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Abstract

The detection and parameterization of molecular clumps are the first step in studying them. We propose a method
based on the Local Density Clustering algorithm while physical parameters of those clumps are measured using the
Multiple Gaussian Model algorithm. One advantage of applying the Local Density Clustering to the clump
detection and segmentation, is the high accuracy under different signal-to-noise levels. The Multiple Gaussian
Model is able to deal with overlapping clumps whose parameters can reliably be derived. Using simulation and
synthetic data, we have verified that the proposed algorithm could accurately characterize the morphology and flux
of molecular clumps. The total flux recovery rate in 13CO (J= 1−0) line of M16 is measured as 90.2%. The
detection rate and the completeness limit are 81.7% and 20 K km s−1 in 13CO (J= 1−0) line of M16, respectively.
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1. Introduction

The detections of the interstellar molecular hydrogen (H2) by
Carruthers (1970) in the ultraviolet band and carbon (CO) by
Wilson et al. (1970) at 2.6 mm created an exciting new era in the
study of the molecular interstellar medium, while the discovery of
organic molecules in the medium led to the birth of molecular
astrophysics. As one of the fundamental components of the
interstellar medium, molecular clouds mainly consist of molecular
gas with a mixture of atoms, ions, dust, and other materials (Heyer
& Dame 2015; Heiles et al. 2019). The molecular clouds in the
galaxy exhibits the structure over a wide range of scales, from 20
pc or more for giant molecular clouds down to 0.05 pc for dense
molecular clumps (Williams et al. 2012; Kauffmann et al. 2013;
Lin et al. 2020). Modern astronomy proved that the formation of
stars is inside the molecular clumps (Krumholz & McKee 2005;
Zinnecker & Yorke 2007; Krumholz et al. 2009). Therefore, the
molecular clumps are the keys for theoretical models that aim to
reproduce the observed characteristics of star formation in the
Galaxy (Rivera-Ingraham et al. 2017; Tang et al. 2019).

As a consequence, several telescopes (e.g., the FCRAO
14 m, the CfA 1.2 m, the Bell Laboratories 7 m, the PMO
13.7 m telescopes) have devoted to the CO survey
projects (Sanders et al. 1986; Dame et al. 2001; Lee et al.
2001; Zuo et al. 2011). These CO surveys will lead to a better
understanding of the evolution of molecular clumps, the initial
mass function of stars, as well as the structure and dynamic
evolution of the Milky Way (Heyer & Dame 2015). With the
progresses of the CO survey, it is impractical to manually process

great numbers of data. Therefore, a stable and reliable algorithm
for automatically detecting the molecular clumps has become the
focus. Several algorithms have been used to detect molecular
clumps, such as GaussClumps, FellWalker, ClumpFind and
Reinhold (Stutzki & Guesten 1990; Williams et al. 1994; Berry
et al. 2007; Berry 2015). The GaussClumps was first applied to
the M17 molecular cloud to detect molecular clumps, and then
frequently applied to the detection of clumps in other molecular
clouds (Schneider et al. 1998; Dent et al. 2009; Lo et al. 2009).
The ClumpFind algorithm was applied to the detection of
compact structures in the Rosette molecular clouds. A new giant
filament was found by Zhan et al. (2016) with a statistical study
on the giant molecular cloud M16 (Sugitani et al. 2002).
Studies show that the ClumpFind is very sensitive to the

initial parameters, and the GaussClumps can only fit a strict
elliptic shape. The FellWalker exhibits the best performance in
detection completeness and parameterization (Li et al. 2020).
However, it should be noted that the GaussClumps and the
ClumpFind algorithms are affected by the initial parameters,
and the algorithms themselves are designed to simulate the
“human eye” for molecular clump recognition, which have
certain limitations (Rosolowsky et al. 2008). Moreover, for
large amounts of molecular cloud data, it is clearly not feasible
to rely on algorithms with repeatedly setting parameters by
users, although it is possible to achieve satisfactory detection
results in certain cases. Therefore, we need to design an
algorithm which has fewer parameters or can be adjusted more
easily based on the physical properties.
One of the dominant features of molecular clumps with

increased local intensity and different shapes is that they are
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embedded in molecular gas of lower average bulk density (Blitz &
Stark 1986; Lada 1992). The Local Density Clustering (LDC)
algorithm (Alex Rodriguez 2014) has its basis on assumptions that
the cluster centers are surrounded by neighbors with lower local
density and they are at a relatively large distance from the points
with a higher local density, which is similar to the characteristics
of molecular clumps. Therefore, we attempt to adopt the LDC in
the detection of molecular clumps. In Section 2, the molecular
clump detection algorithm based on LDC and parameterization
based on the Multiple Gaussian Model (MGM) are introduced. In
Section 3, the 3D simulated data sets with different number
density are described. The performance of the LDC and MGM is
compared with traditional algorithms on the data sets. The
investigation of the completeness and parameterization of the
algorithm in real molecular clump data are presented in Section 4,
while the summary is provided in Section 5.

2. Algorithms

2.1. The LDC Algorithm

2.1.1. Features Extraction

The algorithm first compute three parameters of a point: the
local density, the distance, and the gradient. The local density
ρi of a point pi is defined as:
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d d
jij c

2år = -( · ) ( )( )

where dc represents the cut-off distance, dij represents the
distance between pi and pj, and Ij represents the intensity at pj.
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where δi is measured by computing the minimum distance
between pi and any other point with higher density. Specially,
δi is set to be the maximum δ if pi with the highest density. The
distances δi are normalized.

The nearest route could be obtained while calculating the
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among them, n represents the total number of data points, the
point with the longest distance is set as 0 in the vector N (p).

The gradient ∇i is defined as:
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where ρj and δi are defined in Formula (2).

2.1.2. The Clump Center Determination

After calculating three parameters, as shown in Figure 1, the
distance δ is plotted against the density ρ, which is referred to
the Decision Graph. The simulated data with 10 clumps are
shown in Figure 1(a), while the detected clumps are shown in
Figure 1(b) with centers marked by red stars. Figure 1(c) shows
the Decision Graph, where the centers of the detected clumps
are marked with circles. Whether pi is the center point of a
clump or not is judged by:
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where pk
C( ) represents the center point of the kth clump, and

p(non‐C) represents the point of non-clump. δ0 and ρ0 are hyper-
parameters of our algorithm, where δ0 represents the minimum
distance between the centers of the two clumps, and ρ0 represents
the minimum peak intensity value of a candidate clump.

2.1.3. Route Clustering

According to the information recorded in the route vector
N( p), the route Pk end with the kth center point pn

C
k

( ) of clump can
be obtained:
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Figure 1. The example of algorithm on 2D simulated data. (a) The 2D data
contain 10 simulated clumps. (b) Clustering result. (c) Decision Graph of the
data in (a).
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other points of non-clump are divided into the kth clump Ck

according to route Pk:

p C p P j n, if 1, 2, , 7j k j k kÎ Î =  ( )

where N and nk represent the number of clumps and the number
of data points in the clump Ck, respectively.

2.1.4. Clump Region Determination

The region of the individual clump Ck can be determined
according to ρ and ∇:

p C j n, if or 1, 2, , 8j
k

k j j k0r rÎ   = ¯ ( )( )  

where pj
k( ) represents the jth point in clump Ck, r̄ is the average

density of the clump Ck, and ∇0 is the hyper-parameter. The
individual clump could be segregated as ρj greater than r̄ or ∇j

greater than ∇0. The morphological image processing is
employed to fill in holes among detected clumps and to
smooth its boundary.

2.1.5. False Clumps Exclusion

The isolated noise points with high peak intensity value
could be recognized as false clumps. The smallest clump
should have enough data points to form it. Therefore, the false
detected clumps could be eliminated by the following criteria:
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where n0 is the minimum data point number of a clump.

2.1.6. Clump Characterization

The algorithm will provide a pixel mask which is the same
shape as the supplied data array. In the mask, the pixel points
belonging to the same clumps are marked with an integer,
while points that are not assigned are marked with −1. Finally,
a table in which each row describes an individual clump is
obtained. In each column of the table, Peaki and Ceni represent
the position of the clump peak intensity value and centroid on
axis i (i= 1, 2, 3), respectively. Sizei represents the size of the
clump on axis i. Sum and Peak represent the total flux and peak
intensity value of the clump, respectively. The definition of the
centroid is as follows:
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where Ij and xj represent the intensity and position of pj,
respectively. For the clump with a Gaussian profile, the size is
equal to the standard deviation of the Gaussian.

2.1.7. Algorithm Summarizing

The input of algorithm is a 3D (or 2D) data array. δ0 and ρ0
are key hyper-parameters of the algorithm, where δ0 represents
the minimum distance between the centers of the two clumps,
and ρ0 represents the minimum peak intensity value of a
candidate clump. n0 is the minimum data point number of a
clump and ∇0 is used to determine the region of a clump. The
local density of a point is calculated with the cut-off distance
(dc). The input and parameters of the LDC algorithm5 are listed
in Table 1. The outputs include masks indicating the pixels that
contribute to each clump, and catalogs holding clump
positions, sizes, peak values and total fluxes. The output and
parameters of the LDC algorithm are listed in Table 2.
The detection of the algorithm is not affected by neither the

shape of the clumps nor the dimensionality of the space they
embedded in. The detection results of the LDC in different
number density and different PSNR are shown in Table 3. The
size of a simulated data is 100× 100× 100.

Table 1
The Input and Parameters of LDC Algorithm

Input Description Default Value

Data array 3D or 2D data array

ρ0 3σ
δ0 4

Parameters ∇0 0.01
n0 27
dc 0.8

Table 2
The Output of LDC Algorithm

Output Description Explanation

Mask Data array The same shape as the input data

Peaki The position of the clump
(i = 1, 2, 3) peak value on axis i
Ceni The position of the clump

Parameters (i = 1, 2, 3) centroid on axis i
Sizei The size of the clump
(i = 1, 2, 3) on axis i
Peak The peak value of the clump
Sum The total flux of the clump

5 https://github.com/Luoxiaoyu828/LDC-MGM.
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2.2. Parameterization Based on MGM

Traditional algorithms are used to segregate overlapping
molecular clumps, and there could be large deviation in the
parameter estimation of overlapping molecular clumps. There-
fore, we adopt MGM to realize the parameterization in this
paper.

2.2.1. The 3D Gaussian Model

The observation data of molecular clump is a 3D data array.
The first and second dimension of the 3D data array stand for
the galactic longitude and latitude, respectively. The third
dimension of the 3D data array stands for the velocity. Due to
the fact that the spatial and velocity are not related, the tilt
angles of simulated clumps only appear on the galactic
longitude–latitude plane. Therefore, the 3D Gaussian Distribu-
tion is described as:
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where (x0, y0, v0) represents center point of the distribution, σx,
σy, σv represent the standard deviations in the three axes,
respectively. The variable A represents amplitude of the
distribution, and θ represents the tilt angle on the x–y plane.

2.2.2. The 3D MGM

For the scenario where multiple Gaussian components
overlap, adopting a single Gaussian distribution to explain
will lead to serious deviation. Taking Figure 2 as an example,
the black solid line represents the actual data obtained, and the
three dashed lines represent the actual components. The MGM
can effectively solve this problem. The MGM is defined as

follows:
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where fk(x, y, v; ψk) represents kth 3D Gaussian Distribution
described in Formula (12), and K is the number of Gaussian
components. , , , ,k K1 2y y y y y=  { } defines the parameters
of the model. ψk represents the parameters of the kth Gaussian
Distribution. ψk is specified as:
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Using the LDC algorithm described in Section 2.1, a series of
clumps (C1, C2, L ,Ck, L ,CN) can be obtained, and the
parameters of those clumps calculated in Section 2.1.6 could
serve as the initial value , , , , ,k N1

0
2
0 0 0y y y y ( )( ) ( ) ( ) ( ) of the

model. The clump Ci and Cj are considered to overlap each
other when ∥(xi0− xj0, yi0− yj0, vi0− vj0)∥2� ∥(σix+ σjx,
σiy+ σjy, σiv+ σjv)∥2 (∥ · ∥2 represents two-norm). Then the
parameters , , , , ,k m1

0
2
0 0 0y y y y ( )( ) ( ) ( ) ( ) of the overlapping

clumps (suppose the number of overlapping clumps is m)
could serve as the initial parameters while using the MGM fit
those overlapping clumps. Finally, the catalog with various
clump parameters will be obtained via the MGM fitting
method.

3. Comparison with other Algorithms

3.1. Detection Accuracy

3.1.1. 3D Simulated Data

The simulated data sets are composed of different number
density data with the size of 100× 100× 100, and data at low,
medium and high density contain 10, 25 and 100 simulated
clumps, respectively. The peak intensity value of the clump
take values from 2 to 10, while the size of the clump in velocity
axis take values from 3 to 5 and the spatial size in the x and y

Table 3
The Performance of the Algorithm

Number Density Levels High Medium Low

Number of clumps in 100 × 100 × 100 data
array

100 25 10

Recall rate (PSNR � 6) >80% >91% >97%
Precision rate (PSNR � 6) >90% >96% >98%
F1 (PSNR � 6) >86% >94% >98%

Figure 2. Overlapping of three Gaussian components. The black line is
composed of a combination of three Gaussian distributions. Dashed lines
represent each Gaussian component.
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axes take values from 2 to 4 (FWHM= 2.35× size). The tilt
angles of the simulated clumps on the x–y plane vary from 0° to
180°. Gaussian noise is added to the simulated clumps with a
root-mean-square (rms) of 1. For each number density, we
generate a total of 10,000 simulated clumps. Figure 3 shows the
3D display of one simulated data array.

3.1.2. Detection Based on LDC Algorithm

As shown in Figure 4, from left to right are the integral maps
on the three planes of x–y, x–v and y–v, respectively. The center
points of clumps are marked with red asterisks on the integral
graphs.

Combined with ∇ and ρ of each data point, the members and
region of the clump Ck could be determined by Formula (8). (1)
Using ∇0 as the threshold, the point set A1 with ∇ greater than
∇0 is the main part of the clump Ck. (2) The average density r̄
is calculated based on the point set A1, then the point set A2

represents ρ greater than r̄ which is also the main part of the
clump. (3) The union of A1 and A2 could form the region of an
individual clump Ck. The detection results are shown in
Figure 5. The region of each clump will determined while the
false clump will eliminated by Formula (9). Finally, the
parameter estimation in Section 2.1.6 will be performed.

3.1.3. Evaluation Indicators

The detection of molecular clumps is considered to be
correct if the Euclidean distance between the center of the
detected clump and the center of the simulated is less than 2
pixels in the three axes.

Four statistics are obtained by the detection results as
follows: True-Positive (TP), True-Negative (TN), False-
Positive (FP), and False-Negative (FN) (Zhou et al. 2020).
The evaluation indicators for the algorithm include: recall rate
(R), precision rate (P) and comprehensive score (F1). The R, P

and F1 are defined as:

R P F
P R

P R
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The accuracy and completeness of detection are reflected in P
and R, respectively. A good detection algorithm should have
higher P and R. Usually the two indicators will show the
opposite trend. The comprehensive performance ability of the
algorithm is mainly reflected in F1.

3.1.4. Detection Comparison

The GaussClumps, FellWalker and LDC are employed in the
detection of simulated clumps. Figure 6 shows the evaluation
of indicators R, P and F1 of the GaussClumps, FellWalker, and
LDC algorithms in different peak signal-to-noise ratio (PSNR)
levels and different density. The PSNR is defined as the ratio of
the peak intensity value of the simulated clump to the rms of
noise. As the PSNR decreases, R of these algorithms at
different density levels starts to decrease, especially when the
PSNR is less than 4. The FellWalker and LDC algorithms
generally have high P, while the same indicator of the
GaussClumps performed worse with the PSNR less than 6. It
is obvious that R of those algorithms at different density hold
high level with the PSNR above 6, and P of those algorithms
hold high level with the PSNR greater than 7, while P of the
GaussClumps gradually descends with the decrease of
the PSNR.
The top panel in Figure 6 shows the R, P and F1 of the

GaussClumps, FellWalker, and LDC algorithms at high density

Figure 3. 3D display of simulated clumps.

Figure 4. The centers of detected clumps are marked on the integrated intensity
maps with red asterisks. From left to right are integral maps of x–y, x–v and y–v
planes, respectively.

Figure 5. The integrated intensity maps of detected clumps are marked with
red asterisks. From left to right are integral maps of the x–y, x–v and y–v planes,
respectively.
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from left to right, respectively. The R and P are above 80% for
those algorithms when the PSNR is greater than 7. While P of
the GaussClumps is greater than the FellWalker and LDC in
the case of the high PSNR, and R of the GaussClumps is lower
than the two algorithms in low PSNR. For those clumps in the
simulation that overlap heavily or even merge into new clumps,
the FellWalker and LDC are unable to distinguish these
clumps, leading to a decrease in R. Because the Gaussclumps
detects the clumps by fitting, it can separate the overlapping
clumps from each other, thus improving R. The middle panel
shows the same as above but for medium number density. P of
the three algorithms are essentially the same as in the case of
high density, but R of those algorithms have increased and the
gap between the GaussClumps and the other two algorithms is
further reduced with the PSNR above 6. The bottom panel
shows the same as above but for low number density. P of the
three algorithms are basically the same as in the case of high
density, but R are above 90% for the three algorithms when the

PSNR is greater than 5, and R of the GaussClumps is lower
than the other two algorithms.
The experimental results show that P and R of the

FellWalker and LDC algorithms can be maintained at high
level, but R decreases in the case of high density. The
GaussClumps algorithm has high R and P at the certain PSNR
indicating that it is susceptible to noise. In terms of the
comprehensive performance indicator F1, the FellWalker and
the LDC algorithms are essentially the same, both out-
performing the GaussClumps algorithm in low PSNR.

3.2. Parameterization

3.2.1. Evaluation Indicators

To investigate the performance of the algorithm in terms of
parameterization accuracy, various measured parameters are
compared with their input values, peak intensity, total flux, tilt
angle, size, and position of the clump. For each parameter, the
absolute deviation of the position E(ΔX), angle E(Δθ), and the

Figure 6. The evaluation indicators R, P and F1 of the three algorithms are plotted against the PSNR at different number density. Top panel: the detection statistics of
the three algorithms in high density, from left to right are R, P and F1, respectively. Middle panel: same as above but for medium density. Bottom panel: same as above
but for low density.
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relative deviation of size E(ΔS), peak intensity E(ΔI) and total
flux E(ΔF) are calculated. Those evaluation indicators are
defined as:
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where N represents the number of simulated molecular clumps
which are detected correctly by the algorithm. The superscript s
and m represent the parameters of the simulated molecular
clumps and measured by the algorithm, respectively. X, S, I and
F represent the position, size, peak and total flux of the clump,
and θ represents the tilt angle on the x–y plane of the clump.

3.2.2. Performance

We launched statistical experiments to compare the
parameterization performance of FellWalker, GaussClumps
and LDC and MGM algorithms. The high density simulated
data described in Section 3.1.1 are used in the statistical
experiments.

Figure 7 shows the relative deviation of peak intensity value
as a function of the PSNR. The vertical axis represents the
relative deviation of peak intensity between the simulated
clump and measured clump, and the horizontal axis represents
the PSNR of the clump. The blue, green and red dots represent
the relative deviation of clumps detected by the FellWalker,
GaussClumps and LDC and MGM, respectively. When the dot
is above 0, it means that the value of measured by algorithm is
less than the simulated, otherwise, the value of measured is
greater than the simulated. Error bars represent standard
deviation of accuracy. The blue circle, green triangle and red
asterisk represent the median of relative deviation measured by
the FellWalker, GaussClumps, LDC and MGM algorithms,
respectively.
From Figure 7 we can see that as the PSNR of the simulated

clump increase, the deviation of the GaussClumps and
FellWalker algorithms gradually decrease, while the peak
intensity values measured by both algorithms are greater than
the simulated. The deviations obtained by the LDC and MGM
algorithm are close to 0 with the dispersion decreased
gradually, indicating that the peak intensities estimated from
the LDC and MGM algorithm is more reliable.
The total flux is an important parameter, which is directly

related to the column density and mass of a molecular clump.
As can be seen in Figure 8, the total fluxes of the GaussClumps
and FellWalker algorithms are smaller than the simulated
values. The reason is that both algorithms have a cutoff
threshold for background noise in detecting molecular clumps
and can only detect part of clumps. The most deviation of the
LDC and MGM does not exceed±30% with the PSNR greater
than 4, indicating that the LDC and MGM are stable in the total
flux estimation of molecular clumps.

Figure 7. The statistics of relative deviation in peak intensity by the three
algorithms as a function of the PSNR. The blue, green and red dots show the
distribution of the individual measurements. The special symbols and error bars
represent the median and standard deviation of accuracy, respectively. Two
dashed horizontal lines represent the relative deviation of ±10%.

Figure 8. The statistics of the relative deviation in the total flux as a function of
the PSNR. Two dashed horizontal lines represent the relative deviation of
±30%. The blue, green and red dots, special symbols and error bars have the
same meaning as Figure 7.
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Figure 9 shows the deviation of tilt angle, the symbols are
the same as Figure 7. We can see that the dispersions of the
measured deviations are decreased gradually with increasing of
the PSNR for the three algorithms, while the deviation is less
than 10° when the PSNR greater than 4, indicating that the
estimation of molecular clump angle by this algorithm is stable.

The size of the molecular clump can be used to describe the
different shapes of them, which is a very important parameter
for the classification of the molecular clump. From left to right,
the panels of Figure 10 show the statistics relative deviation in
Size1, Size2, and Size3, respectively. In Figure 10, we can see
that the size obtained by the GaussClumps exhibit a large
deviation. The measured size of the GaussClumps and
FellWalker algorithms are lower than the simulated size. With
increase of the PSNR, the deviations from the GaussClumps
and FellWalker algorithms gradually decrease, while the
deviations from the LDC and MGM algorithms are closed to
zeros. The deviation of LDC and MGM is less than 10% with
the PSNR above 4, indicating that the size of clump obtained
from the algorithm is reliable.

Figure 11 shows the absolute deviation of position as a
function of the PSNR, from left to right are the deviation on
galactic latitude, galactic longitude, and velocity, respectively.
The position deviations measured by the FellWalker, LDC and
MGM are almost within 1 pixel and the deviation is no more
than 0.5 pixel at the PSNR greater than 4, while the deviation
from the GaussClumps is greater than the two algorithms. We
can see that some horizontal bars appear in the distribution of
position measured by the GaussClumps in galactic latitude and

longitude direction. The reason is that the low spatial resolution
of the simulated clumps leading to the centers fitted by the
Gaussclumps are mainly located on the grid.
Overall, detecting clumps by the LDC and MGM at high

number density has robust parameterization accuracy in term of
position, peak, total flux, size, and tilt angle. The molecular
clumps parameterization of the proposed algorithm show less
deviation and less dispersion than the FellWalker and
GaussClumps algorithms with the PSNR above 5.

4. Experiment in Real Data

4.1. M16 Data

The 13CO (J= 1−0) line of M16, including the region
within 15°15¢ < l < 18°15¢ and 0° < |b| < 1°30¢ from the
Milky Way Imaging Scroll Painting (MWISP) survey (Sun
et al. 2018), is employed in the molecular clump detection and
parameterization. The typical noise level at 13CO (J= 1−0)
line is about 0.23 K with the channel width of 0.167 km s−1.
Figure 12 shows the integrated intensity maps of M16 in 13CO
(J= 1−0) line.
Using the M16 data, Zhan et al. (2016) has confirmed the

identification of the giant molecular filament (GMF) G18.0-
16.8 by Ragan et al. (2014) and find a new giant filament,
G16.5-15.8, located in the west 0°.8 of G18.0-16.8. Song &
Jiang (2017) has calculated the properties of the clump samples
under local thermodynamic equilibrium assumption. The virial
mass and virial parameter are calculated to evaluate whether
clumps are bound or unbound. They found the majority of 13CO
clumps are bound, which suggest that those clumps may form
stars in the future. Based on their research in detection clump
on M16, the 13CO (J= 1−0) line of M16 is used to investigate
the performance of our algorithm.

4.2. Clump Extraction Experiment

After tuning the algorithm parameters, the GaussClumps,
FellWalker and LDC algorithms are applied to detect the 13CO
(J= 1−0) line of M16. Figure 13 shows the distribution of
peak intensity value of clumps detected by the three algorithms.
The observed total flux is defined as the summed flux of those
observations above 2× rms of the background. The recovery
rate is defined as the ratio the sum of clumps flux to the
observed total flux. The recovery rate of total flux obtained by
the GaussClumps, FellWalker and LDC are 51.6%, 90.4% and
90.2% in 13CO emission of M16, respectively.
It is can be inferred from Figure 13 that the peak intensity

values of clumps detected by the LDC and FellWalker have a
similar distribution with a more flatted peak, while the
distribution of the peak intensity values detected by the
GaussClumps deviates greatly from the other two algorithms.

Figure 9. The statistics of absolute deviation in the tilt angle as a function of
the PSNR. The tilt angle on the x–y plane of the molecular clump vary from 0°
to 180°. The minimum ratio of the major axis to the minor axis in these clumps
is 1.4. The blue, green and red dots, special symbols and error bars have the
same meaning as Figure 7.
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The peak of distribution is about 2 in the FellWalker and LDC
algorithms, while the GaussClumps is for 3.4. Combined with
the minimum peak intensity value (about 2.1 K) of clumps
detected by the GaussClumps and the noise level (0.23 K) at
13CO (J= 1−0) line, it shows that the PSNR of clumps

detected by the GaussClumps are greater than 9, while the
recall rate of the algorithm in the Section 3.1.4 can be
maintained a certain level with the PSNR above 5. It may be

Figure 10. The statistics of relative deviation in size as a function of the PSNR. From left to right are the deviation of Size1, Size2, and Size3, respectively (Size1 and
Size2 represent major and minor size of detected clump in the spatial, respectively, Size3 represents the size of detected clump in velocity axis). Two dashed horizontal
lines represent the relative deviation of ±10%. The blue, green and red dots, special symbols and error bars have the same meaning as Figure 7.

Figure 11. The statistics of absolute deviation of the position as a function of the PSNR. From left to right are the deviation of galactic latitude, galactic longitude, and
velocity, respectively. The blue, green and red dots, special symbols and error bars have the same meaning as Figure 7.

Figure 12. The integrated intensity maps of M16 in 13CO (J = 1−0) line with a
velocity range of 15.93–27.06 km s−1.

Figure 13. The distribution of the detected peak intensity values of clumps by
the GaussClumps, FellWalker, and LDC.
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the Gaussclumps algorithm tends to fit a clump with a strict
elliptic shape, and it fails to fit a clump with weaker peak
intensity value in the real data.

4.3. Completeness

The limitation of the telescope sensitivity causes low quality
clump being ignored. Other indicators of the algorithm are the
completeness and the detection rate above the limitation. The
“completeness limit” here refers to the total flux or mass above
which a clump can be detected at certain level with an
algorithm. The smaller and weaker molecular clumps, the less
likely they are to be detected.

We designed the data set by randomly inserting simulated
clumps into the 13CO (J= 1−0) line of M16. The peak
intensity value of those simulated clumps takes values from 2
to 5, while the size of the clump in the velocity axis takes
values from 2 to 4 and the size in the galactic longitude and
latitude axes takes values from 0.5 to 2. The clumps detected
by the GaussClumps, FellWalker and LDC algorithms are
matched with the simulated clumps. The number of clumps
within each total flux interval is counted, the completeness and
the average detection rate above the limitation are obtained.

Figure 14 shows the detection rate of the GaussClumps,
FellWlaker, and LDC algorithms in 13CO (J= 1−0) line of
M16, respectively. As the total flux increases, the detection rate
of the GaussClumps grows slowly, while the Fellwalker and
LDC are able to maintain a relatively high detection rate all the
way from the completeness limitation. The detection rate of the
GaussClumps, FellWalker and LDC are 80.9%, 74.7% and
81.7% above the completeness limitation, respectively. From
the detection rate of each algorithm, we can roughly estimate
that the number density in 13CO (J= 1−0) line of M16 is

between the high density and medium density in the simulation
data sets described in Section 3.1.1.
Figure 15 shows the statistical histogram of ΔI for the three

algorithms. The simulated clumps could overlap in real
observations, leading to the detected peak intensity values of
clumps by the three algorithms are systematically larger than
those of simulated clumps. While the LDC has the least
dispersion of deviations. The long tail at the left side of the
peak deviation suggests a relatively high intensity of molecular
clumps in M16.

5. Conclusion

We present a molecular clump detection and parameteriza-
tion algorithm based on the Local Density Clustering and
Multiple Gaussian Model (LDC and MGM). The proposed
algorithm is robust and universal in the clump detection. The
employed algorithm of LDC in the clump detection and
segmentation could achieve high accuracy with different
signal-to-noise levels, while the MGM could obtain reliable
physical parameters of overlapping clumps.
We applied our method to a simulated data set, and find, (1)

detection rate: the recall rate of the algorithm at high, medium
and low number density simulated data is greater than 80%,
90%, and 97% with the PSNR above 6, respectively. The
algorithm retains a high level of detection accuracy when the
PSNR is greater than 3. (2) Accuracy of parameters: the
parameterization of the algorithm in simulated data show less
deviation and less dispersion with the PSNR above 5. The
deviations of peak value and size are almost within 10% with
the PSNR above 5, while the deviations of total flux hardly
exceed 30% when the PSNR is greater than 4 at the high
number density. The deviations of tilt angle on the x–y plane
are less than 10° with the PSNR above 4.

Figure 14. The detection rate of the three algorithms in 13CO (J = 1−0) line of
M16 as a function of total flux. The detection rate of GaussClumps, FellWalker
and LDC are 80.9%, 74.7% and 81.7%, respectively. The completeness
limitation of LDC and FellWalker are 20 K km s−1 and 45 K km s−1,
respectively, while the GaussClumps is 75 K km s−1.

Figure 15. The histogram of the peak deviation (ΔI) for the GaussClumps,
FellWalker, and LDC. The ΔI is described in Formula (19). The mean
deviation of the FellWalker, GaussClumps and LDC are −10.8%, −11.0% and
−8.9%, respectively. The standard deviation of the FellWalker, GaussClumps
and LDC are 29.4%, 31.5% and 28.3%, respectively.
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We apply our algorithm to the 13CO (J= 1−0) map of the
M16 nebula taken by PMO-13.7 m telescope. The detection
rate of clumps is up to 81.7% with a completeness limitation of
20 K km s−1 in 13CO (J= 1−0) line of M16. A total of 658
molecular clumps have been detected by our algorithm and the
total flux recovery rate in 13CO (J= 1−0) line of M16 is
estimated as 90.2%. The number density in 13CO (J= 1−0)
line of M16 may be between the high and medium density in
the simulation data sets described in Section 3.1.1.

Acknowledgments

We thank the anonymous referee for his/her suggestive
comments that help improve the manuscript a lot. This work was
supported by the National Natural Science Foundation of China
(U2031202, 11 903 083, and 11 873 093). This research made
use of the data from the MWISP project, which is a multi-line
survey in 12CO/13CO/C18O along the northern galactic plane
with PMO-13.7 m telescope. We are grateful to all the members
of the MWISP working group, particularly the staff members at
PMO-13.7 m telescope, for their long-term support. MWISP was
sponsored by the National Key R&D Program of China with
grant 2017YFA0402701 and CAS Key Research Program of
Frontier Sciences with grant QYZDJ-SSW-SLH047.

ORCID iDs

Xiaoyu Luo, https://orcid.org/0000-0003-0592-3042
Xiangyun Zeng, https://orcid.org/0000-0002-8049-202X
Zhiwei Chen https://orcid.org/0000-0003-0849-0692

References

Alex Rodriguez, A. L. 2014, Sci, 344, 1492

Berry, D. S. 2015, A&C, 10, 22
Berry, D. S., Reinhold, K., Jenness, T., & Economou, F. 2007, in ASP Conf.

Ser. 376, Astronomical Data Analysis Software and Systems XVI, ed.
R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA: ASP), 425

Blitz, L., & Stark, A. A. 1986, ApJL, 300, L89
Carruthers, G. R. 1970, ApJL, 161, L81
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
Dent, W. R. F., Hovey, G. J., Dewdney, P. E., et al. 2009, MNRAS, 395, 1805
Heiles, C., Li, D., McClure-Griffiths, N., Qian, L., & Liu, S. 2019, RAA,

19, 017
Heyer, M., & Dame, T. M. 2015, ARA&A, 53, 583
Kauffmann, J., Pillai, T., & Goldsmith, P. F. 2013, ApJ, 779, 185
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 699, 850
Lada, E. A. 1992, ApJL, 393, L25
Lee, Y., Stark, A. A., Kim, H.-G., & Moon, D.-S. 2001, ApJS, 136, 137
Li, C., Wang, H.-C., Wu, Y.-W., Ma, Y.-H., & Lin, L.-H. 2020, RAA, 20, 031
Lin, L.-H., Wang, H.-C., Su, Y., Li, C., & Yang, J. 2020, RAA, 20, 143
Lo, N., Cunningham, M. R., Jones, P. A., et al. 2009, MNRAS, 395, 1021
Ragan, S. E., Henning, T., Tackenberg, J., et al. 2014, A&A, 568, A73
Rivera-Ingraham, A., Ristorcelli, I., Juvela, M., et al. 2017, A&A, 601, A94
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008,

ApJ, 679, 1338
Sanders, D. B., Clemens, D. P., Scoville, N. Z., & Solomon, P. M. 1986, ApJS,

60, 1
Schneider, N., Stutzki, J., Winnewisser, G., Poglitsch, A., & Madden, S. 1998,

A&A, 338, 262
Song, C., & Jiang, Z. B. 2017, Master’s thesis, Shanghai Normal University,

Shanghai
Stutzki, J., & Guesten, R. 1990, ApJ, 356, 513
Sugitani, K., Tamura, M., Nakajima, Y., et al. 2002, ApJL, 565, L25
Sun, J. X., Lu, D. R., Yang, J., et al. 2018, AcASn, 59, 3
Tang, M.-Y., Qin, S.-L., Liu, T., & Wu, Y.-F. 2019, RAA, 19, 040
Williams, J. P., Blitz, L., & Mckee, C. F. 2012, arXiv:astro-ph/9902246
Williams, J. P., de Geus, E. J., & Blitz, L. 1994, ApJ, 428, 693
Wilson, R. W., Jefferts, K. B., & Penzias, A. A. 1970, ApJL, 161, L43
Zhan, X.-L., Jiang, Z.-B., Chen, Z.-W., Zhang, M.-M., & Song, C. 2016, RAA,

16, 56
Zhou, P., Xiaoyu, L., Sheng, Z., Zhibo, J., & Shuguang, Z. 2020, AcASn,

61, 14
Zinnecker, H., & Yorke, H. W. 2007, ARA&A, 45, 481
Zuo, Y.-X., Li, Y., Sun, J.-X., et al. 2011, ChA&A, 35, 439

11

Research in Astronomy and Astrophysics, 22:015003 (11pp), 2022 January Luo et al.

https://orcid.org/0000-0003-0592-3042
https://orcid.org/0000-0003-0592-3042
https://orcid.org/0000-0003-0592-3042
https://orcid.org/0000-0003-0592-3042
https://orcid.org/0000-0002-8049-202X
https://orcid.org/0000-0002-8049-202X
https://orcid.org/0000-0002-8049-202X
https://orcid.org/0000-0002-8049-202X
https://orcid.org/0000-0003-0849-0692
https://orcid.org/0000-0003-0849-0692
https://orcid.org/0000-0003-0849-0692
https://orcid.org/0000-0003-0849-0692
https://doi.org/10.1126/science.1242072
https://ui.adsabs.harvard.edu/abs/2014Sci...344.1492R/abstract
https://ui.adsabs.harvard.edu/abs/2015A&C....10...22B/abstract
https://ui.adsabs.harvard.edu/abs/2007ASPC..376..425B/abstract
https://doi.org/10.1086/184609
https://ui.adsabs.harvard.edu/abs/1986ApJ...300L..89B/abstract
https://doi.org/10.1086/180575
https://ui.adsabs.harvard.edu/abs/1970ApJ...161L..81C/abstract
https://doi.org/10.1086/318388
https://ui.adsabs.harvard.edu/abs/2001ApJ...547..792D/abstract
https://doi.org/10.1111/j.1365-2966.2009.14678.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.395.1805D/abstract
https://doi.org/10.1088/1674-4527/19/2/17
https://ui.adsabs.harvard.edu/abs/2019RAA....19...17H/abstract
https://ui.adsabs.harvard.edu/abs/2019RAA....19...17H/abstract
https://doi.org/10.1146/annurev-astro-082214-122324
https://ui.adsabs.harvard.edu/abs/2015ARA&A..53..583H/abstract
https://doi.org/10.1088/0004-637X/779/2/185
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..185K/abstract
https://doi.org/10.1086/431734
https://ui.adsabs.harvard.edu/abs/2005ApJ...630..250K/abstract
https://doi.org/10.1088/0004-637X/699/1/850
https://ui.adsabs.harvard.edu/abs/2009ApJ...699..850K/abstract
https://doi.org/10.1086/186442
https://ui.adsabs.harvard.edu/abs/1992ApJ...393L..25L/abstract
https://doi.org/10.1086/321790
https://ui.adsabs.harvard.edu/abs/2001ApJS..136..137L/abstract
https://doi.org/10.1088/1674-4527/20/3/31
https://ui.adsabs.harvard.edu/abs/2020RAA....20...31L/abstract
https://doi.org/10.1088/1674-4527/20/9/143
https://ui.adsabs.harvard.edu/abs/2020RAA....20..143L/abstract
https://doi.org/10.1111/j.1365-2966.2009.14594.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.395.1021L/abstract
https://doi.org/10.1051/0004-6361/201423401
https://ui.adsabs.harvard.edu/abs/2014A&A...568A..73R/abstract
https://doi.org/10.1051/0004-6361/201628552
https://ui.adsabs.harvard.edu/abs/2017A&A...601A..94R/abstract
https://doi.org/10.1086/587685
https://ui.adsabs.harvard.edu/abs/2008ApJ...679.1338R/abstract
https://doi.org/10.1086/191086
https://ui.adsabs.harvard.edu/abs/1986ApJS...60....1S/abstract
https://ui.adsabs.harvard.edu/abs/1986ApJS...60....1S/abstract
https://ui.adsabs.harvard.edu/abs/1998A&A...338..262S/abstract
https://doi.org/10.1086/168859
https://ui.adsabs.harvard.edu/abs/1990ApJ...356..513S/abstract
https://doi.org/10.1086/339196
https://ui.adsabs.harvard.edu/abs/2002ApJ...565L..25S/abstract
https://ui.adsabs.harvard.edu/abs/2018AcASn..59....3S/abstract
https://doi.org/10.1088/1674-4527/19/3/40
https://ui.adsabs.harvard.edu/abs/2019RAA....19...40T/abstract
http://arxiv.org/abs/astro-ph/9902246
https://doi.org/10.1086/174279
https://ui.adsabs.harvard.edu/abs/1994ApJ...428..693W/abstract
https://doi.org/10.1086/180567
https://ui.adsabs.harvard.edu/abs/1970ApJ...161L..43W/abstract
https://doi.org/10.1088/1674-4527/16/4/056
https://ui.adsabs.harvard.edu/abs/2016RAA....16...56Z/abstract
https://ui.adsabs.harvard.edu/abs/2016RAA....16...56Z/abstract
https://ui.adsabs.harvard.edu/abs/2020AcASn..61...14Z/abstract
https://ui.adsabs.harvard.edu/abs/2020AcASn..61...14Z/abstract
https://doi.org/10.1146/annurev.astro.44.051905.092549
https://ui.adsabs.harvard.edu/abs/2007ARA&A..45..481Z/abstract
https://ui.adsabs.harvard.edu/abs/2011ChA&A..35..439Z/abstract

	1. Introduction
	2. Algorithms
	2.1. The LDC Algorithm
	2.1.1. Features Extraction
	2.1.2. The Clump Center Determination
	2.1.3. Route Clustering
	2.1.4. Clump Region Determination
	2.1.5. False Clumps Exclusion
	2.1.6. Clump Characterization
	2.1.7. Algorithm Summarizing

	2.2. Parameterization Based on MGM
	2.2.1. The 3D Gaussian Model
	2.2.2. The 3D MGM


	3. Comparison with other Algorithms
	3.1. Detection Accuracy
	3.1.1.3D Simulated Data
	3.1.2. Detection Based on LDC Algorithm
	3.1.3. Evaluation Indicators
	3.1.4. Detection Comparison

	3.2. Parameterization
	3.2.1. Evaluation Indicators
	3.2.2. Performance


	4. Experiment in Real Data
	4.1. M16 Data
	4.2. Clump Extraction Experiment
	4.3. Completeness

	5. Conclusion
	References



