
Strong Spatial Aggregation of Martian Surface Temperature Shaped by
Spatial and Seasonal Variations in Meteorological and Environmental Factors

Yao-Wen Luo1, Fei Li1,2,∗, Jian-Guo Yan2,∗ , and Jean-Pierre Barriot2,3
1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, 430070, China; yaowenluo@whu.edu.cn

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430070, China; fli@whu.edu.cn,
jgyan@whu.edu.cn

3 Observatoire Geodesique de Tahiti, University of French Polynesia, BP 6570, F-98702 Faa’a, Tahiti, French Polynesia; jean-pierre.barriot@upf.pf
Received 2021 August 11; revised 2021 October 2; accepted 2021 October 9; published 2022 January 21

Abstract

Spatio-temporal variation in the Martian surface temperature (MST) is an indicator of ground level thermal
processes and hence a building block for climate models. However, the distribution of MST exhibits different
levels of spatial aggregation or heterogeneity, and varies in space and time. Furthermore, the effect of regional
differences in meteorological or environmental factors on the MST is not well understood. Thus, we investigated
the degree of spatial autocorrelation of MST across the surface of Mars globally by Moran’s I, and identified the
hot spots by GetisOrd *Gi . We also estimated the regional differences in the influence of seasonally dominant
factors including thermal inertia (TI), albedo, surface pressure, latitude, dust and slope on MST by a geographically
weighted regression model. The results indicate (1) that MST is spatially aggregated and hot and cold spots varied
over time and space. (2) Hemispheric differences in topography, surface TI and albedo were primarily responsible
for the hemispheric asymmetry of hot spots. (3) The dominant factors varied by geographical locations and
seasons. For example, the seasonal Hadley circulation dominates at the low-latitudes and CO2 circulation at the
high-latitudes. (4) Regions with extreme variations in topography and low TI were sensitive to meteorological and
environmental factors such as dust and CO2 ice. We conclude that the spatial autocorrelation of MST and the
spatial and seasonal heterogeneity of influencing factors must be considered when simulating Martian climate
models. This work provides a reference for further exploration of Martian climatic processes.
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fundamental parameters

1. Introduction

Martian surface temperature (MST) is an indicator of the
energy budget of the planetary surface. Moreover, the potential
existence of life and liquid water might be strongly related to
temperature on the Martian surface (Kieffer et al. 1977).
Analysis of the surface temperature of Mars could aid
exploration and help answer the question if Mars has or had
the ambient conditions to support life. In addition, surface
temperature variation is directly related to thermophysical
properties of the shallow subsurface (Hamilton et al. 2014). As
such, surface temperature analysis could provide insight into the
physical properties and processes of Martian subsurface material
that might not be observable on the ground. Moreover, an
understanding of the spatial and temporal variation in the MST
adds insights into the thermal behavior of near-surface elements
from the local to regional scale, as well as shedding light on the
geological and land surface physical processes occurring on
Mars (Read et al. 2015; Spanovich et al. 2006; Tosi et al. 2019).

The distribution of MST is not stable over time and space.
Observations into the surface temperature on Mars revealed huge
seasonal variations (Leovy 2001; Spanovich et al. 2006) and
regional asymmetries in the surface temperature (Kieffer et al.
1972, 1976; Miller et al. 2018; Kass et al. 2020). MST and ground
surface thermal properties vary from one region to another
(Martínez et al. 2017; Mellon et al. 2000; Spanovich et al. 2006;
Putzig & Mellon 2007). Measurements by the Viking lander and
Curiosity rover at Gale Crater show a large difference in the
average daily temperature during a Martian year (Siegler et al.
2017). These asymmetries of MST over seasons and locations are
generally attributed to solar radiation determined by the Martian
orbital eccentricity (Read et al. 2015; Zurek et al. 1992). In general,
the spatial distribution of geographical elements is not independent,
but exhibits a certain degree of spatial dependence, that is, the near
observations are more related than distant observations (Tobler
1970); however, the investigation to date regarding the spatial
autocorrelation patterns of MST has received little attention.
The surface temperature on Mars is not randomly distributed

in space, but shows patterns of spatial aggregation. The spatial
autocorrelation can measure the correlation among observations
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based on the distance they are apart (Getis 2010). Quantitative
measurement of spatial autocorrelation can be used to diagnose
whether the distribution of surface temperature is concentrated,
dispersed or random, as well as the degree of spatial aggregation
of surface temperature. Ignoring the spatial autocorrelation of
surface temperature could reduce the accuracy of the Martian
near-surface climate models. Quantitative measurements of
spatial autocorrelation of surface temperature at both global
and local scales could provide valuable reference for both
theoretical and applied studies of the Martian near surface
environment as it is yet not clear which climatological and/or
geographical factors could explain the spatial autocorrelation of
the surface temperature.

Understanding the meteorological or environmental factors
controlling or influencing the variation in MST is a focus in
Martian climate studies. Previous research have shown that
environmental factors, including topography (Miller et al.
2018; Millot et al. 2021), dust (Gurwell et al. 2005; Kass et al.
2016, 2020), atmospheric circulation (Leovy 2001; Richardson
& Wilson 2002; Spiga & Forget 2009; Zalucha et al. 2010),
surface albedo (Fenton et al. 2007), thermal inertia (TI, Jakosky
et al. 2000; Petrosyan et al. 2011; Piqueux & Christensen 2011;
Putzig & Mellon 2007; Savijarvi 1999; Vasavada et al. 2017),
CO2 (Hunt 1980; Pierrehumbert 2010), etc., influence the MST
distribution pattern. However, most of the previous studies
have focused on the relations between a single factor and MST,
and they have rarely quantitatively analyzed the relationships
between multiple factors and surface temperature at a large
scale. In addition, the spatial and seasonal variations of the
possible factors and processes that could account for the
surface temperature spatial autocorrelation have also been
largely overlooked. Much less emphasis has been directed
toward the spatio-temporal variation of the relationships
between surface temperature and affecting factors. The surface
temperature and related affecting factors manifest great spatial
heterogeneity and seasonal changes in the real world. Thus, the
relationship between the MST and its influencing factors is not
stable over space but varies by geographical locations and
seasons.

To fill these gaps, we relied on geographic information
system (GIS) in conjunction with statistical methods to address
the patterns of spatial autocorrelation in the MST and its
relationships with the potential to influence near surface
environmental factors, and variations over locations and
seasons. The aim of this study is fourfold: (1) to investigate
the degree of spatial autocorrelation of the Global monthly
MST during Martian years 30–32; (2) to map surface
temperature’s hot spots (clusters of high data values) and cold
spots (clusters of low data values) locally over the global
Martian surface and their variation over space and time; (3) to
quantitatively determine the effect of each potential driving
factor on surface temperature seasonally from a global and
local perspective respectively; (4) to map the coefficients of

each possible factor that accounts for spatial pattern and
seasonal changes of MST and to demonstrate that the
relationships between MST and its affecting factors are
heterogeneous over space and seasons. Evaluation of the
spatial autocorrelation of MST and the spatio-temporal
heterogeneity of the influence of driving factors on it is a first
step toward improving Martian near-surface climate simulation
models, as well as contributing to deepening our knowledge of
the near-surface environmental characteristics of Mars.

2. Data and Method

2.1. Study Area and Data Source

This study took the global surface temperature of Mars as the
research object. The spatial pattern of MST exhibits spatial
heterogeneity as depicted in Figure 1.
As illustrated in Figure 1, Mars was divided into 5°× 5°

grids to ensure that the main components were recorded. In
total, 2592 grids were generated as the basic spatial units.
Considering the availability of data and their continuity in time,
the study period was Martian years 30–32, corresponding to the
Earth period 2009 October 27 to 2015 June 18. The description
of the data we used in this study is presented in Table 1.
As described in Table 1, the gridded climate data set

including ST (surface temperature), Ps (surface pressure), CO2

(surface CO2 ice) and dust during Martian years 30–32 were
collected from the Open access to Mars Assimilated Remote
Soundings (OpenMARS) database (Holmes et al. 2020). This
product provides climate data every 2 Martian hours with a
spatial resolution of 5°× 5°. The HRSC and MOLA Blended
Digital Elevation Model (DEM) at 200 m resolution was
derived from the Astrogeology PDS Annex, U.S. Geological
Survey (Fergason et al. 2018). We extracted the Martian
topographic elevation and slope data from the Blended Digital
Elevation Model using arcgis10.7 tools. The nighttime surface
TI map (Putzig & Mellon 2007) with a resolution of 20 pixel
per degree was collected by Planetary Science Institute
(https://sharad.psi.edu/inertia/). The surface albedo data
(Christensen et al. 2001) with a resolution of 7400 m was
taken from the Astrogeology Science Center data (https://
astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/TES/
Mars_MGS_TES_Albedo_mosaic_global_7410m).
This study used Excel, Python and R software for data

preprocessing, and Geoda, R and ArcGIS10.7 software for
analysis and mapping. All of the data considered in the present
research were transformed into the Mars 2000 Coordinate
System. Due to the different spatial resolutions, all the data
were uniformly transformed to the same spatial size with
horizontal 5°× 5° grid scale using Zonal Statistics Tool in
ArcGIS10.7. According to Table 2, three sorts of data sets
including Martian months (in total 12 months), Martian seasons
including spring, summer, fall and winter and the Martian year
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30–32 statistical data sets were preprocessed and used for
modeling and analysis.

2.2. Spatial Autocorrelation Analysis

2.2.1. Global Moran’s I

The Moran’s Index (Moran’s I, Moran 1950) is one of the
most popular methods to measure the degree of spatial
autocorrelation. It quantifies the spatial aggregation between
features by assessing the correlation of attributes between
individual features and their surrounding neighbors. The
expression for global Moran’s I can be expressed as in
Equation (1)
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where n equals the total number of spatial units in this study, xi
and xj are the surface temperature of the spatial units at
geographical locations i and j , respectively, x̄ is the mean value
of the surface temperature in the whole study area, and wij is
the the spatial weight between the spatial units at locations i
and j. Generally, when spatial units i and j are adjacent, wij= 1;
when they are are not adjacent, the weight wij is given the value
of 0.

The significance of the global Moran’s I is validated by z-
score and p-value. The z-score is calculated with the following

equation
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In this study, the global Moran’s I was utilized to evaluate
the degree of spatial autocorrelation in the MST at the global
scale for each Martian month during Martian years 30–32
based on 9999 permutations with the significance level
p< 0.001. The value of Moran’s I ranges from −1 to 1. A
positive Moran’s I value indicates that the MST observations
are clustered spatially. When the value approaches 1, the
clustering pattern is stronger. On the contrary, a negative
Moran’s I value signifies the MST exhibits a negative spatial
correlation, and the pattern observed is scattered or spatially
dispersed. When its value approaches −1, the negative spatial
correlation is strong. When the value of Moran’s I equals 0, the
MST is randomly distributed in the study area.

2.2.2. Hot Spot Analysis: GetisOrd *Gi Statistic

The global Moran’s I quantifies the pattern of spatial
autocorrelation over an entire study area, but cannot capture the
pattern of spatial autocorrelation at the local scale. The
GetisOrd *Gi proposed by Ord & Getis (1995), also known
as hot-spot analysis, is one means to quantify localized

Figure 1. Distribution of Martian average surface temperature during Martian years 30–32.
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Table 1
Description of the Data used in this Study

Variables Data Description Scale Unit Spatial Resolution Data source

ST Surface temperature Hourly K 5° × 5° https://ordo.open.ac.uk/articles/data set/OpenMARS_MY28-32_standard_
database/7352579?backTo=/collections/OpenMARS_database/4278950

Ps Surface pressure Hourly Pa 5° × 5°
CO2 Surface CO2 ice Hourly kg m−2 5° × 5°
Dust Visible column dust optical depth Hourly NU 5° × 5°
TI Nightside surface thermal inertia Yearly tiu 20 pixel per

degree
https://sharad.psi.edu/inertia/

Albedo Surface albedo Yearly 7400 m https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/TES/Mars_
MGS_TES_Albedo_mosaic_global_7410m

Elevation Topographic elevation data extracted from
DEM of 200 m resolution

Yearly meter 7400 m https://astrogeology.usgs.gov/search/map/Mars/Topography/HRSC_MOLA_
Blend/Mars_HRSC_MOLA_BlendDEM_Global_200mp_v2

Slope Topographic slope data extracted from
DEM (200 m resolution)

Yearly Degree (°) 200 m

Latitude Martian latitude Degree (°)
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variation in the pattern of spatial autocorrelation. This method
identifies hot spots (high–high value clusters) and cold spots
(low–low value clusters) over the whole region by evaluating
the degree of similarity between the attributes of each feature
and that of its neighbors in this case, surface temperature. In
this study, the GetisOrd *Gi values were calculated for each
5°× 5° grid cell and divided into hot spots and cold spots.
Thus, a spatial unit with a high surface temperature may not be
a statistically significant hot spot. In this study, a grid cell
defined as a statistically significant hot spot should not only
have a high surface temperature, but also must be surrounded
by other grid cells with high surface temperature (with a similar
definition for a cold spot). The GetisOrd *Gi can be expressed
as follows
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where xj is the surface temperature of the spatial unit j, wij

denotes the spatial weight between the spatial units i and j, and n
is equal to the total number of spatial units in the study area, and
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In this study, GetisOrd *Gi was utilized to identify hot and
cold spots of the MST across the whole study area for each
Martian month during Martian years 30–32. All the GetisOrd
*Gi indices were performed based on 9999 permutations. The

degree of clustering and statistical significance of GetisOrd *Gi

was evaluated by z-score. A high positive z-score signifies
spatial clusters among high surface temperature hot spots and a

small negative z-score indicates spatial clusters among low
surface temperature cold spots.

2.3. Regression Models

2.3.1. Random Forests (RF)

To estimate the global relationship between MST and
potential affecting factors, we used one of the most popular
machine learning methods of random forests (RFs), proposed
by Breiman (2001). The RF is a nonparametric model that
captures non-linear relationships between variables more
effectively than linear regression models (Smith et al. 2013).
It is an improved ensemble machine learning algorithm
comprised of many decision trees for regression and classifica-
tion. Each decision tree in an RF is built by randomly selecting
a set of variables and samples from the training data set. About
36.8% of the samples (spatial units) are not used, which are
called the out-of-bag (OOB) data. In the RF regression, the
mean square error (MSE) reduction method is the most applied
method to estimate the variable importance (Ishwaran 2007;
Strobl et al. 2007, 2008; Grömping 2009). The MSE reduction
method estimates the variable importance considering the MSE
value from the OOB data (Strobl et al. 2008; Cai et al. 2018).
The steps for calculating variable importance of potential
affecting variables of MST is determined as follows:
(1) Calculate the MSE of the OBB data for each decision

tree. The MSE for OOB data of the decision tree can be
calculated by Equation (8)
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where Nt is the number of spatial units of the OBB data in the
tree t and yi,t is the prediction of the MST of the ith spatial unit
for tree t.
(2) The target variable k is randomly replaced, and then the

corresponding value of the MSE for the new tree t is calculated
by Equation (9)
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where y ki t,ˆ ( ) is the prediction of the MST for the ith spatial unit
of the new tree t with the target variable k randomly replaced.
(3) Calculate the MSE reduction between MSEt and MSEt(k).

The variable importance for variable k of the decision tree t can
be obtained from the MSE reduction results. The variable
importance (VI) of variable k is the average MSE reduction of
all trees in the RF, and expressed as Equation (10)
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where n is equal to the total number of decision trees of an
RF. We implemented the RF in the “RandomForest” package

Table 2
Calendar of Martian Seasons and Months

Season (Northern
Hemisphere)

Season (Southern
Hemisphere)

Month
number

Solar
longitude
(Ls) range
(degree)

Spring Autumn 1 0 30
2 30 60
3 60 90

Summer Winter 4 90 120
5 120 150
6 150 180

Autumn Spring 7 180 210
8 210 240
9 240 270

Winter Summer 10 270 300
11 300 330
12 330 360
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(Liaw & Wiener 2002) within R software (R Development
Core Team, 2009). Seventy percent of the data was used for
testing and 30 percent for training. Two parameters need to be
optimized in an RF: ntree, the number of decision trees; and
mtry, the number of candidate split variables at each node. To
find the optimum ntree and mtry values for the RF modeling,
ntree values were tested from 500 to 2000 with an interval of
100, while the mtry was tested from 1 to 7 with an interval of 1.

2.3.2. Geographically Weighted Regression Model

Global multivariate regression models such as RF and
ordinary least squares (OLS) models have been widely applied
in modeling and estimating the relationships among a couple of
variables. These global models assume that the variables are
spatially homogeneous, so they just evaluate a set of consistent
regression parameters for all data. However, spatial features
and their attributes are usually heterogeneous over space;
global models may hide potentially important local variations
in the relationships between variables. The geographically
weighted regression (GWR) model (Brunsdon et al. 1996;
Fotheringham et al. 2003) is an extension of OLS that
addresses the spatial non-stationarity of variables, and could
expose specific relationships among variables for every local
region. Thus, the GWR model captures the variation of
parameters with geographical location by adding spatial
weight, which can be expressed by Equation (11)

åb b= + +
=

y u v u v x, , 11i i i
k

p

k i i ik i0
1

( ) ( ) ( )

where yi denotes the value of MST for grid i, u v,i i( ) stands for
the spatial location (latitude, longitude) of grid i; p is the
number of potential affecting factors of MST; b u v,k i i( ) is the
kth local regression parameter (coefficient) of grid i, varying
with the location of grid i; b u v,k i i( ) is the intercept at a location
u v, ;i i( ) xik is the value of the kth explanatory variable of surface

temperature at grid i; òi is the error term. Therefore, each grid
across the entire surface of Mars in our research has a set of
specific parameters to evaluate the relationships between MST
and its potential affecting factors.
According to Tobler’s first law of geography, everything is

related to everything else, but near things are more related than
distant things (Tobler 1970). Therefore, variables of the
neighboring spatial units should contribute more than distant
spatial units when calculating regression parameters (Wang
et al. 2014). Bandwidths or neighbors are often used to
determine the influence of spatial units at different geographical
locations on the estimates of the local regression parameters. In
this study, the optimal bandwidths for the GWR were
determined by minimization of the corrected Akaike Informa-
tion Criterion (AICc).

3. Results

3.1. Spatial-temporal Cluster Analysis of the MST

3.1.1. Global Spatial Autocorrelation of the MST

In order to test whether spatial aggregation for the MST
exists, the global Moran’s I was introduced to evaluate the
degree of spatial autocorrelation for each monthly MST during
the study period. Figure 2 demonstrates the variation of the
Global Moran’s I for monthly average surface temperature on
the global area of Mars during the period of Martian
years 30–32.
As plotted in Figure 2, the global Moran’s I of the MST was

nearly stable over time with a slight variation. The values of
global Moran’s I of all Martian months during the study period
were significant (p< 0.001) for positive with a mean value of
0.99, which indicates a positive spatial autocorrelation for
MST. The significance of Moran’s I was validated by p-values
which were <0.001 for all months, indicating that the spatial
distribution did not occur randomly for surface temperature in

Figure 2. The trend of global spatial autocorrelation for MST during Martian years 30–32.
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each Martian month. The z-score confirmed that the values
were greater than 52.84 for all the 36 Martian months (see in
Table S1 in the supplementary file), so there was nearly zero
probability that the global surface temperature clustering
pattern was a result of a stochastic process. The statistically
significant high positive global Moran’s I showed that the
surface temperature was not randomly distributed but exhibited
a definite pattern of spatial aggregation globally across Mars.

The Moran’s I measures the degree of spatial autocorrelation
of the MST at the global scale. The distribution of surface
temperature, however, exhibits a heterogenous spatial pattern
as the surface temperature has a certain degree of spatial
similarity or difference in various locations, which leads to
variation in spatial autocorrelation, Therefore, it is necessary to
investigate the local patterns of surface temperature.

3.1.2. Local Cluster Analysis of MST

The GetisOrd *Gi analysis was conducted to evaluate the
local spatial clusters of monthly average surface temperature
from Martian years 30–32 across Mars. The local clusters
driven from the GetisOrd *Gi model can be divided into hot
spots (High–High clusters) and cold spots (Low–Low clusters).
The results of the GetisOrd *Gi analysis indicate the surface
temperature agglomeration on Mars. The spatial patterns of hot
spots and cold spots are illustrated in Figure 3. The spatial units
in red represent significant hot spots, indicating that grid cells
with high surface temperature are surrounded by other cells
with similarly high surface temperatures. The cells in blue are
significant cold spots, implying that the cells with low surface
temperature are surrounded by other cells with similarly low
surface temperatures.

Figure 3. The hot spots and cold spots map for monthly surface temperature across global Mars in Martian year 30. The hot spots and cold spots were subdivided into
several grades according to Gi Bin. The hot spots and cold spots maps of monthly MST in Martian years 31 and 32 are provided in the supplementary materials
(Figures S1 and S2 respectively).
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As presented in Figure 3, the distribution of the spatial
clusters of MST demonstrates spatio-temporal variation. The
spatial pattern of MST clusters changed slightly from year to
year, but varied significantly by month. The movement of the
cold and hot spots in the north–south direction is related to the
periodic revolution of Mars around the Sun and the large
eccentricity of the orbital revolution, which is similar to that of
the Earth. The hot spots are found in the low and middle
latitudes (latitude range of 60°N–60°S) except during April and
October, while the cold spots are concentrated in high latitudes
(latitude >60°N or >60°S). Moreover, the hot spots are more
widely distributed in the southern hemisphere than in the north,
as Mars is near perihelion during the southern hemisphere’s
summer. Overall, the results are consistent with known Martian
climatic patterns (Read et al. 2015). This demonstrates that the
season and the geographical locations explain the spatio-
temporal variation in spatial aggregation and heterogeneity of
surface temperature on Mars.

The hot spots in the northern and southern hemisphere are
asymmetrical. Hot spots were widely and continuously
distributed in the zonal direction (parallel to latitude) in the
southern hemisphere from July to December. The hot spots in
the northern hemisphere, especially in January, February, May
and June, were relatively dispersed and divided into two
clusters, as featured in Figure 3 and combining with the
distribution of the topography, TI and albedo across the
Martian surface in Figure S3 in the supplementary file. The hot
spots are mainly distributed in low-lying basins with relatively
high TI and low albedo (Figures S5 and S6). This implies that
in addition to the huge orbital eccentricity of Mars, the MST
might be affected by multiple factors. We discuss factors which
may contribute to the spatial pattern of the MST using RF and
GWR models in the next section.

3.2. Analysis of Factors Potentially Influencing MST

To explore the seasonal difference of the influence of factors
potentially affecting MST, we divided the data during Martian
years 30–32 into spring, summer, fall, winter and Martian year
30–32 groups. However, in the data set for each group, the

influencing factors were not independent and exhibited varying
degrees of correlation. Thus, if all the potential influencing
factors mentioned in Table 2 were chosen as independent
variables for regression, a significant collinearity problem may
occur in the regression models. To solve this issue, a
multicollinearity test was introduced for each group before
the analysis. We performed a stepwise regression model with
all the variables and removed the independent variable if its
variance inflation factor (VIF) value was greater than 7.5. We
repeated the stepwise regression process mentioned until the
VIF values of all independent variables were less than 7.5.
Table 3 presents the multicollinearity test in the northern
hemisphere spring, summer, fall, winter and Martian year
30–32 groups.
As seen in Table 3, the variables Ps, dust, slope, albedo, TI

and latitude remained in the spring, fall, winter and Martian
year 30–32 groups. The variables Ps, dust, slope, albedo, TI
and latitude were selected for the summer group in an RF
analysis to identify the globally dominant factors and further
estimated the spatial difference among the factors influencing
MST at the local scale using a GWR model.

3.2.1. The Variable Importance Ranking of Driven Factors for
MST on a Global Perspective

The RF model was used to evaluate the effect of Ps, CO2,
dust, slope, albedo, TI and latitude for the MST from a global
perspective, executed in the R language. The performance of
the RF model was analyzed based on R2, root mean square
error (RMSE) and mean absolute error (MAE).
As presented in Table 4, the RF model could account for

99.7%, 99.1%, 99.4%, 99.2% and 99.8% of the total MST in
spring, summer, fall, winter and Martian years 30–32
respectively. The variable importance of the influencing factors
is represented by the percentage of Increased Mean Square
Error (%IncMSE).
Figure 4 graphs the variable importance evaluation of

selected affecting factors based on RF model during spring,
summer, fall, winter and Martian years 30–32.

Table 3
Multicollinearity Test in Northern Hemisphere Spring (Ls 0°–90°), Summer (Ls 90°–180°), Autumn (Ls 180°–270°), Winter (Ls 270°–360°), and Martian year 30–32

Groups

Variables VIF

Unit Spring Summer Autumn Winter Martian years 30–32

Ps Pa 5.5 4.78 1.25 1.15 2.27
CO2 kg m−2 1.33 L 1.37 1.31 1.37
Dust NU 5.55 5.42 2.51 2.19 3.9
Slope Degree (°) 1.56 1.54 1.64 1.63 1.62
Albedo 1.12 1.1 1.12 1.11 1.12
TI tiu 1.29 1.4 1.2 1.29 1.19
Latitude Degree (°) 2.62 2.61 3.29 2.47 4.24
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The influence of the factors on MST displayed conspicuous
seasonal differences (Figure 4). CO2 was the most important
variable (86.67) for explaining the variation of MST in spring,
as displayed in Figure 4(a). Dust was the second most

important variable influencing surface temperature in spring.
In contrast, dust was found to provide the greatest contribution
in affecting surface temperature in summer (Figure 4(b)), fall
(Figure 4(c)) and winter (Figure 4(d)). In addition, latitude, Ps
and albedo played the second most important role in affecting
surface temperature in summer, fall and winter respectively.
The slope was the least important factor for surface temperature
compared with other affecting factors during all seasons. For
the period during Martian years 30–32, the three most relevant
variables were TI, CO2 and albedo (Figure 4(e)). The RF
ranked the variable importance of driven factors for MST with
a high model fit. It assumes that the MST and its driving factors
are spatially consistent, thus it cannot identify the dominant

Figure 4. Variable importance of selected affecting factors based on RF during northern hemisphere spring (a), summer (b), fall (c), winter (d) and Martian years 30–32 (e).

Table 4
The Performance of RF

Group R2 RMSE MAE

Spring 0.9971 1.4338 0.8258
Summer 0.9919 2.5133 1.2239
Autumn 0.9939 2.6274 1.3615
Winter 0.9916 2.9471 1.4031
Martian years 30–32 0.9985 0.8284 0.5603
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factors at different locations. However, the MST and driving
factors varied with location.

The regional difference in spatially aggregated pattern
(Figure 3) of surface temperature implies that the distribution
of surface temperature may be caused by some potential locally
driven factors. Clearly, the global models are not adequate to
explore the spatial variation of the correlation between
variables, because they assume that all the variables and their
relationships are stable over space. A local regression model
could account for the local difference to detect the relations
between MST and potential affecting factors. The GWR model
can estimate the difference in the relationships between MST
and the driving factors in various geographical regions.

3.2.2. Spatial Heterogeneity in the Relationships between MST
and Driving Factors from a Local Perspective

We used the GWR model to estimate the regional difference
in the relationships between MST and its potential driving
factors. The performance of the GWR model was analyzed
using R2, Adjusted R2 and AICc, a corrected version of Akaike
Information Criterion. As presented in Table 5, the GWR
model could account for 97.3%, 97.9%, 97.4%, 95.0% and
98.4% of the total MST in spring, summer, fall, winter and
Martian years 30–32 respectively.
Furthermore, the spatial heterogeneity of local fitting degree

of GWR was evaluated by local R2. The spatial variations of
local R2 are displayed in Figure 5.

Figure 5. Spatial distribution of local R2 based on the GWR model during northern hemisphere spring (Ls 0°–90°), summer (Ls 90°–180°), fall (Ls 180°–270°), winter
(Ls270°–360°) and Martian years 30–32.
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As affirmed in Figure 5, all the local R2 values were greater
than 0.796, 0.821 and 0.903 in spring, fall and Martian year
30–32 groups respectively, indicating that the GWR model
performed well at each local location over the whole of Mars
during these periods. Except for the low and middle latitudes of
the northern hemisphere, the values of local R2 were higher
than 0.8 in the summer; only in a small part of the middle
latitudes were the local R2 values less than 0.5. For the winter
group, the local R2 values varied from 0.51 to 0.90, and local
R2 values in the northern hemisphere were all higher than 0.8;
only a small part in the southeast of the southern hemisphere
had local R2 values of less than 0.65. The diagnostics affirm
that the GWR model is adequate to detect the influence of the
driving factors for MST at a local scale. We mapped the spatial
heterogeneity of the relationships between potential driving
factors (including TI, CO2, albedo, Ps, latitude, dust and slope)
and MST during spring (Figure 6), summer (Figure 7), fall
(Figure 8), winter (Figure 9) and Martian years 30–32
(Figure 10) based on the analysis of the GWR. The coefficients
of each driving factor varied with season and location. The
effect of each factor on surface temperature displays a unique
spatial pattern across Mars in every season. The local
coefficients of the GWR model imply that each influencing
factor showed significant spatial difference in positive and
negative correlation with MST across Mars. In general, the
distribution of local coefficients for factors driving MST in
each group was not randomly distributed but followed a certain
spatial pattern, as manifested in spatial agglomeration and
gradient directionality. A detailed analysis of each group is as
follows:

In northern spring as depicted in Figure 6, the distribution
pattern of surface temperature was highly correlated with TI,
CO2, Ps, latitude and dust. Local coefficient of TI values
ranged widely from 18.9 to 32.8. The TI has a positive
correlation with the surface temperature in 90% of cells of
Mars, especially in Promethei Terra (Figure S4) in the high and
middle latitudes of the southern hemisphere; while a negative
correlation in Margaritifer Terra near the equator. The CO2 had
a significantly negative impact on MST in 71% of the area of
the Martian surface, such as the northern hemisphere, and low
latitudes in the southern hemisphere; while a positive

coefficient in the high and middle latitudes of the southern
hemisphere. Ps exhibited a negative relation with the surface
temperature across Mars, and especially in Syrtis Major
Planun, Isidis Planitia, Tyrrhena Terra and Terra Sabaea.
Latitude exhibited a negative relationship with MST, and the
negative coefficient was greater in the south. Dust was
positively correlated with the MST in most areas of Mars and
the positive correlation was greater within low latitude regions,
especially in Syrtis Major Planun, Tyrrhena Terra and Terra
Sabaea.
In northern summer (Figure 7), the pattern of surface

temperature was highly affected by TI, Ps, latitude and dust,
and the spatial pattern of each factor’s coefficient was different
from that in the spring. TI had a negative relationship with
MST in most areas (87% of the Martian surface), especially in
Copernicus Crater, Stoney Crater and Promethei Rupes; while
there was a positive correlation in Deadalia Planum, Syria
Planum and Tyrrhena Terra. Dust exhibited a positive relation
in the southern hemisphere, especially in Terra Sabaea and
Terra Cimmeria; while a negative relevance near the north pole.
Latitude manifests a strong negative correlation with the
surface temperature in the southern hemisphere. The correla-
tion between Ps and surface temperature was positive in the
north and negative in the south, especially in the polar regions.
In northern fall (Figure 8), the distribution pattern of surface

temperature was highly influenced by TI, CO2, albedo, Ps,
latitude and dust. TI has a positive correlation with the surface
temperature in the southern hemisphere, and shows a great
positive coefficient in the regions near the south pole. The CO2

and surface temperature displayed a strong negative correlation
in low latitudes, and a positive correlation at the north pole.
Albedo was negatively correlated with surface temperature, and
exhibited a large negative impact on surface temperature in
Amazonis Planitia, Olympus Mons and Tharsis Montes.
Latitude was negatively correlated with the surface temper-
ature, and was greatest at the poles, especially the Arctic. The
Ps had a strong negative correlation with surface temperature in
the tropics near the equator. Dust had a great relevance with the
surface temperature in the southern hemisphere, showing a
strong negative correlation in the west of Planum Australe near
the Antarctic, and a strong positive correlation near the equator.
In northern winter (Figure 9), the distribution pattern of

surface temperature was highly influenced by TI, CO2, albedo,
Ps, latitude and dust. The distribution of latitude, dust, albedo
and Ps coefficients was similar to that in fall. CO2 had a great
negative correlation with the surface temperature in Promethei
Terra, Terra Cimmeria and Tyrrhena Terra. TI was positively
related with the MST in Aonia Terra and Promethei Terra.
Slope was positively correlated with surface temperature in
Promethei Terra, Terra Cimmeria and Hellas Planitia.

Table 5
Evaluating the Performance of the GWR Model

Groups R2 Adjusted R2 AICc

Spring 0.974 0.9733 15 036.5
Summer 0.9799 0.9792 14 683.7
Autumn 0.9743 0.9736 16 058.4
Winter 0.9507 0.9497 17 480
Martian years 30–32 0.9846 0.9841 12 359.1
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In Martian years 30–32 (Figure 10), TI was positively
correlated with surface temperature, and the coefficient in the
southern hemisphere was larger than that for the northern
hemisphere. The influence of CO2 ice on surface temperature
increased from south to north, with a gradient distribution
trend. The regression coefficient was between −25.66–2.67.

The albedo and pressure had a great negative relationship with
the MST in the southern hemisphere. Surface temperature in
the southern hemisphere was more influenced by latitude than
in the northern hemisphere. Dust had a high positive correlation
with surface temperature in Hellas Planitia, Melea Planum and
Terra Sirenum.

Figure 6. The spatial variation of the local coefficient for the affecting variables (TI, R2, albedo, Ps, latitude, dust and slope) using the GWR model during northern
hemisphere spring (Ls 0°–90°).
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4. Discussion

Taking 2592 grid cells across the Martian surface as the
research object, this paper detects the spatial clusters of MST
by spatial autocorrelation analysis and analyzes the influencing
factors of MST across global Mars from Martian years 30 to 32
by using the RF and GWR model. The results of spatial
autocorrelation analysis show that the MST is spatially
clustered, and local clusters have huge latitude differences.
The cold spots and hot spots move in the north–south direction
with seasonal changes. The large seasonal variations in the
MST hotspots are partly due to variations in solar heating
associated with orbital eccentricity (Kahn et al. 1992;
Richardson & Wilson 2002).

In addition to the uneven distribution of MST hot spots at
different latitudes, the hot spots of MST are also unevenly
distributed in the same latitude. The discontinuous distribution

of hot spots in the northern hemisphere in the zonal direction
might be related to hemispheric topographic asymmetry or the
TI and albedo. The huge topographical difference in mid-
latitudes, and asymmetric hemispheric topography could play a
major role in altering the strengths of the meridional and small
scaled circulation in summer (Zalucha et al. 2010). Moreover,
the surface covered with high albedo materials will radiate heat
more efficiently and absorb less sunlight than darker materials,
therefore staying cooler throughout the summer (Haberle et al.
2017). A surface with low TI can heat up and cool down
quickly, thus retaining a cool temperature.
On top of topographic asymmetry, TI and albedo, the

heterogeneous distribution of surface temperature might be
caused by some potential local driven factors. We utilized the
GWR to estimate the regional difference in the relationships
between MST and the driving factors. The results of GWR

Figure 7. The spatial variation of the local coefficient for the affecting variables (TI, albedo, dust, latitude, Ps and slope) using the GWR model during northern
hemisphere summer (Ls 90°–180°).
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confirm that the influence of each factor on MST has seasonal
and spatial differences.

The dependence of surface temperature on TI was greater in
the southern hemisphere through all seasons as displayed in
Figures 6–9, compared with the northern hemisphere. The TI is
relatively low in the Martian southern hemisphere, especially the

south pole and the altitude is higher compared with the northern
hemisphere. Mesoscale winds are prone to occur on steep slopes
with low TI (Spiga et al. 2011), and affect the balance of surface
energy budget. Thus, the mesoscale Martian atmospheric wind
has a particularly strong influence on the surface temperature in
the southern hemisphere with steeper slopes and lower TI.

Figure 8. The spatial variation of the local coefficient for the affecting variables (TI, CO2, albedo, Ps, latitude, dust and slope) using the GWR model during northern
hemisphere fall (Ls 180°–270°).
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The regions with high CO2 ice coefficient value moved from
north to south from southern spring to winter. The area highly
affected by CO2 ice was in the northern hemisphere in spring,
in the area near the equator in fall, and in the southern
hemisphere in winter as depicted in Figures 6 and 7. This could
be explained by the seasonal circulation controlled by the

condensation and sublimation of CO2 in high latitudes (Haberle
et al. 2017), which has a crucial influence on the MST. The
CO2 cycle mainly depends on the intensity of solar radiation, so
the polar CO2 ice abundance manifests significant seasonal
differences, and its impact on the climate also varies
seasonally. The impact of CO2 on surface temperature was

Figure 9. The spatial variation of the local coefficient for the affecting variables (TI, CO2, albedo, Ps, latitude, dust and slope) using the GWR model during northern
hemisphere winter (Ls 270°–360°).
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significantly different in the eastern and western hemispheres of
the south polar region, because the surface topography can alter
the CO2 cycle by generating atmospheric gravity waves, and
the gravity waves can change the type and amount of CO2 ice
deposits (Haberle et al. 2017). This occurs in the southern
hemisphere, due to the huge topographical differences in the

southern hemisphere, such as the Tharsis Plateau in the south
and the Hellas and Argyre Basins, which cause differences in
the relationship between surface temperature and CO2 in the
eastern and western hemispheres of Antarctica (Colaprete et al.
2005). In addition, dust can also alter the sublimation rate of
carbon dioxide ice (Gary-Bicas et al. 2020).

Figure 10. The spatial variation of the local coefficient for the affecting variables (TI, CO2, albedo, Ps, latitude, dust and slope) using the GWR model during Martian
years 30–32.
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The albedo had a great influence on the surface temperature
near the equator in northern fall and winter, especially in
Amazonis Plantia with a high albedo, as we can infer from
Figures 8 and 9. Surface albedo is primarily responsible for the
amount of solar energy reflected or absorbed by the Martian
surface (Singh 2020). In the southern spring and summer, Mars
is close to the Sun, and the surface could receive a large amount
of solar radiation. Therefore, the relationship between albedo
and solar radiation is stronger in southern spring and summer
compared with northern spring and summer, which makes
regions with high albedo become colder in these seasons, and
this is especially obvious in low latitudes.

The relationship between latitude on surface temperature was
negative as shown in Figures 6–9, and the most correlated areas
were the southern hemisphere in spring and summer, near the
north pole in fall, and in the northern hemisphere in winter.
This is mainly related to the eccentric orbit of Mars. However,
the surface temperature of the same latitude zone was not the
same, and the response degree with latitude was also different.
This is due to the heterogeneity of multiple surface elements,
such as the difference in local topography, TI and albedo in the
same latitude.

The spatial pattern of the influence intensity of Ps and dust
on surface temperature was similar in each season as depicted
in Figures 6–9. Ps had a great negative correlation with the
surface temperature in the tropical and subtropical regions
during the northern fall and winter, while the dust had a
positive influence on the surface temperature. The large impact
of Ps and dust on the surface temperature mainly occurred in
the tropical and subtropical regions in northern fall and winter,
which was related to the strong Hadley circulation, thermal
tides and topographically forced flow in the low latitudes
regions (Leovy et al. 1973). Hadley circulation is a heat-driven
circulation which was caused by the air rising at warm latitudes
and descending at cold latitudes (Guendelman & Kaspi 2018).
The Hadley circulation is controlled by solar heating, so
circulation varied with seasons. The Hadley circulation has a
strong control on the transportation of dust. Dust particles in
the atmosphere absorb and radiate solar radiation, so the
surface mean temperature is strongly controlled by dust
suspended in the atmosphere (Leovy 2001). In northern
summer, Ps and dust had a stronger correlation with surface
temperature in the southern hemisphere compared with the
northern hemisphere. This could be explained by the hemi-
spheric difference in atmosphere circulation. The hemispherical
asymmetry of tropical and subtropical circulation intensity is
related to the Martian eccentricity and the huge hemispheric
difference in topography (Richardson & Wilson 2002; Zalucha
et al. 2010; Wilson 2012). The circulation is stronger in
southern winter (northern summer) in the southern hemisphere.
The heated dust in the air further expands the scope of the
Hadley circulation and thermal tides. In northern spring, the Ps
and dust had a large negative impact on surface temperature in

Syrtis Major Planum, Terra Sabaea and Tyrrhena Terra in the
tropics.
The terrain slope was used to investigate the correlation

between the MST and topographic conditions. Variations in the
slope had less effect on the surface temperature compared with
the latitude location and the near surface properties such as TI,
albedo, Ps, dust. The topography affects the surface temper-
ature mainly by changing the atmospheric heat transportation.
On Mars, the topography has less effect on the surface
temperature than on Earth, because the atmosphere density on
Mars is much less than that on Earth, and the atmospheric heat
convection and transport are relatively weaker than on Earth
(Read et al. 2015).
However, in the analysis of influencing factors of MST, due

to the limitation of data acquisition and the complex MST
mechanisms which are not yet understood, the influencing
factors of the MST involved in this study are not comprehen-
sive. We only focused on some potential main factors that may
affect surface temperature. In addition, our paper only studied
the spatial and seasonal variation in the relationships between
MST and its potential influencing factors, but whether these
relationships are causal needs to be further investigated.

5. Conclusion

This study investigated the spatial autocorrelation of MST
during Martian years 30–32 across global Mars, and further
quantitatively estimated the seasonal effect of the potential
near-surface meteorological and environmental factors on the
surface temperature for each local region.
The results indicate that the MST presents significant spatial

aggregation, and hot spot and cold spot distribution patterns
display hemispheric asymmetry and seasonal variations. The
hemispheric asymmetry of hot spots is caused by the
hemispheric asymmetry in topography and surface TI and
albedo, which can primarily account for the differing hemi-
spheric strengths of the meridional or small scale circulation in
summer. The discontinuous distribution of hot spots in the
northern hemisphere was caused by the huge topographical
difference in mid-latitudes, and the hot spots were distributed in
low-lying basins with relatively high TI and low albedo.
The spatio-temporal pattern of the MST depends on the

spatial and seasonal variation of meteorological and environ-
mental factors. The difference in dominant factors in different
locations identified by the GWR model was related to the
differences in local geography and climate for local regions
across Mars. The surface temperature was greatly affected by
the latitude locations but the influence in the same latitude zone
was not stable. This was caused by heterogeneity of multiple
near surface environmental elements, such as the difference in
local topography, TI and albedo in the same latitude. The
strong seasonal Hadley circulation and topographically forced
flow were primarily responsible for the variation of surface
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temperature in low-latitudes. Due to the seasonal change and
asymmetry of the Hadley circulation at low latitudes, the Ps
and dust had a strong correlation with the surface temperature
in the tropical and subtropical regions in northern fall and
winter, while in the southern hemisphere, they show a stronger
correlation compared with the northern hemisphere in northern
summer. The polar regions were greatly affected by the
seasonal circulation controlled by the condensation and
sublimation of CO2. The surface temperature in the southern
hemisphere was more sensitive to environmental factors
compared with the northern hemisphere because of the larger
amplitude topography and lower TI in the southern hemisphere.

This study offers a new quantitative insight in understanding
the spatio-temporal variation in spatial autocorrelation and
heterogeneity of the MST. The findings remind us to focus on
the spatial autocorrelation, as well as its variations with
geographical locations and seasons when simulating Martian
climate models. In addition, we emphasize that regional and
seasonal variation of the driving factors are critical in
understanding the MST distribution patterns and ignoring
these spatio-temporal aspects when simulating Martian climate
may cause inaccuracy of models. Our present study was based
on statistical methods combining GIS. We hope that the
findings will encourage more process-based explorations into
the spatial autocorrelation pattern and spatio-temporal potential
driving factors of other phenomena on Mars.
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