mitigated through cross-power spectrum
of pulsar pair. Auto-power spectrum of pulsar Sauto( f ) and
cross-power spectrum of pulsar pair Sclk( f ) can be respectively
described using a power-law model (van Haasteren & Levin
2009; Coles et al. 2011; Lentati et al. 2013; van Haasteren
et al. 2013; Lentati et al. 2014; Caballero et al. 2016; Hobbs
et al. 2020) as follows:

⎜ ⎟
⎛
⎝

⎞
⎠

=
a

-
S f S

f

1 yr
, 6auto 0,auto 1

auto

( ) ( )
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Figure 2. Ensemble pulsar time EPT1−TAI (blue curve) and signal of TT(BIPM2015)−TAI (red curve). EPT1−TAI shows some high level noise.

Figure 3. Power spectrum of TT(BIPM2015)−TAI. The black curve is derived using Fourier transformation with a smoothing window. The effect of spectral leakage
into high frequencies is observed. The red curve is analyzed using “pre-whitening” and “post-darkening” methods.
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where S0,auto is the amplitude of auto-power spectrum of
frequency 1yr−1, αauto is the index of the auto-power spectrum.

⎜ ⎟
⎛
⎝

⎞
⎠

=
a

-
S f S

f

1 yr
, 7clk 0,clk 1

clk

( ) ( )

where S0,clk is the amplitude of cross-power spectrum of
frequency 1 yr−1, αclk is the index of the cross-power spectrum.
In order to correctly derive power-law model parameters for
both auto- and cross-power spectrum, power-law model fitting
in logarithmic space is based on the Fourier lower frequency
components of relative power spectrum.

Parameters of power-law model of the auto-power spectrum
for each pulsar are fitted to its auto-power spectrum. Then the
auto-power spectrum is reconstructed by its model parameters.
The auto-covariance function of each pulsar is calculated using
the reconstructed auto-power spectrum by following equation
(Hobbs et al. 2020)

ò p=C S f ft dfcos 2 , 8t
T

f

ij
auto

1
autoij

c ( ) ( ) ( )

In Equation (8) T is the total time span for pulsar residuals in
the data set, 1/T is the frequency of lower-limit of integration,
because the signal with frequency lower than 1/T was absorbed
by a quadratic spin model fitting. fc is the frequency of up-limit
of integration, the ij indices denote the time epochs and tij is the
time lag between the two respective epochs. Normalized auto-
covariance function for the pulsar J0437-4715 is shown in
Figure 4. In Figure 4, the red curve is auto-covariance function

based on the power-law model. The blue one denotes auto-
covariance function calculated directly using the auto-power
spectrum of the residuals. The blue curve converges to the red
one for the high frequency covariance. The similarly normal-
ized auto-covariance function for J0715+1807 is shown in
Figure 5.
To insure auto-covariance function of each pulsar is

correctly derived, we show a brief comparison between our
power-law model parameter of auto-power spectrum and a
published result which is derived by the Bayesian method. The
spectral indices we derived for J0437-4715, J1713+0747 and
J1744-1134 are respectively −1.6, −1.3 and −1.1; their
Bayesian result is about −1.8, −1.4 and −1.2 which is
approximately estimated from Figure 3 of Hobbs et al. (2020).
The two results are compatible although their data set is not
exactly the same. Above three pulsars take very large weight
for computation of an ensemble pulsar timescale (see Table 1,
also see Table 1 of Hobbs et al. (2020)). Since the scale of our
power spectrum is different from Hobbs et al. (2020) the
amplitude of the power-law model of auto-power spectrum is
not shown. If auto-power spectral model parameters for each
pulsar are determined by the Bayesian analysis, they can be
used for auto-covariance calculation.
By fitting a power-law model to the cross-power spectrum

for each independent pulsar pair in the data set, we obtain its
power-law model parameters. The power-law model of
cross-power spectrum is denoted by Equation (7). Using the
model parameters obtained above we reconstruct theoretical

Figure 4. Normalized auto-covariance function of J0437-4715. The blue curve is derived from the auto-power spectrum of the residuals with respect to TAI. The red
curve is derived from the auto-power spectrum based on a power-law model. The blue curve converges to the red one.
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cross-power spectrum of each pulsar pair, and then derive the
cross-covariance function for each pulsar pair by integrating
Equation (8) using the reconstructed theoretical cross-power
spectrum. The cross-covariance function is normalized. For the
data set of ten pulsars, one have 45 independent pairs and their
respective normalized cross-covariance functions. Finally we
obtain average cross-covariance function representing more
correctly the clock signal covariance by averaging 45
independent cross-covariance functions. Figure 6 shows the
normalized average cross-covariance function based on model
(the red curve), and the blue one is derived directly by the
cross-power spectra of 45 pulsar pairs. The blue curve
converges to the red one for the high frequency covariance.

(3) Signal realization in residuals by model
Residuals obtained by moving average and linear interpola-

tion are basic observational results for each pulsar. These
residuals still contain significant high frequency noise. Since
auto-covariance function for each pulsar are based on its auto-
power spectral power-law model, for consistency, the same
auto-power spectral model should be used for signal realization
in the residuals. We use signals in the residuals realized by the
auto-power spectral model as input of the improved Wiener
filtration algorithm. For example the residuals (blue line) and
signal realization (red line) in the residuals by the power-law
model for J1713+0747 are respectively shown in Figure 7.

We point that for our data set with respect to TAI of sample
interval 30 days and 203 data points of each pulsar (see
Section 2), power-law model fitting is based on power spectra

of 50 consecutive low frequency components (corresponding to
frequencies lower than 1/0.3 yr) of the full spectrum both for
auto-power spectrum and cross-power spectrum. Then auto-
covariance function and cross-covariance function based on
model parameters are respectively derived. The same power-
law model parameters of auto-power spectrum are also used to
signal realization in residuals for each pulsar. Usually the same
low frequency components as power-law model fitting are used
for calculating covariance function and signal realization in
residuals. Sometimes we perhaps want to get a smoother
ensemble pulsar timescale to compare with atomic clock, we
can use power-law model parameters already fitted and lower
frequency components to calculate auto- and cross-covariance
function and signal realization in residuals (see Section 4.3).
The number of low frequency components of a power

spectrum used for power-law model fitting relates to length of
the vector rI and sample interval of residuals. It is also helpful
to reference to property of spectrum of the clock signal
concerned, because our purpose is to extract clock signal. From
the red curve in Figure 3, we estimate that 50 consecutive
low frequency components of power spectrum for the
TT(BIPM2015)−TAI can correctly represent clock signal we
concerned. If spectral form of clock signal is not known, we
can make a guess as closely as possible, or try calculating
ensemble pulsar timescale based on power-law model fitting
using different number of low frequency components close to
the half of effective Fourier frequency components of a full
power spectrum, and then select the best result. Fortunately the

Figure 5. Normalized auto-covariance function of J0751+1807. The blue curve is derived from the auto-power spectrum of the residuals with respect to TAI. The red
curve is derived from the auto-power spectrum based on a power-law model. The blue curve converges to the red one.
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final result is not strongly sensitive to small changes in the
number of low frequency components used. For example when
we calculate an ensemble pulsar timescale EPT−TT
(BIPM2015), 40 consecutive low frequency components are
used to fit a power-law model of auto- and cross-power
spectrum.

4.2. Results

Following the description in Section 4.1, we derived average
cross-covariance function based on the cross-power spectral
power-law model and selected number of lower frequency
components, this is considered as the covariance function of
clock signal wanted. From the covariance function of clock
signal we form covariance matrix Qclk of clock signal.
Similarly an auto-covariance function is derived and auto-
covariance matrix Qauto,I is formed for the pulsar I. The realized
residuals based on its auto-power spectral model and the same
number of low frequency components as that used for
calculating auto- and cross-covariance functions for the pulsar
I are denoted as rs,I. According to Equation (2), the optimal
estimate of signal for ensemble pulsar timescale can be written
as

å=
=

-S Q Q rw , 9
I

n

I I s Iclk clk
1

auto,
1

,
ˆ ( ) ( )

where wI is the normalized weight of pulsar I. Assuming
= -Q rsI I s Iauto,

1
, , σI is the rms of sI, weight of the pulsar I is s-

I
2

and then normalized. Using the data set with respect to TAI for
ten millisecond pulsars given in Section 2, we derived an
ensemble pulsar timescale EPT−TAI and show it as the blue
curve with error bars in Figure 8. The region of 1σ one-sided
error is from 110 to 518 ns and with mean value of 310 ns for
all the data points of the EPT−TAI. A description on method
of uncertainty estimation of ensemble pulsar timescale data
points is given in the Appendix. In Figure 8 the atomic
timescale TT(BIPM2015)−TAI is shown as the red curve. We
see that the EPT−TAI shows a similar trend as TT(BIPM2015)
−TAI, and high frequency noise of EPT−TAI is much smaller
than EPT1−TAI in Figure 2.
Using the same algorithm as that for EPT−TAI, we also

calculated an ensemble pulsar timescale EPT−TT(BIPM2015)
with the data set respect to TT(BIPM2015) given in Section 2.
For EPT−TT(BIPM2015) calculation 40 Fourier lower fre-
quency components of spectrum is used.
When we calculate EPT1−TAI and EPT−TAI, their

normalized weight for each pulsar is given respectively in
Table 1. The weight of each pulsar is very different. Pulsars
J0437-4715 and J1713+0747 always take larger weights,
The sum of normalized weight for these two pulsars is about
0.8 for both EPT1−TAI and EPT−TAI cases. The third one
with larger weight is pulsar J1744-1134. We note that these
three pulsars have lower rms of residuals and their number of
TOAs available is relatively more. Weight of each pulsar for
constructing EPT−TT(BIPM2015) is same as that for
EPT−TAI.

Figure 6. Normalized average cross-covariance function of 45 pulsar pairs in the data set with respect to TAI for ten pulsars. Blue curve is derived from cross-power
spectra of pulsar pairs. Red curve is derived from cross-power spectra based on a power-law model of pulsar pairs. The blue curve is converged to the red curve.
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Figure 7. Residuals with respect to TAI from moving average and interpolation (blue curve) and signal realization in the residuals with Fourier frequency components
lower than 1/0.3 yr based on the auto-power spectral power-law model for pulsar J1713+0747 (red curve).

Figure 8. Ensemble pulsar timescale EPT−TAI (blue curve with error bar) derived by Wiener filtration based on a power-law model. For EPT−TAI calculation 50
Fourier low frequency components of spectrum (corresponding to frequencies <1/0.3 yr) are used for the power-law model fitting, covariance function computation
and signal realization in pulsar residuals. The signal of TT(BIPM2015)−TAI is shown by the red curve.
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4.3. Analysis of Fractional Frequency Stability of Time
Scales

We calculated σz (Matsakis et al. 1997) of the EPT−TAI
derived above and showed it as blue line in Figure 9. For
comparison, σz of the atomic time TT(BIPM2015)-TAI is
shown as the red line. The σz curve of EPT−TT(BIPM2015)
is also shown as the black one in Figure 9. Conventional
Fourier techniques necessarily fail in the presence of steep
power-law spectra because of spectral leakage between
frequency bins. In contrast, the effective “filters” corresp-
onding to the σz technique have steep cutoffs on their low
frequency sides and hence are ideal for analyzing red noise
(Matsakis et al. 1997). In Figure 9, the slog 10 z( ) corresp-
onding to t= 106.9 s(t= 90 days) biased down for both
EPT−TAI and EPT−TT(BIPM2015). This phenomenon
may relate to moving average of original timing residuals.
The total shape of σz curves for both ensemble pulsar times-
cales EPT−TAI and EPT−TT(BIPM2015) go down as time
increases, while σz curve of atomic timescale TT(BIPM2015)
−TAI goes up. It is clear that the atomic timescale
TT(BIPM2015)−TAI shows red noise for longer time
intervals. Contrarily the EPT−TAI does not show red noise
even for about 16 yr time interval. In this case, fractional
frequency stability of the EPT-TAI for t= 108.4 s(t= 8 yr)
and longer intervals is slightly better than that of
TT(BIPM2015)−TAI. If it is further certified by more

research works on the ensemble pulsar timescale that the
long term fractional stability of pulsar timescale is better than
the atomic timescale, we may improve the long term stability
of the TT(BIPM2015)−TAI by the ensemble pulsar time-
scale. Figure 9 shows that fractional frequency stability for
short times for TT(BIPM2015)−TAI is better than the
ensemble pulsar timescale. From Figure 8 we also see that
the curve of TT(BIPM2015)−TAI is much smoothing
compared to the curve of EPT−TAI. Obviously EPT−TAI
contains some level high frequency noise.
In order to test σz of pulsar timescales with different

smoothing levels, we tried deriving a smoother ensemble pulsar
timescale through reducing number of Fourier lower frequency
components of spectra used for covariance function computa-
tion and signal realization in pulsar residuals but keeping the
power-law model fitting process unchanged. In Figure 10 we
show σz results of two ensemble pulsar timescales with
different smoothing levels. Compared with blue curve σz the
black curve for short time intervals (t< 2 yr) is improved but σz
for t> 2 yr is almost not changed.

5. Discussion and Conclusion

There are different algorithms for ensemble pulsar timescales
(Zhong & Yang 2007; Rodin 2008; Hobbs et al. 2020). The
algorithm of Wiener filtration is perhaps operational simpler
one. Comparison between results based on different algorithms

Figure 9. Comparison of σz for timescales. It is clear that some red noise of TT(BIPM2015)−TAI is presented, but there is no red noise observed for EPT−TAI and
EPT−TT(BIPM2015). σz for EPT−TT(BIPM2015) is similar to that for EPT−TAI but with slightly lower values. Error-bars of black curve are omitted for clarity
since they are similar to those of the blue one.
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is necessary for developing an ensemble pulsar timescale.
Wiener filtration requires that TOA data samples for all the
pulsars used to construct an ensemble timescale have the
regular time distribution over the same time span. TOA data
processing before carrying constructing the ensemble pulsar
timescale is necessarily important. The purpose of TOA data
processing is to correctly derive post-fit timing residuals which
keep clock signals concerned for each pulsar. In order to do
this, any systematic errors in the selected data related to
observational system and DM variations must be removed.
TOA measurement errors must be calibrated and red noise that
may be present should be estimated. Then a fitting process
using Tempo2 package is carried out to get post-fit residuals.
Because of irregular sample of original TOA data, averaging
and interpolating of post-fit residuals is required to get
uniformly distributed post-fit residual samples for each pulsar.

In order to more effectively extract clock signals buried in
timing noise, we developed a Wiener filtration algorithm based
on power-law model of pulsar power spectrum. Using ten
millisecond pulsar timing data with about 16 yr long from
IPTA second data release, employing the Wiener filtration
algorithm we developed, an ensemble pulsar timescale
EPT−TAI is calculated. Results show that the EPT−TAI
correctly detected clock signal TT(BIPM2015)−TAI.

Fractional frequency stability σz analysis shows that EPT
−TAI does not indicate red noise for 16 yr time interval, and
fractional frequency stability for 8 yr and longer intervals is
slightly better than that of TT(BIPM2015)−TAI. This result
needs to be further verified by more research works. Stability
for short time intervals of TT(BIPM2015)−TAI is better than
EPT−TAI, but TT(BIPM2015)−TAI shows red noise for
longer time intervals.
Fractional frequency stability of ensemble pulsar timescale

on short time intervals is worse compared to atomic timescale
TT−TAI, mainly because of larger measurement noise of
TOAs. Fractional stability on short times of ensemble pulsar
timescale can be improved by further filtering out high
frequency noise. Reducing measurement errors of TOAs, for
example TOA measurement errors by FAST telescope reduced
to 50 ns, will lead to improvement of fractional stability on
short time intervals of ensemble pulsar timescale in the future.
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Figure 10. σz of ensemble pulsar timescales with different smoothing levels. A smoother pulsar timescale is derived by improved Wiener filtration using lesser number
of Fourier lower frequency components of power spectra except power-law model parameter fitting unchanged. The fractional frequency stability of the black curve
for short time intervals is improved than that of the blue one, stability for t > 107.8 s(t > 2 yr) is almost same in any case. σz for atomic timescale TT(BIPM2015)−TAI
is shown by the red curve.
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Appendix
Method of Error Estimation of Ensemble Pulsar

Timescale for Improved Wiener Filtration

For pulsar I, its clock signal estimation is computed by

= -S Q Q r . A1I I s Iclk, clk auto,
1

,
ˆ ( )

In Equation (A1), Qclk is covariance matrix for clock signal,
Qauto,I is auto-covariance matrix for pulsar I and rs,I is realized
residual vector for pulsar I by the model. Covariance of S Iclk,

ˆ
can be estimated by referencing Equation (42) of Lee et al.
(2014). An ensemble pulsar timescale using data of n pulsars is
derived by equation

å=
=

-S Q Q rw . A2
I

n

I I s Iclk clk
1

auto,
1

,
ˆ ( ) ( )

In Equation (A2), wI indicates the normalized weight for pulsar
I. Error estimation for waveform of an ensemble pulsar
timescale derived with Equation (A2) is computed by equation

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ås = -

=

S Sw , A3i
I

n

I I i iclk,
1

clk, ,
2

clk,
2

1 2

ˆ ˆ ( )

where subscript i represents the ith element of corresponding
vector.
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