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Abstract

The origin and phenomenology of Fast Radio Bursts (FRBs) remain unknown. Fast and efficient search technology
for FRBs is critical for triggering immediate multi-wavelength follow-up and voltage data dump. This paper proposes
a dispersed dynamic spectra search (DDSS) pipeline for FRB searching based on deep learning, which performs the
search directly from observational raw data, rather than relying on generated FRB candidates from single-pulse
search algorithms that are based on de-dispersion. We train our deep learning network model using simulated FRBs
as positive and negative samples extracted from the observational data of the Nanshan 26 m radio telescope (NSRT)
at Xinjiang Astronomical Observatory. The observational data of PSR J1935+1616 are fed into the pipeline to verify
the validity and performance of the pipeline. Results of the experiment show that our pipeline can efficiently search
single-pulse events with a precision above 99.6%, which satisfies the desired precision for selective voltage data
dump. In March 2022, we successfully detected the FRBs emanating from the repeating case of FRB 20201124A
with the DDSS pipeline in L-band observations using the NSRT. The DDSS pipeline shows excellent sensitivity in
identifying weak single pulses, and its high precision greatly reduces the need for manual review.
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1. Introduction

Fast radio bursts (FRBs) are bright, highly dispersed,
millisecond-duration cosmological radio transients (see Cordes
& Chatterjee 2019; Petroff et al. 2019; Zhang 2020 for
reviews). The transient radio phenomenon was first discovered
by Lorimer et al. (2007) during a search in the archival data of
the Parkes multibeam pulsar survey at the Parkes observatory.
Thornton et al. (2013) reported the findings of four more high-
dispersion measure (DM) bursts in other surveys with the
Parkes 64 m radio telescope, which showed similar observed
characteristics to the Lorimer burst. At that point, FRBs
became widely accepted as a newly recognized astrophysical
phenomenon (Amiri et al. 2018). However, because of their
short-duration and rare repetition, it is very difficult to capture
them. Nowadays, FRBs represent one of the new and most
exciting mysteries in astrophysics. So far, except for FRB
200428, which was the first to be confirmed as originating from
the Galactic magnetar soft gamma repeater (SGR) SGR J1935
+2154 (Li et al. 2021), the origins of FRBs are still unknown
and at present the source class is defined only through
observations (Petroff et al. 2019).

With rapidly growing enthusiasm for FRB research in recent
years, many new FRB events have been discovered in

observations not only with the Parkes telescope, but also from
other telescopes all over the world. The latter include the
Arecibo telescope (Spitler et al. 2014), the Green Bank
Telescope (GBT) (Masui et al. 2015), the Upgraded Molonglo
Synthesis Telescope (UTMOST) (Caleb et al. 2016; Farah et al.
2019), the Australian Square Kilometer Array Pathfinder
(ASKAP) (Bannister et al. 2017; Shannon et al. 2018), the
Canadian Hydrogen Intensity Mapping Experiment (CHIME)
(Amiri et al. 2019, 2021), the Effelsberg telescope (Marcote
et al. 2020), the Sardinia Radio Telescope (SRT) (Pilia et al.
2020) and the Five-hundred-meter Aperture Spherical radio
Telescope (FAST) (Zhu et al. 2020; Niu et al. 2021). The
detection rate of FRBs is rapidly increasing, and even
thousands were detected in one year. From 2018 July 25 to
2019 July, 536 FRBs were detected by CHIME (Amiri et al.
2021). At FAST, 1652 independent bursts from FRB 121102
were detected in 59.5 hr spanning over 47 days (Li et al. 2021),
and 1863 polarized bursts from the repeating source FRB
202011124A were detected in 88 hr over 54 days (Xu et al.
2022). FRBs are already being used to probe the halos of other
galaxies and to address the distribution of baryons in the
intergalactic medium (IGM) (Chatterjee 2021), raising the need
for more FRBs for further research. Many more telescopes in

Research in Astronomy and Astrophysics, 22:105007 (9pp), 2022 October https://doi.org/10.1088/1674-4527/ac833a
© 2022. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

1

mailto:chen@xao.ac.cn
mailto:chen@xao.ac.cn
mailto:chen@xao.ac.cn
mailto:liuyanling@xao.ac.cn
mailto:liuyanling@xao.ac.cn
mailto:liuyanling@xao.ac.cn
https://doi.org/10.1088/1674-4527/ac833a
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac833a&domain=pdf&date_stamp=2022-09-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac833a&domain=pdf&date_stamp=2022-09-28


the coming years will join the FRB search or multi-wavelength
coordinated observations. The observational data of FRB
searches will continue to increase at an explosive rate. The
issues we are facing with the speed and storage for large data
processing will be more difficult.

Searching for FRBs from observational data is usually done
with de-dispersion based single-pulse algorithms such as
HEIMDALL (Barsdell et al. 2012), PRESTO (Ransom 2001),
FDMT (Bannister et al. 2017), CDMT (Bassa et al. 2017) and
BEAR (Men et al. 2019). These algorithms have also been
embedded in real-time FRB search systems or backends for
online searching. Examples include the CHIME/FRB real-time
search system with bonsai (Amiri et al. 2018), GREENBURST
with HEIMDALL on GBT (Agarwal et al. 2020b) and the
piggyback with BEAR (Men et al. 2019). These algorithms are
easily triggered by noise and radio frequency interference
(RFI). The false positive rate in the candidates is too high to be
manually inspected. Currently, machine learning is being used
to provide an automated solution to reduce the sheer volume of
false positives. Wagstaff et al. (2016), Farah et al. (2019),
Foster et al. (2018) and Michilli et al. (2018) applied traditional
machine learning to the classification of single-pulse transient
candidate classification. Connor & van Leeuwen (2018), Zhang
et al. (2018) and Agarwal et al. (2020a) utilized the deep
learning model for FRB searches. In addition, the application of
artificial intelligence (AI) to automate the classification of FRB
candidates can realize real-time FRB search and provide high-
precision and high-speed prerequisites for near-real-time
voltage dumps, which are very valuable for FRB research.
Voltage capture not only leads to superior localization for an
FRB, but it also gives remarkable temporal and frequency
resolution for off-line analysis (Farah et al. 2019).

Compared with traditional machine learning methods, deep
learning does not require spending lots of time on feature
engineering. This avoids the subjectivity and incompleteness
caused by artificial design and selection of features. In addition,
the learning ability of deep learning for large data sets has far
exceeded that of traditional machine learning. Past research has
shown that, for the classification of FRB candidates, a deep
learning model could achieve better outcomes. In this paper, we
develop a direct dispersed dynamic spectra search (DDSS)
pipeline for observational raw data based on deep learning. The
rest of this paper is organized in the following manner. In
Section 2, we outline the process flow of the FRB search
pipeline. In Section 3, we detail our data preparation for the
deep learning models. In Section 4, we describe the method for
acquiring the deep learning classifier. In Section 5, we test our
pipeline and describe the bursts from the repeating case of FRB
20201124A detected with the Nanshan 26 m radio telescope
(NSRT). Finally, in Section 6, we summarize our main
conclusions and provide a brief outlook for the future work
of the DDSS pipeline.

2. The DDSS Pipeline

In previous studies, FRB classifiers based on machine
learning were mostly used to identify and classify FRB
candidates produced by an automatic search pipeline that
implements the dispersive algorithm. Connor & van Leeuwen
(2018) suggested replacing the de-dispersion backend with a
deep neural network (DNN) classifier for executing transient
detection. The de-dispersion process of repeated trials with
different DMs and converting the dynamic spectrum data into
DM-time intensity are computationally expensive. The direct
deep learning detection can save time and hardware resources,
and also avoids the deviation risk caused by traditional de-
dispersion algorithm in searching FRBs. Zhang et al. (2018)
presented a direct FRB detection method based on a very deep
convolutional neural network, named residual network. Using
this network, they found 72 new pulses of FRB 121102 in a
5 hr observation at C-band, where 21 bursts were previously
detected. They demonstrated its advantage over a traditional
brute-force de-dispersion algorithm in terms of higher sensi-
tivity, lower false positive rates and faster computational speed.
Based on the above experience, we developed the DDSS
pipeline for direct deep learning detection of FRBs from
observational raw data produced by the NSRT. The simplified
schematic drawing for the search pipeline system is illustrated
in Figure 1.
We divide the observational raw spectrogram data into

frames, each with a fixed number of samples along the time
axis, then preprocess them and feed them into the deep learning
classifier for prediction. Here, we set the classification thresh-
old to 0.5. When the deep learning classifier outputs a
probability above the fixed threshold value, the pipeline will
write the data of the candidate to a separate file on a disk and
store the time-frequency plot of the FRB event candidate for
offline analysis and visual inspection. At the same time, the
researchers will receive an email notification of the newly
detected FRB event candidate.

3. Data Preparation

3.1. Data Set

The deep learning classifier is directly used to search for
FRB events in the observational spectrogram data. Essentially,
it is an application for binary classification between FRBs and
background noise that contains some RFI. Two classes of
samples are needed to build a training set: the positive frames
and the negative frames. The negative frames can be randomly
extracted from the observational data. Because of the limited
population of FRBs, it is not possible to provide a
comprehensive data set for training a deep learning model. In
view of the simple morphology of FRBs, however, it is
straightforward to build a data set of FRBs by means of
simulation. Simulated FRBs have been used in multiple
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scenarios successfully. Farah et al. (2019) applied the simulated
FRBs to evaluate the performance of the machine learning
classifier. Amiri et al. (2021) developed an injection system
with the internally-developed simpulse5 library to quantify the
biases in their instrumental and software detection pipeline.
Connor & van Leeuwen (2018), Zhang et al. (2018) and
Agarwal et al. (2020a) also utilized simulated FRBs to train
their deep learning models.

Radio bursts traveling through the ionized interstellar
medium and captured by ground-based telescopes will show
some propagation effects, such as dispersive delay, scintilla-
tion, scattering and Faraday rotation. These effects are related
to the morphological characteristics of the radio bursts in the
two-dimensional spectrograms. Through simulation, we can
control the required parameters for an ideal acquisition of a
data set that captures all the variations in DM, scattering,
smearing, amplitude, width, scintillation pattern and so on. We
injected simulated FRB pulses into the negative frames to
generate positive FRB samples. In this paper, we adopt the
simulation algorithm designed by Zhang et al. (2018), but with
certain details changed. For example, the scatter width is much
wider in our L-band observation than that in their C-band
observation.

The observational data used in this paper were produced by
the L-band receiver and XFB backend of the NSRT at Xinjiang
Astronomical Observatory (XAO). The data are two-dimen-
sional spectrograms across the 512 MHz bandwidth with the
frequency resolution of 1 MHz and a sampling time of 64 μs.
Because the L-band receiver only covers a bandwidth of
320MHz (1400–1720MHz), the extra pixels of the spectro-
grams are trimmed out.

The simulated FRBs that are fed into the deep learning
model are in the form of the dynamic spectrograms without de-
dispersion. Here, we set each frame with 2048 consecutive
samples. Instead of using DM values that are too high, we built

a simulated FRB set with DM merely ranging from 100 to
500 pc cm−3 for our current application. We also set the
arrival time for each burst with a random value chosen from
a specified range to simulate the variable distribution of
pulses in the frame. Figure 2 shows some examples of the
simulated FRBs.

3.2. Data Pre-processing

The input data must be preprocessed before being fed into
the deep learning network model. The preprocessing mainly
includes RFI mitigation, size-trimming, normalization and
down-sampling. RFI is rapidly becoming a major issue in
radio astronomy, which is ubiquitous especially at L-band and
below. RFI comes from various sources and shows diversity,
which present a great challenge to astronomical observations.
In our experiments, pronounced RFI characteristics can even be
misinterpreted as the focus of learning for the network model
making the real characteristics of FRBs be ignored. Therefore,
it is necessary to perform RFI mitigation before inputting the
data into the deep learning network. Although many methods
have been developed to mitigate RFI, there is no general
method to mitigate all kinds of RFI. RFI can be persistent or
impulsive as well as broad-band or narrow-band. In this paper,
channel-zapping is used to remove the persistent RFI that
contaminates the 1450–1465 MHz and 1535–1545 MHz
frequency bands. Second, IQRM (Morello et al. 2022) is
integrated to derive a time-variable frequency channel mask for
short-duration narrow-band RFI. In addition, an improved
version of zero-DM filter (Eatough et al. 2009), called the zero-
DM matched filter (ZDMF) proposed by Men et al. (2019), is
applied to remove more short-duration broad-band RFI. The
examples of RFI mitigation in our data are displayed in
Figure 3.
All input data need to be uniform in size. We trimmed out

the extra part of the input data beyond the bandwidth of the
L-band receiver, normalized them to zero mean and unity

Figure 1. The schematic drawing of the DDSS FRB search pipeline system.

5 https://github.com/kmsmith137/simpulse
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Figure 2. The examples of simulated FRBs on observations.

Figure 3. Two examples of RFI mitigation results. The top panel displays the
observational data of PSR J1935+1616, which have been contaminated by
persistent and short duration RFI. The bottom panel features the same data set
after RFI mitigation, and the astronomical signals with the dispersion
characteristic are well preserved.
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standard deviation, and then performed the down-sampling
process on them to improve the signal-to-noise ratio (S/N).
Finally, the preprocessed spectrogram data with a fixed size
(320× 128) are fed into the network model.

4. Deep Learning-based Classifier

4.1. Network Models

In recent years, deep learning has made breakthrough
progress due to the development of the computing and GPU
technology. The concept of deep learning originates from an
artificial neural network, which is essentially a complex and
deep hierarchical neural network algorithm model established
from imitation of a human brain. Figure 4 depicts a simple
neural network structure, which consists of an input layer, a
hidden layer and an output layer. A deeper neural network
model can be built with increasing number of hidden layers.
However, such typical and fully connected DNNs with
excessive parameters will encounter training difficulty. There-
fore, in order to overcome the problem of gradient disappear-
ance or explosion in the training, different types of deep
learning models have been developed. Convolutional neural
network, as one of the representative deep learning algorithms,
has gained remarkable achievements in the field of image
detection and recognition. Convolutional neural network is a
kind of feed-forward neural network with deep structure and
convolution computation. Its main feature is that the convolu-
tion layer and the pooling layer are added to the general neural
network to form the feature extractor. Its basic structure
includes the input layer, convolution layer, activation function
layer, pooling layer, full connection layer and output layer, as
illustrated in Figure 5. The convolution layer, activation
function layer, pooling layer and full connection layer
correspond to the hidden layer of the neural network. The
input layer is used for data entry. The convolution layer and
activation layer are used to realize feature extraction and
feature nonlinear mapping of local areas in the previous layer,

so as to realize local connection and weight sharing and reduce
the number of parameters. Pooling layer is used to compress
the size of data and parameters to reduce overfitting. The full
connection layer is utilized for re-fitting to reduce the loss of
characteristic information. Finally, the results are output
through the output layer.
At present, many convolutional neural network models with

different structures have been developed in response to
different application requirements and continuous practice. In
this paper, we use Keras (Chollet et al. 2015) with the
TensorFlow (Abadi et al. 2016) back-end to quickly build our
network models. Due to the simple morphological character-
istics of FRBs, we choose the 18-layer ResNetv2 (ResNet18v2)
and Xception (Chollet 2016), which are relatively simple
network models with fewer layers to train. ResNet was first
proposed by He et al. (2016a), which uses a residual block with
shortcut connections to solve the problem related to the
degradation in training precision as the model layers increase.
He et al. (2016b) changed the residual block structure of
ResNet from Conv-BN-ReLU to BN-ReLU-Conv to improve
the performance. The improved ResNet was called ResNetv2.
Xception signifies the extreme version of Inception (Chollet
et al. 2015), which replaces the standard Inception modules
with depthwise separable convolutions. Comparing with
Inception, Xception presents better performance without
increasing the complexity of a network model. Keras also
provides some models with weights pre-trained on ImageNet,
such as Xception, VGG16/19 (Simonyan & Zisserman 2014),
ResNet50/101/152, DenseNet121/169/201 (Huang et al.
2017) and so on. We directly imported Xception, VGG16
and VGG19 with random weights to perform the training
experiments, with each experiment having the same training
set. The results show that the Xception model achieves the best
training performance in our experiments.

4.2. Model Evaluation

To reduce the voltage dump and manual workload for our
application, we aimed to accurately identify likely FRBs, which
means that the trained models should avoid missing any FRBs
or mislabeling RFI as an FRB as much as possible. We used
accuracy, recall and precision based on the confusion matrix to
evaluate our models. Here, accuracy is the ratio of the number
of correct predictions (of FRBs and non-FRBs) to the total
number of predictions, which represents the ability to correctly
classify samples. Recall is a measure of the sensitivity of a
model for FRBs, which is given by the ratio of the number of
correct FRB predictions to the total number of FRBs. Precision
is the number of correctly predicted FRBs divided by the total
number of predicted FRBs, which is the detection percentage
for searching FRBs in observational data. A perfect precision
of 1 means that every detection is actually an FRB, and no RFI
is mistakenly predicted as FRB.

Figure 4. A schematic diagram for a simple neural network structure.
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4.3. Training and Testing

We prepared the data set with more than 150,000 samples, of
which half were simulated FRB events. The data set was then
split into training and testing sets, which encompassed 90% and
10% of the data, respectively. The cross-validation was
conducted to assess the ability of the classifier during the
training process, and 10% of the training set was allocated as a
validation set. We trained our models on an Nvidia GTX 1080
GPU. After about six epochs, the accuracy, precision and recall
of ResNetv2 and Xception classifiers could achieve above
99.7% with a confidence of 0.5. The test results for the
classifier and the training time are displayed in Table 1.

Searching raw data with a classifier based on a neutral
network is much faster than the dedispersion algorithm with
different DM tries. The detection speed of our classifier is more
than 15 times faster than the observation with one Nvidia GTX
1080 GPU. However, the DDSS pipeline needs additional time
to do RFI mitigation and data processing. This can be resolved
and optimized in real-time processing by parallelizing the data
preprocessing. Overall, the DDSS pipeline provides an absolute
advantage in speed for the implementation of voltage
data dump.

5. Evaluation with Single Pulses from a Pulsar and
Real FRB Events

All the FRB samples in the training set are generated through
simulation. To verify the validity of our deep learning classifier
in real observation data, we applied the classifier to detect the
single pulses from PSR J1935+1616. The pipeline outputted
266 candidates, only one of which was a false positive. The
precision of the classifier for this test is above 99.6%. Our
analysis also found that the classifier can detect the pulses with
the full-band frequency integrated S/N below 5. The classifier
has good sensitivity to detect single pulses with low S/N. Here,
we cannot take this S/N as the metric for model detection

sensitivity of signal intensity. This is because the weak pulses,
with full-band frequency, may have the same level of full-band
frequency integrated S/N as the band-limited strong pulses.
The deep learning model for FRB searching tends to identify
the morphology of the bursts rather than the signal strengths.
Therefore, in theory, a deep learning model can achieve better
accuracy and lower false positive rate than an S/N threshold-
based dedispersion search in theory (Zhang et al. 2018).
Since February 2022, the repeating source FRB 20201124A

has entered a new period of high activity. FAST has detected
more than three thousand bursts from FRB 20201124A. (Wang
et al. 2022). At the end of February, we observed FRB
20201124A using NSRT with an optimized XFB backend.
On March 13, we detected a radio burst emitting from FRB
20201124A with BEAR and the DDSS pipeline in the
observations conducted on 2022 February 28, for the first time
(Yuan et al. 2022). Then we conducted a targeted monitoring of
the FRB 20201124A for a few hours a day from March 16 to
23, and during that time, we detected radio bursts from FRB
20201124A in the NSRT observations on March 17, March 19
and March 20. As shown in Figure 6, the width, S/N, flux and
frequency distribution of these bursts show diversity. The
DDSS pipeline can detect all the bursts from the observations.
This indicates that the DDSS pipeline has good generalization
ability. Some basic information on these bursts is shown in
Table 2, and a more detailed analysis will be presented in a
subsequent paper.

Figure 5. A schematic diagram for a convolutional neural network.

Table 1
The Corresponding Metrics for ResNet18v2 and Xception Models on Test Set

Network Model Accuracy Recall Precision Training Duration

ResNet18v2 99.89% 99.78% 100% 330 minutes
Xception 99.95% 99.94% 99.95% 222 minutes
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These FRBs were recorded in five filterbank files that
contained a total of 22.5 minutes of observations. In this
paper, we used these data files to conduct a comparative
experiment with different deep learning models trained by
simulated FRBs over different ranges of DM. The results are
displayed in Table 3. In our experiment, the network models
for FRB 20201124A trained with simulated FRBs in the range
of 410–415 pc cm−3 produced the best precision, which
greatly reduced manual review. This kind of model is ideal
for searching repeating FRBs. In addition, we found that the
false positives came mainly from the observational data
produced on 2022 March 17. Their dynamic spectra were
populated with periodic wide-band strong impulsive RFI,
even though the RFI mitigation techniques described in
Section 3.2 were applied (see Figure 7). This kind of FRI is
difficult to remove completely from the data through the
current adoptive methods. Due to the intermittency of this
RFI, it is also rarely present in the training set. This means
that it would be difficult for the deep learning model to gain
the ability to reject such cases. However, it is not a big
problem for our purposes. The false alarms generated by this
type of RFI are still within an acceptable range. For example,
the DDSS pipeline returned only six false positives while
conducting a search from about 7 hr of observations on 2022
March 21.

6. Conclusions and Future Work

We have described the DDSS pipeline based on deep
learning, and presented the search results of the FRBs
from FRB 20201124A in the observational data obtained
from the NSRT at XAO. The results indicate that our DDSS
pipeline can accurately search for FRB events with minimal
manual review. A deep learning classifier for FRB search is
faster and more accurate than the traditional method,
especially for raw data. Moderate RFI mitigation is very
important for greatly improving the performance of the deep
learning classifier.
At present, the DDSS pipeline is just an offline search

pipeline. We continue to develop more functions to improve
the performance of this pipeline. We plan to design a ring
buffer on the data processing server to facilitate the raw data
transmission from XFB backend via optic fiber using 10
Gigabit Ethernet. The pipeline directly reads the raw spectro-
gram data from the ring buffer and classifies them in real-time.
On the other hand, we will also continue to improve the
accuracy and recall of the deep learning classifier by further
optimizing the training set. The false positives we have
detected will be put back into the training set as negative
samples to retrain our model. A larger training set including
simulated FRBs with a wider range of DMs will be built and

Figure 6. De-dispersed dynamic spectra of the bursts from FRB 20201124A
with a DM of 411 pc cm−3.
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used to train the model to acquire a classifier for more FRBs,
which is suitable for blind FRB searching. With the completion
of the real-time processing program development, we plan to
conduct a commensal search for transient dispersed pulses with
the NSRT in the near future.
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Table 2
FRBs Emanating from FRB 20201124A Reported in this Paper

Data Time (UTC) S/Na Notes

2022-2-28 17:51:05 12.58 The first FRB detected by NSRT.
2022-3-17 09:18:57b 10.42c Include two bursts, of which the low-frequency one was also detected by FAST during simultaneous observations (Wang

et al. 2022).
2022-3-19 07:20:01 20.01 Burst with double-peak structure.
2022-2-20 12:09:21b 10.18c Include two bursts, the time interval of which is more than 25 ms.
2022-2-20 13:09:40 12.04 A relatively narrow-band burst compared with others detected by the NSRT.

Notes.
a The full-band frequency integrated S/N.
b The UTC of the left burst.
c The S/N value of the left burst.

Figure 7. Two examples of the false positives after RFI mitigation.

Table 3
The Results of the Comparative Experiment

Model
DM Range of
Simulated FRBs Candidates FRBs RFI Precision

Xecption 100–500 20 5 15 20.0%
Xecption 410–415 5 5 5 100%
ResNet18v2 100–500 11 3 8 27.0%
ResNet18v2 410–415 8 7 1 87.5%
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