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Abstract

Ground-based optical observation has unique advantages in space target observation. However, due to the weak
light-gathering ability of small-aperture optoelectronic observation telescopes, the space debris in the image is
weak and easily drowned in noise. In order to solve the above problems, we use digital image processing
technology to extract faint space debris. We propose a high detection rate space debris automatic extraction
algorithm, aiming to automatically detect space debris. We first establish a new space target description model. Our
algorithm is mainly divided into two stages. The purpose of the first stage is to reduce the influence of a large
number of stars. We perform wavelet transform and guided filtering for three consecutive frames, and the
reconstructed wavelet that takes the median value can achieve the effect of eliminating stars. In the second stage,
we adopt the method of robust principal component analysis and attribute the problem of target detection to the
problem of separating the target and background of a single frame of image. After a large number of experimental
results analysis, it is proved that the algorithm can effectively detect faint debris in the monitoring system of small
aperture telescope, and has high precision and low computational complexity.
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1. Introduction

Space targets mainly refer to artificial satellites, and also
include various space debris, such as booster rockets, protective
shields and other objects entering the space orbit, as well as
various space flying objects entering the outer space of the
earth. Space target detection is the process of searching and
positioning space targets based on the captured sequence star
image (Schildknecht 2007). This technology can not only help
us understand the outer space of the earth, but also will occupy
a very important position in future space offenses and defenses
(Du et al. 2016).

For a long time, the detection of space debris under complex
background has always been a hot research topic. Since both
the target and the background star are similar to point target
imaging, it is difficult to distinguish the target and the
background star by using the visual characteristics of the target
grayscale feature, regional feature, shape, color and texture, as
shown in Figure 1 (Figure 1(a) shows the physical image of the
observatory space probe telescope. Figures 1(b)–(d) are real
astronomical images). Therefore, many methods have been
proposed to solve the problem of faint target detection in
optical images. For example, template matching method (Liu
et al. 2012; Murphy et al. 2016), morphological operator (Wei
et al. 2018), neural network (Jia et al. 2020). Jiao proposed a
method of combining high-level statistics and prediction. Using

background prediction, the noise in the image can be better
removed and the accurate prediction of the background can be
achieved. Then the accurate small target image is obtained,
which improves the detection accuracy (Jiao & Lingda 2017).
Wang et al. proposed a nonnegativity-constrained variational
mode decomposition method, which is based on traditional
frequency domain filtering to separate high and low frequency
targets from the background. The method can adaptively
decompose the input signal into multiple discrete band-limited
sub-signals with non-negativity constraints. However, the
computational complexity of the algorithm is high, which
affects practical applications (Wang et al. 2017).
According to the priori motion information of the target,

Yanagisawa et al. extracted the target with low signal-to-noise
ratio from the median image of the sequence frame
(Yanagisawa et al. 2012). Nunez et al. proposed an image
deconvolution method based on Richards-luck, which is an
iterative algorithm that tends to the maximum likelihood
solution (Nunez et al. 2015). Sun et al. proposed a point target
extraction algorithm based on mathematical morphology
processing and multi-frame median filtering (Sun & Zhao 2013;
Sun et al. 2015). Schildknecht et al. proposed a method by
controlling the observation mode of the telescope, so that the
target in the image sequence is a point image with displace-
ment, the star is a dotted line, and the position is unchanged,
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and a mask algorithm is used to filter out the background stars
(Schildknecht et al. 2004). Xi et al. proposed a time-
exponential filtering and bright star enhancement method,
which effectively removed the stars and noise, and then
obtained the real target trajectory through multi-level hypoth-
esis testing (Xi et al. 2015).

Our algorithm focuses on faint target detection systems for
small aperture telescopes, and no additional information is
applied. There is also no increase in exposure time. We divide
the target detection process into two parts. It is called the star
removal stage and the target detection stage. The mixed
filtering of wavelet transform and guided filtering is performed
on the continuous three frames of images, and the median value
of the three frames of images after wavelet reconstruction is
taken for processing. The second stage uses the non-local
autocorrelation of the background to transform the target
detection into optimization problems of low-rank matrix and
sparse matrix. The algorithm can have good target detection
capabilities.

The structure of this paper is as follows: Section 1 introduces
our research background; Section 2 describes the image
processing channel in detail; Section 3 conducts data analysis
and experiments; in Section 4 we draw conclusions.

2. Image Processing Channel

The astronomical telescope is in target tracking mode, the
telescope moves with the target, the stars are in motion, and the
target is relatively stationary in the image frame. When
the exposure time is 50 ms, the stars, noise and targets are
displayed as point sources. We propose a new detection
strategy and divide the detection algorithm into two parts.
Since the imaging mode of the telescope is the target tracking
mode, it is assumed that the target and noise are static, and the
stars are continuously moving. This phase is called the stellar

elimination phase. The modeling is as follows:

= +( ) ( ) ( ) ( )F x y k H x y k D x y k, , , , , , 1

Here (x, y, k) represents the pixel coordinates in the star map.
F(x, y, k) represents the gray value of the image. H(x, y, k)
represents the star gray value of the image. D(x, y, k) represents
the background gray value of this stage. k indicates the frame
number of the image. At this stage, we proposed a new star
removal method, which can eliminate stars and part of the
noise.
In the second stage, the image contains the target and noise,

so this stage mainly separates the target. We call the second
stage target detection. Figure 2 is the image processed in the
star removal stage, and Figure 2(b) is the estimated background
image. From the characteristics of the image in Figure 2(c), it
can be known that the images in the second stage are mainly
targets and noise. Its formula is as follows:

= +( ) ( ) ( ) ( )D x y k T x y k B x y k, , , , , , 2

T(x, y, k) represents the target gray value of the image. B(x, y,
k) represents the background gray value of the image, including
noise and uneven sky background (Sun et al. 2019;
Castronuovo 2011). Figure 3 shows the overall structure of
the algorithm.

2.1. Stellar Point Removal Stage

The astronomical images contain a lot of noise, and the
target size is small. Both the target and the background stars are
similar to point sources. It is difficult to distinguish the target
and the background star by using the visual characteristics of
the target grayscale feature, regional feature, shape and texture.
Figure 4 is a schematic diagram of the processing of a single
frame image. We apply the schematic diagram of Figure 4 to
three continuous frames to obtain the corresponding image
components. We perform edge-preserving and denoising for
each component through guided filtering, and finally perform

Figure 1. The original image captured by the astronomical telescope. (a) Space probe telescope components. (b)–(d) Original images captured by the astronomical
telescope.
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wavelet reconstruction. Since noise and space targets are mixed
together, this step can suppress the influence of noise. We take
the median of three consecutive images, and the main purpose
of this operation is to remove stars. We will introduce in detail
below.

The image processing method of wavelet transform can
decompose the image signal into different subbands that are
orthogonal to each other, which solves the problem that the
image information of the traditional image pyramid is related to
each other at different scales, and the wavelet transform method

Figure 2. Image after the first stage processing. (a) Original image. (b) Background image. (c) Image after denoising and median. The corresponding 3D image is at
the bottom.

Figure 3. Structure diagram of space target extraction channel.
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can effectively simulate the human eye. The wavelet theory
uses the multi-resolution decomposition ability to decompose
the image into sub-images of different spaces and different
frequencies, and then encodes the coefficients of the sub-
images. At the same time, wavelet transform can better solve
the contradiction between time and frequency resolution, so
wavelet transform is very beneficial to the decomposition and
reconstruction of image signals (Wang & Jiang 2019). We
select the sym8 wavelet base to divide the image into different
components, as shown in Figure 5 are the different components
of the wavelet decomposition.

The original image F(i) is first decomposed into high
frequency components G(i) and approximate components X(i)
by applying wavelet transform. The formula is:

= + = + +( ) ( ) ( ) ( ) ( ) ( ) ( )F i X i G i X i N i V i 3

The high frequency component G(i) contains noise N(i) and
texture information V(i). The high frequency component G(i)
can be expressed as:

=( ) { } ( )G i H V L, , 4i i i

In the formula, Hi represents the horizontal component, Vi

represents the vertical component, and Li represents the
diagonal component.

We apply wavelet transform to obtain the corresponding
components of three consecutive images. To better preserve
image edge details, we process each component using guided
filtering. The algorithm not only exhibits better denoising
performance. It can avoid the loss of fragmented information.

The guided filter has good edge preservation properties,
which can remove noise on the basis of preserving edge
details. The guided filter calculates the output image by
considering the content of the guided image, and converts
the edge structure of the guided image into the filter
output. In the guided filtering step, when the input
image and the guided image are the same, it can play the role
of edge preservation (Wang & Jiang 2019). The
filtering output image and the guiding image satisfy
the local window linear relationship, and the filtering
problem is transformed into an optimization problem with

linear parameters. The definition formula is as follows:

= + " Î ( )q a g b w, 5i k i k i k

Among them, q represents the output image. g represents the
guide image. ak and bk are the linear coefficients and offset
coefficients in the window wk , and wk represents the window
with a radius of h. This method assumes that q and g have a
local linear relationship within a window centered at pixel k.
Taking the derivative of Equation (5), the output will have
edges only if the guide image has edges. In order to solve the
coefficients ak and bk, assuming that p is the result of q before
filtering, and satisfying to minimize the difference between q
and p, according to the method of unconstrained image
restoration, its value function is:

å e= + - +
Î

( ) (( ) ) ( )E a b a g b p a, 6k k
i w

k i k i k
2 2

k

Among them, ε is the regularization parameter. It can make
ak converge. P represents the input picture. Limit i in the
window w, so that the value of ak will not be too big. The
coefficients ak and bk are respectively:

s e
=

å -

+

Î
( )∣ ∣a

p g p u
7k

w i w i i k k

k

1

2

k

= - ( )b p a u 8k k k k

Among them, uk and sk
2 are the mean and variance of the

guide image g in the window wk, pk is the mean of the input
image p in the window wK, and |w| is the number of pixels in
the window wk.
Then we take the median of three consecutive images,

which will eliminate the influence of stars. The star
elimination stage algorithm prepares for subsequent algo-
rithms. The hybrid denoising of wavelet transform and
guided filtering can not only eliminate noise, but also greatly
preserve the information of space targets. Figure 6(a) shows
four images with different backgrounds. The noise, stars and
targets are mixed together.
Figure 6(b) is the processed image, and the algorithm well

removes stars and some noise. Figures 7(a) and (b) are
respectively the pixel gray value distribution of Figures 6(a)

Figure 4. Star removal algorithm structure image.
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and (b). From the intensity distribution diagram, it can be
seen that the yellow dots represent stars or noise with high
gray-scale intensity. After processing by our algorithm, the
strong star points and noise are eliminated, and the noise is
also weakened, which shows the effectiveness of the
algorithm.

We consider the influence of the filter window size h of guided
filtering on the experimental results. Here H represents the height
of the image. Figure 8 is the result of using different window
sizes. First, h cannot use a too small window size (h= 0.1 H),
there will be residual noise, as shown in Figure 8(a). Also, h
cannot be too large (h= 0.5 H or h= 0.7 H), as shown in
Figures 8(b) and (c), it will obviously blur the image details. After
many experiments, the regularization parameter is set to 0.04, the
h parameter is set to 0.3H.

Experiment with several competitive algorithms, image
differencing (ID) (Iwasawa et al. 1997), multiscale patch-based
contrast measure (MPCM) (Wei et al. 2016), Local Contrast
Method (LCM) (Chen et al. 2014), wavelet transformed (WT)
(Boccignone et al. 1998) and our algorithm. The ID algorithm
uses the parameter model of the background to approximate the
pixel value of the background image, and then compares the
background image and the sequence image differentially, the
area with a large difference is the moving target area. MPCM
method can change the contrast between the foreground target
and the background, it is easier to separate small targets from
the background using simple threshold segmentation. LCM
method improves the contrast between the target and its
neighbors to detect the target. WT algorithm utilizes the
multi-scale analysis algorithm of wavelet to distinguish the

Figure 5. Wavelet decomposition: (a) Original image. (b) Vertical component. (c) Horizontal component. (d) Diagonal component.
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background and the target. After the original image is subjected
to discrete wavelet transform, image information of different
frequency domain scales will be generated. Since the
characteristic information of the target and background clutter
is different in the frequency domain space of different scales,
the target information is extracted. In our algorithm, the
wavelet base of wavelet decomposition is sym8, the window of
the guided filtering window is h= 0.3 H, and finally the median
of three consecutive frames is taken. It can be seen from

Figure 9 that the experimental results of ID and LCM
algorithms are severely affected by noise, so the processing
effect is not ideal. WT algorithm and MPCM algorithm have
relatively good results, but they are still affected by stars. In
general, our algorithm has achieved better results.
In order to further prove the effectiveness of the algorithm,

this paper uses three indicators of local signal-to-noise ratio
(LSNR) and gain signal-to-noise ratio (GSNR), and back-
ground suppression factor (BSF) for quantitative analysis. The

Figure 6. Five representative images and the results processed by our algorithm. (a) Original image. (b) The processing result of our method.

Figure 7. Pixel distribution of the corresponding image in Figure 6. (a) The grayscale distribution of the corresponding image in Figure 6(a), (b) shows the gray
distribution image after processing.

6

Research in Astronomy and Astrophysics, 22:105003 (15pp), 2022 October Jiang et al.



definition of this indicator is as follows:

m
s

s
s

=
-

=

=

∣ ∣

( )

I

SNR

SNR

LSNR

GSNR

BSF 9

b

b

max

out

in

in

out

In the formula, Imax represents the maximum pixel gray scale
of the area where the target is located; μa and μb are the mean
and standard deviation of the pixel gray scale within a certain
scale neighborhood of the target, respectively; SNRin repre-
sents the signal-to-noise ratio of the original image, and SNRout

represents the signal-to-noise ratio processed by our algorithm;
σin and σout are the gray standard deviations of the original
image and the global image processed by the algorithm. We use

the first four images in Figure 6(a) as the original images and
label them as scenario 1, scenario 2, scenario 3, and scenario 4.
After processing with a variety of different algorithms, we
calculate the LSNR, BSF and GSNR values, and the statistical
results are shown in Table 1. According to formula (9), the
larger the LSNR, the higher the signal-to-noise ratio of the
target, and the easier it is to detect the target. The larger the
GSNR, the stronger the algorithm ability to suppress back-
ground clutter and enhance the target, indicating that the
algorithm performance is better. The larger the BSF value
obtained by the algorithm, the better the effect of the algorithm
in suppressing the complex background. Therefore, strong
target enhancement capabilities and good background suppres-
sion capabilities are the keys to target segmentation.
The experimental results are shown in Table 1. The LSNR

value of the original image is small. For different complex
background images, each algorithm can improve the target

Figure 8. The algorithm selects different h value processing results. (a) Original image. (b) h = 0.1H. (c) h = 0.3H. (d) h = 0.5H. (e) h = 0.7H.

Figure 9. Comparison of background suppression effects of various algorithms: (a) ID. (b) MPCM. (c) LCM. (d) WT. (e) Ours.
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LSNR value to different degrees. For the four scenarios, the
LSNR, GSNR, and BSF values obtained after processing by the
ID, MPCM, and LCM algorithms are relatively small. The
processing effect of the WT algorithm is relatively good, and
our algorithm obtains the largest LSNR, GSNR and BSF
values. Therefore, it shows that the algorithm in this paper can
effectively suppress the background clutter and enhance the
weak and small targets, which is beneficial to the subsequent
threshold segmentation operation.

In order to fully illustrate the performance of the algorithm,
the effect of the algorithm is more convincing. We have added
several algorithms for comparative experiments. The algorithm
mainly includes: NTH algorithm (Bai et al. 2009), IMVP
algorithm (Yao et al. 2015), HSS algorithm (Du et al. 2016),
1DSE algorithm (Wei et al. 2018) and our algorithm. The
experimental effect is shown in Figure 10. We can see that the
IMVP algorithm is affected by the stars, and the detection result
is less accurate. The detection effect of NTH algorithm, 1DSE

Table 1
The SNR, GSNR and BSF of Each Algorithm in Different Scenes (dB)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Algorithm LSNR GSNR BSF LSNR GSNR BSF LSNR GSNR BSF LSNR GSNR BSF

Original 2.706 L L 2.543 L L 1.316 L L 3.572 L L
ID 8.475 6.435 7.452 9.357 7.412 8.241 7.482 6.245 10.047 7.241 5.248 9.247
MPCM 16.237 8.972 3.247 14.253 11.243 8.634 14.721 12.341 7.658 15.249 13.257 8.325
LCM 7.159 5.247 4.286 8.142 6.347 7.524 9.247 8.146 6.324 5.237 4.219 6.301
WT 15.106 12.571 8.421 13.546 11.245 16.279 16.345 14.272 12.472 12.127 10.267 11.248
Ours 23.247 13.574 16.24 22.373 21.573 26.318 24.578 23.146 24.218 21.235 20.135 26.327

Figure 10. Comparison of processing results of several algorithms. (a) IMVP. (b) NTH.(c) HSS. (d) 1DSE. (e) Ours.
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algorithm and HSS algorithm is ideal, but the algorithm is still
affected by noise. Combined with the comparison images, our
method achieves the best performance for the detection of
space debris.

2.2. Target Detection Stage

The first stage mainly removes stars and some noise, so the
processed image mainly includes noise, uneven background
and targets. The background image is considered to be slowly
changing, and the noise often presents a large area of
continuous distribution in space (as shown in Figure 11(b)).

Even non-adjacent backgrounds in the image have a strong
correlation, which makes them have a greater correlation in the
gray-scale spatial distribution. This characteristic is widely
present in astronomical images. We continue to study the
properties of the image after being processed by the star
removal stage, and the singular value curve of the image is
given as shown in Figure 12. The singular values of the images
are quickly reduced to 0, indicating that several images show
low rank, and we use the formula to express as:

( ) ( )B Krank 10

K is a constant representing the complexity of the image.
In the actual star map, the visibility of the target is very low,

and the local contrast is very low. Space target sizes vary from
2× 2 to 10× 10, the proportion of targets in the whole image
is still small. Therefore, we treat it as a sparse matrix. In
addition to this sparsity, no additional assumptions are made
about the target image. The formula is expressed as:

  < ( )T K 110

where  · 0 is the L0 norm of the number of non-zero entries in
the calculation matrix. K is related to the target size. Obviously
K<< X× Y (X× Y is the size of the target). Based on the
above analysis, the original image is decomposed by comp-
onent analysis algorithm, and the target is searched in the

decomposed sparse components.

= + ( )D T B 12

Danelljan et al. proved that under the condition of matrix
low-rank constraint, when the number of elements of matrix is
m Cn r n6 5 log , the matrix low-rank component recovery

problem can be transformed into a convex optimization
problem (Danelljan et al. 2014). Here C is a normal number,
and r is the rank of the matrix. The convex optimization
problem is expressed as follows:

 l+ = +( ) ( )rank T B s t D T Bmin . . 13
M B,

0

Here rank( · ) represents the rank function, ||B||0 represents
the l0 norm of matrix B, and λ is usually a constant greater than
0, which represents the weight. Since Equation (13) is an NP-
hard problem (Hillar & Lim 2013), the objective function needs
to be relaxed when solving. Since the envelope of the matrix
rank is the kernel norm, and the convex hull of the matrix l1
norm is the matrix l1 norm, the above objective function can be
relaxed as follows.

   * l+ = + ( )T B s t D T Bmin . . 14
M B,

1

In the formula, *· represents the matrix core norm, and · 1

represents the l1 norm of the matrix. There are many ways to
solve this function. In the paper, we use the Accelerated
Proximal Gradient (APG) algorithm to solve it (Ganesh et al.
2009).
The APG algorithm relaxes the equality constraint of

Equation (14) into the objective function, and obtains the
following Lagrangian function:

     *m m l= + + - -( ) ( )

( )

L T B T B D T B, ,
1

2
15

F1
2

Below we give the pseudo program of the APG solving
algorithm (where m is a positive number given in advance,
0∠η∠1). Finally, an adaptive segmentation method is adopted
and refined to obtain the final detection results.
The pseudocode of the APG is Algorithm 1:

Algorithm 1. Accelerated Proximal Gradient algorithm pseudo
program

Input: Input image D,λ, m
Initialize: k = 0, YB

0, YT
0, B0, T0, t0, m0

While not converged do
/= + - -m+ ( ( ) )B D Y D Y Y Lk B

k
B
k

T
k

f1 k Lf

/= + - -m+ ( ( ) )T S Y D Y Y Lk T
k

B
k

T
k

f1 k Lf

/= + ++ ( )t t1 1 4 2k k1
2

= + - -+
+ +( )( )Y B t B B t1B

k
k k k k k

1
1 1

= + - -+
+ +( )( )Y T t T T t1T

k
k k k k k

1
1 1

m hm m=+ ( )max ,k k1

Output:( )B T,k k

Figure 11. Image processed through the star removal stage. (a) Raw image. (b)
Image processed through the star removal stage.
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Conducted multiple sets of experiments to explore the
influence of λ value on the experiment. As shown in Figure 13,
the experimental results of λ value of 0.01, 0.03, 0.06, and
0.09 are given. We can clearly see that when the value of λ is
small (λ= 0.01), the algorithm regards noise as the target,
which results in more residual noise in the experimental results
(as shown in Figure 13(b)). When the λ value is 0.06 and 0.09,
the experimental result will delete the target information by
mistake (as shown in Figures 13(d) and (e)). Through a large
number of experiments, we have found that when the value of
λ is in the range of 0.03–0.05, the experimental results are ideal
and most suitable for our observation system.

As shown in the Figure 14, the image is processed in two
stages. As shown in Figure 14(b), the first stage removes the
stars and part of the noise. After the second stage of processing,
the algorithm detects the space target well (as shown in
Figure 14(c)). The second row of Figure 14 corresponds to the
3D image, which we can see more clearly from the 3D image.

We conducted multiple sets of comparative experiments, the
algorithm mainly includes: NTH algorithm, IMVP algorithm,
HSS algorithm, 1DSE algorithm and our algorithm. We use the
default setting for the comparison algorithm, and we will still
adopt the parameter setting of wavelet base as sym8 and
λ= 0.03 in our algorithm. Figures 15 and 16 are the algorithm
comparison image and algorithm evaluation index curve. From
Figures 15 and 16(a), we can see that the IMVP and NTH
algorithms are affected by noise and stars, and their detection
results have low accuracy. The 1DSE algorithm has a better
detection effect, but it can be seen from the time running
histogram in Figure 16(b) that this method takes a long time to
calculate, and there is a problem of a large amount of
calculation. The HSS algorithm has achieved relatively good
detection results when the running time is short, but the
algorithm will still be affected by noise. Combining the image
comparison image in Figure 15 and the curve comparison

Figure 12. The low rank of the image. On the top are several representative astronomical images, on the bottom are the singular value curves.

Figure 13. Experimental results of different λ values. (a) Original image. (b) λ = 0.01. (c) λ = 0.03. (d) λ = 0.06. (e) λ = 0.09.
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image in Figure 16, our method achieves the best performance
for all space target detection.

3. Experiment

In order to evaluate the performance of our algorithm in
detection and false alarm suppression, the algorithm was
further tested on 500 real image sequences collected by
astronomical telescopes. The diameter of the telescope is
15 cm, and the telescope field of view is 2°.5× 2°.5, the
telescope is in the target tracking mode, and the image size is
4096× 4096 pixels. Therefore, under short exposure condi-
tions, there is no difference between the shape of the target and

the star, and the image contains a lot of noise, so the detection
of target is a difficult task. In this section, we conduct
quantitative and qualitative analysis through a large number of
experiments to illustrate the performance of the algorithm in
this paper.

3.1. Real Astronomical Image Detection Experiment

We use two types of algorithms for experimental compar-
ison, one is the same type of space target detection algorithm,
and the other is the background suppression algorithm. The
effect of the algorithm is more fully explained, which makes
the experimental results more convincing. For the same type of

Figure 14. Real astronomical image processing effects. Top: (a) Original astronomical images. (b) The effect comparison image after the first stage processing. (c) The
effect comparison image after the second stage processing. Bottom: 3D image of the corresponding image.

Figure 15. Comparison of processing results of several algorithms. (a) IMVP. (b) NTH. (c) HSS. (d) 1DSE. (e) Ours.
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algorithm, we still use NTH algorithm, IMVP algorithm, HSS
algorithm, 1DSE algorithm and our algorithm for experimental
comparison. The results are shown in Figure 17. It can be
clearly seen from the experimental comparison results that the
IMVP and NTH algorithms are affected by noise and stars, and
there are many wrong identifications in the detection results.
The experimental results of HSS and 1DSE algorithms have
less influence on noise, but there will still be false detections in
scenes with many stars. From a comprehensive comparison,
our algorithm achieves ideal detection results and can
completely detect space debris targets.

In order to verify the advantages of the proposed method,
tophat algorithm (Zhou et al. 2014), TDLMS algorithm
(Hadhoud & Thomas 1988), maxmean algorithm and maxme-
dian algorithm (Deshpande et al. 1999), are used as the
benchmark algorithm to detect the same five image sequences.
The detailed description of the five images is given in Table 2.
We set the structuring elements of the tophat algorithm to be
5× 5. The filtering window of maxmean and maxmedian
algorithms is 8× 8. The wavelet base of wavelet decomposi-
tion in our algorithm is sym8, λ= 0.03, and the detection result
is shown in Figure 18. The second column of Figure 18 is the
background image estimated by our algorithm. This can help us

Figure 16. Performance curve of multiple algorithms. (a) Pd–Fa curve of multiple algorithms. (b) Running time curve of multiple algorithms.

Figure 17. Comparison of processing results of several algorithms. (a) IMVP. (b) NTH. (c) HSS. (d) 1DSE. (e) Ours.

Table 2
Details of Five Real Image Sequences

No. Background Description Target Description

1 • A lot of star points and noise, the star is slightly tailed • The target is dim and the target changes to a certain extent
2 • A lot of star points and noise, the star is slightly tailed • Bright space targets
3 • There are fewer stars, heavy noise • Small dim space target
4 • There are more stars, the star is slightly tailed • Small dim space target
5 • There are fewer stars, heavy noise • The target is dim and the target changes to a certain extent
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better improve the accuracy of space target detection, which is
of great significance to the subsequent star map matching
algorithm. The third to seventh columns in Figure 18 are the
detection results of the five algorithms. When the target is dark
and weak, the processing effect of the maxmean algorithm is
not ideal, but when the target is bright, the result obtained is
relatively good. The maxmedian and tophat algorithms also
have the problem of high false detection rate when the target is
dimly weak. The TDLMS algorithm has a poor detection effect
on astronomical images with complex background and many
noise points.

The first column of Figure 18 is the original image, which is
marked as Seq 1–5 in order from top to bottom. The data
selected can be roughly divided into two categories: Seq 2, Seq
3 and Seq 5 images have a lot of noise and stars in the
background. Seq 1 and Seq 4 are slightly prolonged when the
exposure time is increased. Our algorithm achieves better
detection results in both cases. The overall performance of our

algorithm is the best, while the background is effectively
suppressed, the noise is also effectively suppressed, and the
algorithm does not lose effective target information. Figure 19
shows the precision-recall curve of the detection results. Our
algorithm outperforms the other four benchmark algorithms.
Figures 20(a) and (b) are the BSF curves and algorithm running
time histograms obtained by several algorithms. It can be
clearly seen from the curves that the tophat algorithm obtains a
lower BSF value and a longer running time. In general, the BSF
value obtained by our algorithm maintains a high level, and the
running time is the least, which shows the effectiveness of the
algorithm.

4. Conclusion

We propose a faint space debris detection algorithm based
on small aperture telescopes. We establish a new image
observation model. The model is mainly divided into two

Figure 18. The results of processing by different algorithms.
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stages for analysis. In the first stage, we use a filtering method
that combines wavelet decomposition and guided filtering to
suppress a large number of star points in the image background.
In the second stage, the target matrix and the background
matrix are regarded as a sparse matrix and a low-rank matrix,
and the final goal is to obtain the target matrix. In the next step,
we will use the algorithm for asteroid detection or other similar

applications. In addition, we will explore other applications of
the algorithm.
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