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Abstract Asteroseismic observations are crucial to constrainastetiodels with precision. Bayesian
Estimation of STellar Parameters (BESTP) is a tool thaizetl Bayesian statistics and nested sampling
Monte Carlo algorithm to search for the stellar models thestbmatch a given set of classical and
asteroseismic constraints from observations. The cortipntand evaluation of models are efficiently
performed in an automated and multi-threaded way. To ithtistthe capabilities of BESTP, we estimate
fundamental stellar properties for the Sun and the redtgitar HD 222076. In both cases, we find
models that are consistent with observations. We also ateathe improvement in the precision of stellar
parameters when the oscillation frequencies of individuatles are included as constraints, compared
to the case when only the large frequency separation isdedluFor the solar case, the uncertainties of
estimated masses, radii and ages are reduced by 0.7%, Od38#@respectively. For HD 222076, they are
reduced even more noticeably by 2%, 0.5% and 4.7% respbctive also note an improvement of 10%
for the age of HD 222076 when the Gaia parallax is included esnatraint compared to the case when
only the large separation is included as a constraint.
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1 INTRODUCTION as constraints Metcalfe et al. 2010 Jiang etal. 2011
Mathur etal. 2012 Rendle etal. 2019 asteroseismic

Thanks to the very high quality space-borne photometri¢nodeling has proven to be a robust tool to determine
observations, such as CoRoBaglinetal. 2005 and  fyndamental stellar properties, including stellar distm
Kepler Borucki et al. 201)) asteroseismology has greatly (Silva Aguirre et al. 2012Rodrigues et al. 20)4radii and
advanced our knowledge about stellar evolution and theiﬁ1assesq:asagrande et al. 201Rinsonneault et al. 2014
inner structures. The detection of oscillations in solk&-l  gharma et al. 2026and most importantly ages for red gi-
and more evolved red-giant stars has particularly led t¢nts and clump star€asagrande et al. 2018nders et al.
breakthroughs such as the discovery of differential COr®017 Pinsonneaultet al. 2018Consequently, this en-
rotation and a means for distinguishing the hydrogengpies us to characterize systematically the properties
shell-burning stars from the helium-core-burning onee (s€yf the hosts of exoplanets through asteroseismic mod-
Chaplin & Miglio 2013 for a review). eling, which in turn provides an unprecedented level

An important part of almost any study of such of precision in the parameters of the hosted planets
asteroseismic data is the use of stellar models and the conBallard et al. 2014Campante et al. 2015undkvist et al.
putation of theoretical oscillation frequencies for trese 2016. Furthermore, with NASAs near all-sky survey
models. In the last few decades, the techniques of daige Transiting Exoplanet Survey Satellite (TESS) mission
analysis (e.g.Davies & Miglio 2016 Lund etal. 2017  (Rjcker et al. 2015launched in 2018, the synergy between
Corsaro & De Ridder 2014Corsaro et al. 20)5and also  asteroseismology and exoplanet science is set to continue
the strategies of stellar modeling (e.gerenellietal. g grow (Campante et al. 2012019 Huber et al. 2019
2017 Silva Aguirre etal. 201y have greatly developed. jjang et al. 2020 with the mission predicted to increase
In particular, by taking individual oscillation frequemsi
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the number of known solar-type oscillators to a fewtypical uncertainties of photometry and spectroscopy
million (Huber 2018. The availability of asteroseismic observations. As a result, the stellar properties detexchin
data for large numbers of solar-like oscillators enablesrom these methods are greatly dominated by statistical
us to investigate a large ensemble of stars, which is therrors Gerenellietal. 2013 Now we are facing the
key to research on Galactic archaeology (Milio etal.  challenge of precisely determining the fundamental stella
2013 Silva Aguirre et al. 201B8that studies the structure properties utilizing asteroseismic data, by matching
and evolution of the Galaxy. Under such circumstanceghe oscillation modes with the output of theoretical
a tool that can carry out modeling and sampling for amodels. In particular, a complete utilization of the
large number of stars, in an automated and efficient way, ianalysis of the observations requires that the numerical
urgently needed to provide stellar properties with satisfie uncertainties generated for the estimated stellar prigsert
precision. are adequately within the errors of the observational
In this paper, we introduce an objective and automatedonstraints. Many stellar evolution codes, (e.g., ASTEC,
method that performs Bayesian Estimation of STellartCesam2K, GARSTEC, LPCODE, MESA, MONSTAR,
Parameters (BESTP) by means of fitting stellar model&¥aPSI and YRECAIlthaus et al. 2003Pietrinferni et al.
to the asteroseismic data. The method is applicable t8004 Demarque etal. 2008 Christensen-Dalsgaard
the vast number of asteroseismic data expected to emerg®08h Morel & Lebreton 2008 Weiss & Schlattl 2008
from TESS and ESAs upcoming mission PLAnetaryPaxton etal. 201;1Constantino et al. 2014Spada et al.
Transits and Oscillations of stars (PLATORguer etal. 2017, oscillation codes (e.g., ADIPLS, GYRE, JIG,
2014. The rest of the paper is organized as follows. INLOSC and Pesnell;Pesnell 1990 Guenther 1994
Section2, the detailed computational strategies of BESTPChristensen-Dalsgaard 200Q8aScuflaire etal. 2008
are presented. This is followed by two experimentalTownsend & Teitler 20183 and optimization methods
validations (Sect3) with solar data from the Birmingham (e.g., AIMS, AMP, ASTFIT, BeSSP, BASTA and
Solar Oscillation Network (BiSONChaplinetal. 1999 PARAM; Deheuvels & Michel 2011Lebreton & Goupil
and with HD 222076 data from TESS. The conclusion is2014 Rodrigues etal. 20142017 Silva Aguirre et al.

at last presented in Sectidn 2015 Yildizetal. 2016 2019 Creeveyetal. 2017
Serenelli et al. 2017 Mosumgaard et al. 2018
2 COMPUTATIONAL METHOD Tayar & Pinsonneault 2018 Ong&Basu 2019

f knowled b . ined f Rendle et al. 2019are freely available to the community
Most of our knowledge about stars is gaine "Mi5 determine stellar properties from observed oscillation

observations of layers near the stellar surface. Th?requencies Comprehensive comparisons  between
properties of the interiors of stars may be inferred based Ofine well-known evolution codes have recently been

our t;]es(tj(ljjln.dersltgr:‘dlng qf the COTS“]:[UUVG p;)hysms.to datfecarried out for red-giant models and corresponding
MU_C bla |tlonq n ohr.m:tlon-lrles.u ts from o servla.uonsr? theoretical frequencies, in the context of tharhus Red
variable stafrsh n W"'C_ oscillating V\{avgsftrave nto theGiants Challenge (Christensen-Dalsgaard etal. 2020
deep area of t estg ar interior and bring in ormat|ong)t Silva Aguirre et al. 2020p
upper layer. In particular, the most dramatic example is the I
. . . The large volume of asteroseismic data that e-
nearest star from us: the Sun, in which millions of modes o
) I . o merges from the Kepler and TESS missions re-
of acoustic oscillation are observed and identified. These . -
. . L .__Quires an automated approach to efficiently explore
modes sample different regions of the solar interior. Since . . .
. ; ) wide range of model properties in a parallel
distant stars are not spatially resolved, only their modes . ' o
. . ; way, which is the motivation for development of
with spherical harmonic degreés< 3 have measurable Lo
. ~ ESTP. The cornerstone of our model-optimization
amplitudes and can be detected by CoRoT, Kepler ang

» rocedure is based on a code namedaNDDNDS !
TESS. In addition to that, the low degree modes can probp . , . :
. o . , ﬁugh-DImensmnaI And multi-MOdal NesteD Sampling,
the deepest into the stellar interior, collecting physarad

. . . Corsaro & De Ridder 20)4hat performs model compari-
structural information from the inner core to the outer . . . .
photosphere son by means of Bayesian parameter estimation. Bayesian

The precise determination of stellar bro ertiesstatistics has been largely applied in asteroseismic
P prop analysis (e.g.,Benomaretal. 20Q9 Gruberbauer et al.

of fie_ld stars: especially giant stars, is hard whenz 09 Kallinger et al. 2010Handberg & Campante 2011
following classical approaches, such as matching observ orsaro et al. 2013 Classical techniques such as grid-

spectroscopic parameters to stellar tracks or isochroneg. ; . :
: . - ._based modeling, which relies on a large set of precomputed

That is because giant stars with different masses evolving

In dlﬁe_rent stages overlap n the_ Observatlo_nal plane 1 The package of AMONDS is available aht t ps: // di anonds.

(e.g., in the color-magnitude diagram) within thereadthedocs.io
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grids of stellar models to search for the best-fit modeloscillation analysis of these models. For main-sequence
with maximum likelihood, has reached great achievementstar estimations, the computations of stellar evolution
with its applicability for many stars (e.gStello et al. 2009  tracks terminate before the start of the red-giant brarwh; f
Basu etal. 20102012 Metcalfe etal. 2010 Gaietal. red-giantstars, the termination pointis evaluated aéogrd
2011). However, methods implementing Bayesian methodto the average large frequency separation for radial
ology are typically less computationally expensive thanmodes,(Av), which in most cases is a monotonically
grid-based modeling as much fewer models are neededecreasing function of ag€hristensen-Dalsgaard 1993
Since the number of stellar models to be evaluated i$0 ensure that the evolution tracks of the stellar models
very large, implementing a Bayesian method can greatlgover the observational constraints. Instead of caladati
reduce the computational time as well as power for precisthe oscillation frequencies for every model along an
determinations of stellar properties. In this section weevolutionary track, we also exploit the age dependence of
introduce the stellar evolution and oscillation codes#nat  (Av). Once the evolutionary track is finished, we compare
incorporated in BESTP and how the Bayesian modeling ishe calculated(Av) with its observed valueAvs to

carried out. find the best-match model and then calculate frequencies
for models within£10% of Av.,s from the best-match
2.1 Stellar Models model. The typical uncertainty oAAv,,s from one sector

of TESS data is~2% (Silva Aguirre et al. 2020a well
BESTP adopts the Aarhus STellar Evolutionpejow the adopted half range of 10%. Model evaluations
Code  (ASTEC; Christensen-Dalsgaard ~ 2008b gare performed at each iteration of frequency calculations
and the Aarhus adiabatic oscillation packagefor the selected models, and the best-fit model is returned
(ADIPLS; Christensen-Dalsgaard 2008#0 interface for each run. Then the frequency calculations are repeated
with  DiAmMONDS. ASTEC and ADIPLS were i 3 parrower range around the best-fit model with a
developed for helioseismic analysis, and used bymajler time step, until the time step reaches the nearest

Christensen-Dalsgaard et 1999 to generate Model S e difference along the evolutionary track.
which is a well-known reference model for solar

inversions. The codes are also widely employed for the o Bayesian Modeling
analysis of oscillations in solar-type and red-giant stars
The input physics of the current modeling include the latesBESTP is aimed to be an automated and efficient
OPAL opacity tables I¢lesias & Rogers 1996 OPAL  modeling tool utilizing asteroseismic data from missions
equation of state in its 2005 versioRdgers et al. 1996 such as Kepler and TESS. It is designed to conduct model
and NACRE reaction ratesA@gulo et al. 1999 At low  evaluation by matching the outputs and the observations
temperatures, opacities are obtained frBerguson etal. for any given star, to search for the best-fit model
(2009. Convection is treated under the assumption ofautomatically based on the evaluation of each run. Using
mixing-length theoryBohm-Vitense 1958 The modelers the observed constraints and the constitutive physics
have the option of including the effect of overshootimplemented in the models, IBMONDS can provide a
and diffusion in the models. However, rotation is notfairly efficient method of finding the optimal models
considered. by means of Bayesian parameter estimation and nested
The input parameters for ASTEC include the initial Sampling Monte Carlo (NSMCSkilling 2004 algorithm.
massMM, the initial heavy-element abundanZeand the ~ The posterior probability is defined according to Bayes’
mixing-length parameter, which are also the parameters theorem as

to be estimated through the modeling procedure. The L(E|H) P(H)
hydrogen abundanc& is derived based on a Galactic P(H|E) = T PE) (2)
chemical-evolution modelGarigi 200Q Pietrinferni et al.
2004 from where H represents thenypothesiswhich is, in our
X = 0.748 + -2.47 (1) analysis, the free parameter vector consisting of the

three adjustable model inputdf 7, «), and evidence
which returnsX = 0.706 whenZ = 0.0173 and a helium- E corresponds to the calculated model observaii¢s
to-metal enhancement ratidY /AZ = 1.4. for instance luminosityl, radius R, surface gravity
ASTEC can evolve models from the zero-age mainlog g, effective temperaturé,s and individual oscillation
sequence to the tip of the red-giant branch, befordrequenciesv. The prior probability distributionP(H)
the central helium ignition in a helium flash, with a expresses our knowledge about the free paramdters
mass-dependent number of internal time steps. Eadbefore modeling. The denominaté( E) is the marginal
model evaluation involves stellar model computation andikelihood or Bayesian evidence and is a normalization
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factor. Under the assumption that observational congtrainTable 1 Physical Parameters Adopted in the Modeling
are statistically independent and normally distributbeé, t Tool

likelihood functionZ(E|H) is given by Quantity value Units
n 1 9 Solar masa/, 1.9890 x 1033 g
L(E|H) = H X exp _X (3) Solar radiugz 6.95508 x 1010 cm
e V270, 2 )’ Solar luminosity. o, 3.846 x 1033 gem?2s™3
= Gravitational constan ~ 6.6723 x 10~8 cm3g—ls™2
with The values of/, andG are based on the measurementif,
5 n (Oi _ Mi)2 (Christensen-Dalsgaard et al. 2005
X" = 2 (4)
i=1 ¢ where the solar abundance ratid /7). = 0.0245 is

where © and o are the observations and errors. Byadopted Grevesse & Noels 1993and then Equationlf
comparing® and M the likelihood is then maximized is employed to obtain the preliminary estimations of
at each sampling iteration. The logarithm of the posterio#Z and its erroroz. The search space covers6a

probability is range. In the case where [Fe/H] is not available,is
normally searched within the range of(1, 0.03], which
In[P(H|E)| =In[P(H)| — n[P(E)] + In[L(E|H)]. corresponds roughly to a space of([.25, 0.25] for

(5)  [Fe/H]. Lastly, the hyperparameters far are set to be
As for the prior probability”(H), a uniform distribution  betweenl.0 and3.0 with the calibrated solar value equal
is adopted, which requires the hyperparameters to b 1.96 (cf. Sect.3.1). The adopted search space for the
uniformly distributed between the upper and lowerhyperparameters is substantial to return reliable outputs
bounds for the hypothetical parameters H. The for the analysis of solar-type and red-giant stars. However
search space of the prior distribution is therefore definethis method is also applicable to asteroseismic modeling
by the hyperparameters before the modeling initiatesof other types of stars, utilizing different hyperparamgte
To find the hyperparameters fof/, a preliminary and more importantly with suitable physical ingredients in
guess is obtained according to the scaling relationthe stellar evolution code.
(Brown et al. 1991Kjeldsen & Bedding 1995Stello et al. In short, the main steps for BESTP withAMONDS
2009 Kallinger et al. 201D are as follows:

M Vi 3/ Ap 0\ ? Tog 3/2 1. read observational constraints;
= ( ) ( ) (THQ) , (6) . set up of models, likelihood function and hyperparam-

Mg : L
eters to be used in the Bayesian inference;
. set up of drawing algorithm;
. configuration and start of the nested sampling;
. calculation and output of results.

N

Vmax7® AV@

w

with vy.x the frequency of maximum oscillation power.
The symbol® refers to the solar values, with,g o) =
5T7T7K, Ave = 134.88 uHz and Vmax, ) = 3140 uHz
(Kallinger et al. 2013 Equation 6) and other formula-
tions of the scaling relations have been extensively etfiliz
to estimate the stellar parameters from the observe
oscillation frequencies (see, e.dgdekker 2020 for a

[S2 I~

The NSMC algorithm was developed to efficiently
%valuate the Bayesian evidence for any dimensions and to
sample the posterior probability distribution for paraemet
. . . . estimation. The detailed NSMC sampling strategies
review). Li et al. (2021 reported that the scaling relation of DIAMONDS are introduced inCorsaro & De Ridder

S o .
has an intrinsic scatter of 1.7% in mass,() uglng. (2019. BESTP uses three-digit decimal encoding, so
Av andvy,,, elaborately generated by the SYD plpellnein this case there would be a arid ah® models to
(Huber et al. 2009Yu et al. 2018. However, the typical g

uncertainty on the estimated mass with Kepler and COROclea scs?glomreig-t\)l\g ;helg rt:s dgallir:]gersn;[;]eozflelg sgr?t\;zsioreg::i
data is 5-7% Kuberetal. 2012 Miglio etal. 20132. 9 9 ' '

. . run of our method evolves a population of about 2000 to

Therefore, the model mass is searched withia g range . .
: . . .3000 model tracks to find the optimal set of parameters
for main-sequence stars, while for more evolved red giants . o .
and, if needed, we perform multiple independent runs with

Equation ) 'S less precise and hence a larger search rang ifferent hyperparameters, for instance with different

may be considered. For the hyperparameters,dirst the .

metallicity [Fe/H] is converted to the abundance ratig hyperparameters when [Fe/H] is not observed, to make
sure that the optimal models identified from the modeling

with are truly the global solutions. With roughly dozens of
Fo/H| =1 X 1 X 7 oscillation calculations for each track, our method reggiir
[Fe/H] =logyo 7z ) s\ ) (") abouti0f model evaluations, which is nearly 10 000 times
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Fig.1 An example of the sampling points drawn in the 3D _ .
hyperparameter space af/{ Z, o) by BESTP, for run Fig.2 Examples of correlation maps of the hyperparame-

S2 of the solar modeling experiments, with color-coded®rs for solar run S2, with the same color-coded logarithmic
logarithmic likelihood values. likelihood values as in Figl. Top left correlation map

of the parameter sef\{, «). Bottom left correlation map
of the parameter setZ{ o). Bottom right correlation
. ap of the parameter seZ (M). A correlation can be
faster than a complete model grid. Ideally, one week 0Lgan petween these two paramet@o right additional
computing time is needed forAv ~ 15uHz red-giant  correlation map of the parameter seX, (M), where
star on a 24-core machine, and much less time (a fewX is derived from Eq. 1). The horizontal and vertical
days) for a main_sequence star. We also note that, b9ashed lines reprgsent.the locations of the estimated
using a big grid of pre-computed models that covers larg&t€!lar parameters listed in Takefor the y- andz-axes,
o A espectively.

ranges of initial model parameters, in principle our method
can be applied to multiple observational data sets without
repeatedly computing additional models. In addition to
that, BESTP has the flexibility to incorporate improved3.1 Solar Model
physics in the future.

BESTP can only be considered reliable if it results in

accurate outputs of the stellar parameters for the star
3 MODEL-FITTING TESTS that we study most: our Sun. Here we fit models to real

solar data. ASTEC returns stellar properties relative ¢o th
The ultimate goal of BESTP is to estimate the optimalsolar value. In Tablel we summarize a set of physical
stellar parameters by searching for the models thatonstants adopted in the modeling. The observational
best match the constraints from observations. Includingonstraints consist of basic properties of the Silg: =
oscillation frequencies in the optimization process add$777 + 100K, R = 1.00 £ 0.1R5, L = 1.00 £
extra observational constraints to select the best model.1Lq), logg = 4.44 £ 0.1 and [Fe/HE 0.0 £ 0.1,
In this way, more precise parameters should be yieldedith errors that are comparable to the values expected
compared to the methods that do not utilize seismidor stars listed in the Kepler Input Catalogatham et al.
information. In order to test whether BESTP returns2005 and the TESS Input Catalotassun et al. 20}8
reliable outputs, in this section we apply it to realIn addition, the seismic quantitieSv ), max @ and the
observations. First, we begin by applying it to the bestindividual mode frequencies are also used to constrain
observed star, the Sun, for which high-quality disk-the model-fitting. The solar oscillation frequenciés<
integrated data are achievable from multiple observation®) and their corresponding errors,{ ~ 0.02 uHz) are
such as BiSON, to see whether the tool outputs the knowabtained from the 22 yr BiSON data sdDdvies et al.
solar properties within acceptable tolerances. Then w2014 Hale et al. 2016 The results of the modeling are
apply BESTP to a more challenging star, an exoplaneteported in Tabl& where estimated stellar properties and
host star that evolves on the red-giant branch, observetieir uncertainties are presented for different runs. The
by TESS, to validate the efficiency and reliability of the 10 uncertainty corresponds to 68.3% Bayesian credible
modeling tool. intervals.
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3.1.1 Individual frequencies as constraints
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Table 2 Results of Fits to the Solar Data

: . R CAL S1 S2
We have performed the modeling without (run S1) and un
with (run S2) BiSON oscillation frequencies as constraints M M) o (1)-f73 000-?% i 88(1)51)2 00651);? i 8-8(1]38
in t_wo independent runs,_wh!le the spectroscopic obser- 0.719 0.705 % 0.003 0.706 & 0.002
vations and the asteroseismic paramet&rs and vy, a 1.938 1.939 + 0.038 1.950 + 0.025
are applied as constraints in both runs. From Tablee t(GBEQ) 547-% 45%21%% 55-§22ii0-2574
see that while the inferred stellar properties are generall Le(i@) 1.0 0.986 + 0.030 0.980 + 0.023
consistent between the two runs, using oscillations to R &) 1.0 0.992 + 0.007 0.990 + 0.004
: L ‘o log g (cgs) 4.438 4.435 + 0.004 4.434 £ 0.002
constrain the modeling improves the precision of the (Fo/H] 0,008 0.015 & 0.029 0.010 £ 0.019

outputs. This improvement is most significant for the age . - -~ .
. BiSON oscillation frequencies are applied as constramtsuin S2, but

0
for which the error decreases by 8%. not in run S1. Global seismic parametéks andvmax are used in both

runs. The calibration run ‘CAL’ is described in Se8tl.4

3.1.2 Search efficiency

NSMC initially draws a set of live points (the number of
live points NVy;. usually ranges from 500 to 2000) from the

original prior probability density function (PDFP(H). or 00@09090909090909% i
Then at each iteration the model with the lowest likelihood ¥ i RS

is replaced by a new one, drawn from the prior PDF. This 3 -5r 9090 N
process is repeated until the stopping criterion is met. Theg I 9%

set of Vj;,. models can be calculated in parallel, as each _;4[ 7090 ]
one of them is independent from the others. However, I EOOO

the sampling procedure uses information gained from the _15i ‘ ‘ ‘ ‘ ‘ Yy
previous points and hence is not parallelizable. For the 1000 1500 2000 2500 3000 3500 4000
solar model experiments, we udg,,. = 500 and around Frequency{Hz)

2000 sampling points are drawn after the initial set offig. 3 Offset due to the near-surface effects between the
live points. An example of the sampling point drawn by BiSON frequenciesdircles ¢ = 0, diamonds /¢ = 1,
BESTP is illustrated in Figuré&, for run S2 that returns triangles ¢ = 2) and the corresponding modes of the best-
a maximum value of -3.93 for the logarithmic likelihood. fit model from run S2 of the solar case.

The points with high likelihood values are located in .

the center of the hyperparameter space and hence mat%ﬁounq 2000 to 3000 for solar-type and red-giant star
best to the observational constraints. Oscillation freqye modeling.

calculations are certainly computationally demanding, bu )

the number of constraints does not affect the efficiency o?"l'S Surface effect correction

the sampling procedure. Figuepresents distributions of 1o gpserved low-frequency modes of solar oscillation
the- logarithmic likelihood to show relations between the, o from BiSON and are compared with the theoretical
estimated parameters, also for run S2. From the bottomze g encies computed by ADIPLS. It has been established
right diagram of Figur@, we see that there is a correlation by several studies Qhristensen-Dalsgaard et al.
betweenM andZ. The reason for this is simple: we use 1988 1996 Dziembowski et al. 1988
Z to determineX based on Equatiorl), so that a higher Christensen-Dalsgaard & Thompson 199that there
value of Z returns a lower value ok’ and hence a larger- s 5 systematic deviation between the theoretical and
mass model to match the observations. observed frequencies due to the deficient treatment of
The computational efficiency is determined by severathe layers near the surface in the models, known as
aspects, including the computation of the stellar modelshe surface effectThe effect yields a systematic offset
and oscillation modes, the value 8f;,., the configuration of several uHz between the observed and calculated
of nested sampling, etc. The bottleneck is the computatiofrequencies (see an example in F8).and grows larger
time of stellar models and mode frequencies. The currentith higher frequencies. The offset is universal to modes
versions of ASTEC and ADIPLS are not parallelizable.with different ¢ and displays no dependence 6r{also
The computation of a solar-type evolutionary track usuallysee Fig.3). Kjeldsen et al.(2008 proposed a method of
takes only a few seconds, but it can take up-fit minutes  empirical correction of the surface effects that relies on
for a red-giant track. The number of sampling points isa solar calibrated power law. This empirical method is
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computationally cheap compared to the three-dimensional
(3D) radiation hydrodynamics simulations of convection

which are theoretically able to reduce the frequency B
. ) 4000 -------- B
discrepancies caused by the surface effect. The last i 4 ® M
few years have seen some new approaches emerge to i :: .' -
correct the offset (e.g.Roxburgh & Vorontsov 2003 3500~ A ® : : b
Gruberbauer et al. 201Ball & Gizon 2014 Sonoi et al. I : : e
2015 Houdek et al. 201)7 Ball & Gizon (2017 compared 3000. A ® DG
several methods and found that the combined terms of g i : : - IS
surface correction proposed bRall & Gizon (2014 3 Y : :
are slightly superior to other corrections, including the ~ § 2% 4 ¢ PR
solar-calibrated power law formulated k§jeldsen et al. I I A o _' :
(2008, when modeling subgiants and early red-giant 2000~ : : ] . 4
stars with their individual mode frequencies. Therefore, L s e -
we adopt the combined correction froBall & Gizon :,,,,‘f,,,,., ,,,,,,,,,,,,,,,,,,,,,,,,,, LA ]
. 1500 . A
(2014. An example of the surface corrected frequencies ra o . ]
from BiISON data is displayed in Figurd. Although i ° . ]
tiny discrepancies between the corrected frequencies and woo- T
BiSON data are seen towards high frequency, the mean 40 60 80 100 120 140

. . ; F d 134.
value of the discrepancy 18.36 uHz corresponding to a reduency mo )

mean relative difference of1%. We note that only < 3 )
modes are used to constrain the models, but the best-fiig.4 Echelle diagram illustrating observed mode

model also matches the observationsfor 3 modes in  frequencies from BiSON datdilled gray symbolsand
the representative best-fit modelpen colored symbadls

Figure4. from run S2 of the solar case, for radiair€les), dipole
(diamond}, quadrupoletfiangle9 and octupolegquare$
modes. Sizes of the BISON modes are scaled according to
the 1o observation errors. Theoretical modes are corrected
for the near-surface effect by utilizing the combined terms
In Table 2, the estimated outputs fat/, R, logg and  defined by equation (4) iBall & Gizon (2014. Note that

t are given for both runs of S1 and S2, constrainingonly ¢ < 3 modes with frequencies inside the dashed lines
the corresponding properties 4al.9%, ~0.7%,~0.09% are applied as constraints for the fit, but the best-fit model
and ~18% for S1, and to~1.2%, ~0.4%, ~0.05% also matches thé= 3 modes and those outside the dashed
and ~10% for S2, respectively. This demonstrates tha% S

including individual oscillation frequencies as model-j, section2.1 However, freeing bothX and Z would
fitting constraints indeed increases the precision of thé, rease the computation time dramatically, but would not
estimated properties, especially fowhose precision is |44 1o significant improvement. As we can see for the
increased by 8%. However, the estimatetl 2 and L gojar cases, the discrepancies between the BESTP models
are a little smaller than the known §olar values given ing 4 the calibrated model are very smallil6). Therefore,
Table 1, on account of the underestimatéd compared e conclude that the optimal models returned by BESTP
with the calibrated solar model (run ‘CAL" in Tablg)  gaiisfactorily approximate the known solar properties.
generated by ASTEC. The calibration is performed by

iterating overa and the initial X to get Lo and Ry, 39 Hp 222076

at 4.57 Gyr, with initial Z = 0.0173, which returns

Xcal = 0.719 for the calibrated model. Nevertheless, theThe Bayesian modeling tool BESTP was successfully
modeling procedure estimates the valuesXoby using applied to the red-giant star 46 LMi observed by the
Equation ) which givesX = 0.706 with Z = 0.0173.  Hertzsprung Stellar Observation Network Group (SONG)
It takes longer time for the models with smaller initial Telescope Grundahl et al. 2017 as its first target, to

X to reach the same point on the evolutionary tracksdetermine the stellar mass and age using asteroseismic
That is why the estimated ages for the solar model frommodeling Frandsen et al. 20)8More recently, as TESS
run S1 and S2 are a little larger than that used in theeleased its first asteroseismic data, we analyzed thetplane
calibration. The differences in the output properties mighhosting red-giant star HD 222076 (TIC 325178933) and
in principle be reduced if botk’ and” are set free, rather foretell the destiny of the planetary system by modeling the
than fixed by the helium-to-metal enrichment ratio givenstellar age and the timing of the engulfment of the planet.

3.1.4 Discussion
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Table 3 Results of Model Fits for HD 222076

Run OBS T1 T2 T3
Av (uHz) 15.6 £ 0.13 15.6 + 0.07 15.9 + 0.02 15.9 +0.02
M (M) 1.154 4 0.071 1.174 + 0.050 1.163 + 0.037
z . 0.0199 & 0.0027 0.0204 + 0.0030 0.0201 % 0.0027
X . 0.701 4 0.007 0.699 & 0.007 0.700 £ 0.006
o e 1.907 + 0.081 1.919 + 0.072 1.920 + 0.061
t (Gyr) . 6.59 & 1.46 6.32+1.10 6.52 & 0.82
Togr (K) 4806 =+ 100 4795 + 45 4808 + 48 4804 + 27
LLe) 9.14+0.33 9.26 & 0.56 9.23 £ 0.56 9.15 4 0.23
RRp) . 4.415 4 0.089 4.394 % 0.066 4.379 4 0.045
log g (cgs) . 3.210 % 0.009 3.223 4 0.006 3.221 £ 0.005
[Fe/H] 0.05 £ 0.10 0.06 & 0.06 0.08 & 0.06 0.07 & 0.06

The observation constraints are listed in the ‘OBS’ coluifime TESS oscillation frequencies are applied as constraint
in run T2, but not in run T1. Gaia luminosity, complementedhwidividual frequencies, are used in run T3. The global
seismic parametedv is utilized in all the runs.

In the following sections, we present the detailed modelinghe uncertainties of the estimated parameters are larger

of HD 222076 with TESS asteroseismic data. than in the solar case, which is expected for red giants.
Masses, radii and ages obtained from T1, in which axy
3.2.1 Modeling and spectroscopic observables are used, have uncedaintie

at the 6%, 2% and 22% level that are less than half of

The asteroseismic analysis of HD 222076 with TESS datéhe values reported bgilva Aguirre et al.(20203 who

was done byliang et al(2020. The star is ascending on Performed the first asteroseismic investigations for an
the red-giant branch witi\v = 15.6 + 0.13 uHz and ensemble of red-giant stars with TESS applying the same
Vmax = 203.0 + 3.6 uHz, which leads to a preliminary observational constraints as in T1 plus... This level of
mass ofl.1540.13 M, by adopting a spectroscofiits = statistical uncertainty is sufficient for asteroseismicdgt
4806 + 100K (Wittenmyer et al. 2016in Equation 6). of a large ensemble of red-giant stars. Moreover, including
Jiang et al. (2020 determined the stellar mass to beindividual oscillation frequencies as constraints in the
1.12My,. Therefore, in the modeling process we searchHnodeling (T2) decreases the uncertainties of the inferred
for masses in the range between 1.0 andM.3, rather ~Parameters, compared with the run T1, by 2%, 0.5% and
than using a larger space as described in Sectignh 4.7% for M, R andt, respectively. Further improvement
The hyperparameters faf are [.01, 0.03], covering in the precision is seen when the luminosity obtained
the observed [Fe/H} 0.05 + 0.10, and those fora from Gaia DR2 parallax is included in the fit (T3), as the
are [1.7, 2.1]. Utilizing a Gaia Data Release 2 (DRZ)statistical uncertainties in T3 increase ®$%, ~1% and

parallax of11.024 + 0.022 mas (Gaia Collaboration et al. ~10% from T1, forAM, R andt, respectively. T2 and T3
2018 with the bolometric fluxF,,; = 3.57 + 0.13 x return somewhat higher values afv than observations,

10~8ergs ! cm2 obtained from the broadband spectralbecause the estimations afi are performed before the
energy distribution (SED) analysis yields = 9.14 +  surface effect correction that can reduce the value of
0.33 L, (see section 2.2 afiang et al(202Q for details Av. Overall, BESTP is able to reproduce observations
of the SED analysis). We have tested BESTP forin all the three scenarios. As illustrated in Figurethe
HD 222076 in three independent scenarios with differenestimated stellar properties are located near the center
observation constraints: without (run T1) and with (run T2)of the error box of the observational constraints, with
individual oscillation frequencies, and with (run T3) both uncertainties inZ.s all below the I observation error.
oscillations and.. In all three scenarios, the constraints areHowever, uncertainties of from T1 and T2 are higher
complemented with the spectroscoffig; and [Fe/H], as than the observation error, but it significantly decreases i
well as asteroseismidr. The Hertzsprung-Russell (HR) T3, thanks to the inclusion of Gaia luminosity.
diagram featuring the theoretical evolutionary tracks and e note that the precisions yielded by T3 are improved
the spectroscopic constraints are presented in Figure by ~8% for M, ~4% for R and ~24% for ¢, compared
with the consolidated results from different codes and
3.2.2 Results methods byJiang et al.(2020 as additional systematic
errors are included in their analysis. The computation of
The modeling results for the three scenarios (T1, T2 andhodels for HD 222076 takes much longer time than the
T3) are listed in Tabl&. The results returned by the three solar case, due to the time-consuming calculations of g
runs are generally consistent with each other. Howevemodes.
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and later PLATO) will lead to the same increase in the

207 1 number of stars with precise stellar parameters.
: Lo 1 BESTP can be utilized to determine ages for a
15 ol ] 5 large set of stars, which is crucial for various studies,
S gl $ f 1 such as Galactic archaeology and exoplanetary science.
2oL sst 1 b Although the computation times for red-giant stars are
= 4900 4690 4800 4780 4700 4650 wEd relatively long, which limits the potential of applying
I 1 asteroseismic modeling for a very large number of
5 i evolved stars, a smaller sample of asteroseismic targets
L o1s < 1 can still serve as a calibration set for the full set of
ol .. b Lo 08 L ! stars, either using the scaling relatiorgellinger 2019
6000 R 5000 4900 2020 or deep learningHon et al. 202 Nevertheless, the

computational efficiency could be significantly improved

initial masses but same chemical abundan€e£ 0.702 by ad_optmg a pre?calcula_lted model database, thereby
and Z —= 0.0191) and mixing length parameter( — reducing computational time for stellar models and
1.917). The initial masses of the models increase fromoscillation frequencies. This paper discussed only the
0.9Mp,) to 1.3V, (values presented at the start of everyrandom errors. Biases introduced by such aspects as
other track) with a step ad.05M,. The small rectangle missing physics are well beyond the present study.

is the 1o error box for the observational constraints (i.e.,
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