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Abstract Two-way Doppler measurement is a typical Earth-based radiometric technique for interplanetary
spacecraft navigation and gravity science investigation. The most widely used model for the computation
of two-way Doppler observables is Moyer’s differenced-range Doppler (DRD) formula, which is based
on a Schwarzschild approximation of the Solar-System space-time. However, the computation of range
difference in DRD formula is sensitive to round-off errors due to approximate numbers defined by the norm
IEEE754 in all PCs. This paper presented two updated models and their corresponding detailed instructions
for the computation of the two-way Doppler observables so as to impair the effects of this type of numerical
error. These two models were validated by two case studies related to the Rosetta mission—asteroid Lutetia
flyby and comet 67P/Churyumov-Gerasimenko orbiting case. In these two cases, the numerical noise
from the updated models can be reduced by two orders-of-magnitude in the computed two-way Doppler
observables. The results showed an accuracy from better than 6×10−3 mm s−1 at 1 s counting time interval
to better than 3× 10−5 mm s−1 at 60 s counting time interval.
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1 INTRODUCTION

Two significant tasks in interplanetary exploration con-
ducted by robotic spacecraft are navigation and gravity
science investigation. The core outputs of either task
are based upon minimizing the residuals, computed as
the differences between measured quantities and their
computed values applying mathematical models in a
least-squares sense (Zannoni & Tortora 2013), performed
by spacecraft navigation and geophysical parameter
estimation software (hereinafter referred to as navigation
software). The emphasis is thus on mitigating the effects of
noise in both measurements and corresponding computed
observables, namely on improving the accuracy of both
measurements and corresponding computed observables.
Two-way Doppler, as an Earth-based radiometric track-
ing technique, is a typical type of measurement for

interplanetary spacecraft navigation and gravity science
investigation. The measurement accuracy becomes much
higher thanks to the better performance of ground tracking
systems, onboard Ultra-Stable Oscillators and multi-
frequency observations so as to meet requirements for
different missions.

The average measurement accuracy, scaled by the
square root of the counting time (Pätzold et al. 2001),
ranges from 0.1 to 0.02 mm s−1 at 60 s counting interval
(Iess et al. 2012). For the Dawn mission, the accuracy
is from 0.07 to 0.44 mm s−1 (Centinello et al. 2015).
For the Mars Express (MEX) mission, the average
accuracy is 0.051 mm s−1 at a 10 s counting interval
(Pätzold et al. 2016b) whereas the value becomes
around 0.05 mm s−1 at a 60 s counting interval (around
0.05

√
60/10 ≈ 0.12mm s−1 at a 10 s counting interval)

for the Rosetta mission. However, this is not the end of
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the story. Observations at Ka band provide a significant
improvement for Cassini two-way Doppler tracking. An
accuracy of about 9 × 10−4 mm s−1 with a count time
of 1000 s (around 0.009 mm s−1 at 10 s counting interval)
was achieved during the gravitational wave experiment
(GWE) that was part of the Cassini mission with additional
help from solar opposition (Armstrong et al. 2003). Hence,
corresponding computed observables are necessary to be
obtained with a high accuracy, aiming at the exploitation
of valuable assets.

Errors in the computed two-way Doppler observables
are caused by incomplete mathematical models and
numerical errors that occur in the computation performed
by the navigation software relying on these models
(Zannoni & Tortora 2013). A two-way Doppler model
named “differenced-range Doppler” (DRD), developed
by Moyer (2005), is based upon a Schwarzschild
approximation of the Solar-System space-time and is
most widely implemented in authoritative navigation
software such as NASA/Jet Propulsion Laboratory (JPL),
California Institute of Technology’s Orbit Determination
Program (ODP), and Mission-Analysis, Operations,
and Navigation Toolkit Environment (MONTE), ESA’s
Advanced Modular Facility for Interplanetary Navigation
(AMFIN) and NASA’s Goddard Space Flight Center’s
GEODYN-II. The core of this model is calculating a
simple differencing of two subsequent ranges (at the
start and the end of counting time) between the Earth
station and the spacecraft. For a distant probe at several
AUs, the numerical accuracy of the range in the software
compiled in double-precision mode is at the level of
millimeters. This corresponds to using double-precision
floating-point numbers (Iess et al. 2012; IEEE 2019),
giving the numerical accuracy of 16 digits. This level is
enough for the range of measurement accuracy. However,
large errors will be induced by the simple differencing of
two large ranges corresponding to loss of significance, not
the range itself.

In general, there are two strategies for reducing the
loss of significance in the two-way Doppler model. One is
compiling the navigation program using the floating-point
representation in a higher precision, such as quadruple-
precision representation. However, it increases both the
complexity of the source code and the execution time of
the program. Moreover, the published ephemerides of the
celestial bodies are stored in a double-precision-mode and
we have to consider the compatibility between a subset
of procedures processing the ephemerides in double-
precision and other subroutines recompiled in quadruple
precision. This strategy is thus not widely adopted in these
software packages.

The other method is reducing the loss of significance
from a mathematical point of view, i.e. reconstructing
the differencing of two large numbers by applying
mathematical models. ODP and AMFIN implement an
older formula, based upon a truncated Taylor series,
called the integrated Doppler (ID) formulation (Zannoni &
Tortora 2013). As described in detail in Moyer (1971), the
computation of two-way Doppler observables is obtained
by expanding the frequency shift into a Taylor series,
with coefficients evaluated at the midpoint of the count
interval, and integrating term by term. However, this
formulation was then replaced by DRD formulation in
lots of navigation software such as the current version
of ODP and MONTE (Zannoni & Tortora 2013) due to
limits on the counting time. GEODYN-II refined DRD
formulation based upon the fact that the geometrical
spacecraft-ground range difference can be expanded into a
multidimensional Taylor series. The refined DRD formula
was described in Rowlands et al. (2015), where the impact
on the accuracy of Mars spacecraft navigation was also
discussed. However, we found another crucial fact, which
was not considered in Rowlands et al. (2015), that this
formulation would be ineffective if the center of integration
is the Sun. This is because the simple differencing of two
subsequent spacecraft positions in J2000 frame is utilized
in this model. This will also induce the loss of significance
for the spacecraft far away from the Sun. Moreover, this
formula is not applicable when the ephemeris of the
central body, such as a small body, is not in the form
of Chebyshev. Tommei et al. (2010) proposed a 7-node
Gaussian quadrature formula that is incorporated into the
computation of the averaged value of range rate over large
count times. However, this detailed formula, containing
the development of a new time coordinate Mercury
Dynamic Time (TDM) for testing general relativity in the
BepiColombo mission, is a complicated complement for
regular two-way Doppler models. For these reasons, more
detailed formulas of the two-way Doppler observables for
reducing loss of significance are necessary to be studied
and developed.

This paper proposes two updated models of computed
two-way Doppler observables for reducing loss of sig-
nificance, considering different count times and centers
of integration. In Section 2, both updated models and
their corresponding detailed instructions are introduced, as
well as a basic description of DRD model. The validation
and limits of both models are analyzed in Section 3 by
two case studies related to the Rosetta mission—asteroid
Lutetia flyby and comet 67P/Churyumov-Gerasimenko
(hereinafter referred to as comet 67P) orbiting case. At last,
Section 4 draws the conclusions.
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Fig. 1 Schematic diagram of Doppler measurements in the two-way mode.

2 UPDATED MODELS OF COMPUTING
TWO-WAY DOPPLER OBSERVABLES

2.1 Traditional Moyer’s Two-way Doppler Model
(DRD model)

The measured quantity of Doppler tracking is the relative
velocity between a spacecraft and a ground station. In
the two-way mode, illustrated by Figure 1, the ground
station transmits an uplink radio signal at the epoch t1s
and the spacecraft sends back a frequency-shifted replica
of the received signal at the epoch t2s. The same ground
station receives the downlink radio signal at the epoch
t3s. Likewise, the ground station transmits an uplink radio
signal at the epoch t1e and the spacecraft sends back
a frequency-shifted replica of the received signal at the
epoch t2e. The same ground station receives the downlink
radio signal at the epoch t3e. t3e − t3s is the counting
interval Tc. The data time tag is the midpoint of the
counting interval.

Here we discuss merely the formulation with a
constant uplink frequency, i.e. un-ramped DRD model,
expressed as Moyer (2005)

Cunramped =
1

2

(
run (t3e)− run (t3s)

Tc
+
rdn (t3e)− rdn (t3s)

Tc

)
+

1

2

(
rus (t3e)− rus (t3s)

Tc
+
rds (t3e)− rds (t3s)

Tc

)
(1)

where Cunramped is the computed value of two-way Doppler
observables, run (t3e) is the Euclidean range between the
ground station at time t1e and the spacecraft at time t2e,
run (t3s) is the Euclidean range between the ground station
at time t1s and the spacecraft at time t2s, rdn (t3e) is the
Euclidean range between the ground station at time t3e and
the spacecraft at time t2e, rdn (t3s) is the Euclidean range
between the ground station at time t3s and the spacecraft at
time t2s, rus (t3e) is the sum of range of second-order terms
(relativistic light-time delays, time-scale transformations,
electronic delays and transmission media delays) in the
uplink from t1e to t2e, rus (t3s) is the sum of range of
second-order terms in the uplink from t1s to t2s, rds (t3e)
is the sum of range of second-order terms in the downlink
from t3e to t2e and rds (t3s) is the sum of range of second-
order terms in the downlink from t3s to t2s.

The computations of run (t3e), r
u
n (t3s), r

d
n (t3e) and

rdn (t3s) follow an iterative step of uplink and downlink
light-time computation. Here the emphasis is on the reason
why Equation (1) is sensitive to numerical errors instead
of on the computation of these eight ranges, which is
described by Moyer (2005) in detail.

The source codes of most navigation software are
compiled in double-precision representation, following the
IEEE754 standard (IEEE 2019). For a double precision
number with 64 bit word, only 52 bits are used for
the mantissa and the resulting maximum relative error
is about 1.1×10−16, corresponding to around 0.15 mm
range error at 10 AU (Iess et al. 2012). Moreover, the



191–4 W.-T. Jin et al.: Reducing Loss of Significance for Two-way Doppler Observables

Table 1 Simulation Setup for the Validation and Analysis of UTD Model
Setups related to spacecraft

Central body Sun
N-body perturbation JPL DE430 Ephemeris (eight planets, Earth’s Moon, Pluto), three big

asteroids (Folkner et al. 2014)
Perturbation from Lutetia GM = 0.1134 km3 s−2 (Pätzold et al. 2011)
Relativistic Perturbation Point mass of the Sun (Moyer 2005)
Solar radiation pressure Canon ball model (Montenbruck & Gill 2012)

Setups related to ground station
Tracking station DSS 63
Counting interval 1 s, 5 s and 10 s
Tracking gap without tracking gap
Tracking span from 4 hr before closest approach to 6 hr after closest approach

value of Earth-spacecraft Euclidean ranges at t3e and
t3s is large and nearly equal for interplanetary missions.
The characteristics of IEEE754 floating-point algorithms
reveal that their simple differencing run (t3e)−run (t3s) and
rdn (t3e) − rdn (t3s) will introduce much loss of significant
digits. rus (t3e) − rus (t3s) and rds (t3e) − rds (t3s) can be
by contrast computed accurately compared to the present
level of noise in the measurements. We will not discuss
in this paper this type of error since Zannoni & Tortora
(2013) analyzed the statistical character of this numerical
noise and presented a mathematical model for the expected
numerical errors in the two-way Doppler observables
computed with the DRD model. We will step up efforts
to develop updated two-way Doppler mathematical models
to mitigate as much as possible the effects of this type of
numerical noise.

2.2 GEODYN-II’s Interplanetary Doppler Model
(GID model)

The GID model can be considered as an improved
version of the DRD model since run (t3e) − run (t3s) and
rdn (t3e) − rdn (t3s) are computed to a high numerical
precision whereas the computation of rds (t3e) − rds (t3s)

and rds (t3e) − rds (t3s) follows the DRD formulation. In
the GID model, run (t3e)− run (t3s) and rdn (t3e)− rdn (t3s)
are respectively expanded into a multidimensional Taylor
series at t3s. Here we give the formulas of these two
differenced-ranges as follows.

rdn (t3e)− rdn (t3s) = f
(1)
d (0, 0, 0) ‖D‖

+
1

2
f
(2)
d (0, 0, 0) ‖D‖2

+
1

6
f
(3)
d (0, 0, 0) ‖D‖3 +O

(
‖D‖3

)
(2)

where D is the downlink change vector and fd is the
representation of rdn (t3e) as a function of downlink change
vector. Here O(‖D‖3) is neglected and f

(1)
d (0, 0, 0),

f
(2)
d (0, 0, 0) and f (3)d (0, 0, 0) are computed as:

f
(1)
d (0, 0, 0) =

ndRd

rdn (t3s)
(3)

f
(2)
d (0, 0, 0) =

rdn (t3s)− 1
rdn(t3s)

(ndRd)

(rdn (t3s))
2 (4)

f
(3)
d (0, 0, 0) =

rdn (t3s) (ndRd) (−1− 2sd) +
3

rdn(t3s)
(ndRd)

3

(rdn (t3s))
4

(5)

where nd is the unit vector of D, Rd is the barycentric
position vector from the spacecraft at time t2s to the
ground station at time t3s, and sd is the sum of three
components of nd, Rd and D which can be computed as

Rd = XE (t3s)+XGS (t3s)−XC (t2s)−XSC (t2s) (6)

where XE (t3s) is the barycentric position of the Earth
at time t3s, XGS (t3s) is the barycentric position of the
ground station as seen from the Earth at time t3s, XC (t2s)

is the barycentric position of the central body at time t2s
and XSC (t2s) is the barycentric position of the spacecraft
as seen from the central body at time t2s.

D = Xd
E +Xd

GS −XC −XSC (7)

where Xd
E is the barycentric position difference vector

from the solar system barycenter to the Earth at times t3e
and t3s, Xd

GS is the barycentric position difference vector
from the Earth to the ground station at times t3e and t3s,
XC is the barycentric position difference vector from the
solar system barycenter to the central body at times t2e and
t2s, and XSC is the barycentric position difference vector
from the central body to the spacecraft at times t2e and t2s.
Here Xd

GS and XSC are computed directly as:

Xd
GS = XGS (t3e)−XGS (t3s) (8)

XSC = XSC (t2e)−XSC (t2s) (9)

where XGS (t3e) is the barycentric position of the ground
station as seen from the Earth at times t3e, and XSC (t2e) is
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Fig. 2 Changes in the simulated two-way Doppler observables (m s−1) due to the mass of Lutetia at 1 s, 5 s and 10 s
counting time.

the barycentric position of the spacecraft as seen from the
central body at time t2e.

It is necessary to compute XC and Xd
E in Equation (7)

as:

XC =

NC−1∑
k=0

CCk 3×1 (τ2s)P
C
k (10)

Xd
E =

12∑
k=0

(
CEB
k 3×1

(
τEB
3s

)
P EBd
k −

CMk 3×1

(
τM3s
)

1 + µE
µM

PMd
k

)
(11)

where τ2s is time t2s in the domain of Chebyshev for
the central body, τEB

3s is time t3s in the domain of
Chebyshev for the Earth-Moon barycenter, τM3s is time t3s
in the domain of Chebyshev for the Earth’s Moon, NC
is the order of the Chebyshev polynomial for the central
body, CCk 3×1 (τ2s) is Chebyshev coefficients at τ2s for
the central body, CEB

k 3×1

(
τEB
3s

)
is Chebyshev coefficients

at τEB
3s for the Earth-Moon barycenter, CMk 3×1

(
τM3s
)

is
Chebyshev coefficients at τM3s for the Earth’s Moon, PCk is
Chebyshev differencing polynomials for the central body,
k=0,1,2. . . NC, P EBd

k is Chebyshev differencing polyno-
mials of the Earth-Moon barycenter for the downlink

signal, k=0,1,2. . . ,12, PMd
k is Chebyshev differencing

polynomials of the Earth’s Moon for the downlink signal,
k=0,1,2. . . ,12, µE and µM are the standard gravitational
parameter of the Earth and Earth’s Moon, respectively.
Here τ2s, τEB

3s and τM3s are all computed utilizing official
subroutines provided by JPL; CCk 3×1 (τ2s), C

EB
k 3×1

(
τEB
3s

)
and CMk 3×1

(
τM3s
)

are all obtained from JPL celestial
ephemeris.

P ck in Equation (10) is computed applying the
following recurrence relationship

PC0 = 0 (12)

PC1 = τ2e − τ2s (13)

. . .

PCk = 2τ2eP
C
k−1 + 2 (τ2e − τ2s)PCk (τ2s)− PCk−2 (14)

and Pk(τ2s) is the Chebyshev polynomial, computed using
the recurrence relationship described in Montenbruck &
Gill (2012). Likewise, P EBd

k in Equation (11) is obtained
by replacing C with EBd, τ2e with τEB

3e and τ2s with τEB
3s .

PMd
k is obtained by replacing C with Md, τ2e with τM3e and
τ2s with τM3s .
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Table 2 The Mean Value (MV) and Standard Deviation (STD) of the Differences between Simulated
Doppler Changes and Their Polynomial Fits Using Different Models at Different Count Times

1s-count time 5s-count time 10s-count time
m s−1 MV STD MV STD MV STD
DRD model 1.3509e-07 1.8424e-04 1.3495e-07 5.6168e-05 1.3742e-07 2.9579e-05
GID model 1.3399e-07 1.2432e-04 1.3397e-07 4.9070e-05 1.3802e-07 2.6043e-05
UTD model 1.2094e-07 5.5251e-06 1.2094e-07 1.1164e-06 1.2093e-07 5.7720e-07

run (t3e) − run (t3s) can be computed in a similar way
as

run (t3e)− run (t3s) = f (1)u (0, 0, 0) ‖U‖

+
1

2
f (2)u (0, 0, 0) ‖U‖2

+
1

6
f (3)u (0, 0, 0) ‖U‖3 +O

(
‖U‖3

)
(15)

where fu is the representation of run (t3e) as the function of
uplink change vector and U is uplink change vector. Here
O(‖U‖3) is neglected and f (1)u (0, 0, 0), f (2)u (0, 0, 0) and
f
(3)
u (0, 0, 0) are computed as

f (1)u (0, 0, 0) =
nuRu

run (t3s)
(16)

f (2)u (0, 0, 0) =
run (t3s)− 1

run(t3s)
(nuRu)

(run (t3s))
2 (17)

f (3)u (0, 0, 0) =

run (t3s) (nuRu) (−1− 2su) +
3

run(t3s)
(nuRu)

3

(run (t3s))
4

(18)

where nu is the unit vector of U, Ru is the barycentric
position vector from the spacecraft at time t2s to the
ground station at time t1s and su is the sum of three
components of nu, Ru and U which can be computed as

Ru = XE (t1s)+XGS (t1s)−XC (t2s)−XSC (t2s) (19)

where XE (t1s) is the barycentric position of the Earth at
time t1s and XGS (t1s) is the barycentric position of the
ground station as seen from the Earth at time t1s.

U = Xu
E +Xu

GS −XC −XSC (20)

where Xu
E is the barycentric position difference vector

from the solar system barycenter to the Earth at time t1e
and t1s, and Xu

GS is the barycentric position difference
vector from the Earth to the ground station at time t1e and
t1s. Here Xu

GS is computed directly as

Xu
GS = XGS (t1e)−XGS (t1s) (21)

where XGS (t1e) is the barycentric position of the ground
station as seen from the Earth at time t1e, and where
XGS (t1s) is the barycentric position of the ground station
as seen from the Earth at time t1s.

Xu
E in Equation (20) is necessary to be computed as

Xu
E =

12∑
k=0

(
CEB
k 3×1

(
τEB
1s

)
P EBu
k −

CMk 3×1

(
τM1s
)

1 + µE
µM

PMu
k

)
(22)

where τEB
1s is time t1s in the domain of Chebyshev

for the Earth-Moon barycenter, τM1s is time t1s in the
domain of Chebyshev for the Earth’s Moon,CEB

k 3×1

(
τEB
1s

)
is Chebyshev coefficients at τEB

1s for the Earth-Moon
barycenter and CMk 3×1

(
τM1s
)

is Chebyshev coefficients
at τM1s for the Earth’s Moon. Here τEB

1s and τM1s are
computed utilizing official subroutines provided by JPL;
CEB
k 3×1

(
τEB
1s

)
and CMk 3×1

(
τM1s
)

are obtained from JPL
celestial ephemeris. P EBu

k is computed via the same
formulas with P EBd

k by replacing EBd with EBu, τEB
3e with

τEB
1e and τEB

3s with τEB
1s . PMu

k is computed applying the same
formulas with PMd

k by replacing Md with Mu, τM3e with τM1e
and τM3s with τM1s .

2.3 Our Updated Doppler Model Based on Taylor
Series (UTD model)

The UTD model, considering the case when the central
body of the spacecraft is the Sun, is in a sense a supplement
to the GID model. The supplement contains the following
three aspects of improvement.

1) The formulas of f (3)u (0, 0, 0) and f
(3)
d (0, 0, 0) are

updated since Equations (3) and Equation (18) are
considered not correct.

2) The formulas of Xu
E, Xd

E and XC are updated since
the case is considered that corresponding time tags
related to the start and the end of Doppler counting
interval fall into two separate JPL time blocks.

3) When the central body of the spacecraft is the Sun,
it is necessary to update the formula XSC into a new
version since the direct computation of Equation (9)
would introduce large numerical errors.

In the UTD model, f (3)d (0, 0, 0) and f (3)u (0, 0, 0) are
expressed as:

f
(3)
d (0, 0, 0) =

−3rdn (t3s) (ndRd) +
3

rdn(t3s)
(ndRd)

3

(rdn (t3s))
4

(23)
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Table 3 Simulation Setup for the Validation and Analysis of UID Model
Setups related to spacecraft

Central body Comet 67P 3× 3 gravity field, where C11 is 7.38e-5
N-body perturbation JPL DE430 Ephemeris (eight planets, Earth’s Moon, Pluto), three big

asteroids (Folkner et al. 2014)
Relativistic Perturbation Point mass of the Sun (Moyer 2005)
Solar radiation pressure Canon ball model (Montenbruck & Gill 2012)
Outgassing model As described in Godard et al. (2015)

Setups related to ground station
Tracking station DSS 34
Counting interval 10 s, 30 s and 60 s
Tracking gap without tracking gap
Tracking span 2016-05-25T09:48:53.949 - 2016-05-25T13:27:49.949

f (3)u (0, 0, 0) =
−3run (t3s) (nuRu) +

3
run(t3s)

(nuRu)
3

(run (t3s))
4 .

(24)
Moreover, XC, Xd

E and Xu
E can be computed in the

UTD model as

XC =

NC−1∑
k=0

[
CCk 3×1 (τ2s)P

C
k + CCk3×1

PCk (τ2e)
]

(25)

∆Xd
E =

12∑
k=0


(
CEBk 3×1

(
τEB3s

)
∆PEBdk −

CMk 3×1(τM3s )
1+

µE
µM

∆PMd
k

)
+(

∆CEBdk 3×1P
EB
k

(
τEB3e

)
−

∆CMdk 3×1

1+
µE
µM

PMk
(
τM3e
))


(26)

∆Xu
E =

12∑
k=0


(
CEBk 3×1

(
τEB1s

)
∆PEBuk −

CMk 3×1(τM1s )
1+

µE
µM

∆PMu
k

)
+(

∆CEBuk 3×1P
EB
k

(
τEB1e

)
−

∆CMuk 3×1

1+
µE
µM

PMk
(
τM1e
))


(27)

where

CCk3×1
= CCk 3×1 (τ2e)− C

C
k 3×1 (τ2s) (28)

CEBd
k 3×1 = CEB

k 3×1

(
τEB
3e

)
− CEB

k 3×1

(
τEB
3s

)
(29)

CMd
k 3×1 = CMk 3×1

(
τM3e
)
− CMk 3×1

(
τM3s
)

(30)

CEBu
k 3×1 = CEB

k 3×1

(
τEB
1e

)
− CEB

k 3×1

(
τEB
1s

)
(31)

CMu
k 3×1 = CMk 3×1

(
τM1e
)
− CMk 3×1

(
τM1s
)
. (32)

Here τ2e is time t2e in the domain of Chebyshev for the
central body, τEB

3e is time t3e in the domain of Chebyshev
for the Earth-Moon barycenter, τM3e is time t3e in the
domain of Chebyshev for the Earth’s Moon, τEB

1e is time
t1e in the domain of Chebyshev for the Earth-Moon
barycenter, τM1e is time t1e in the domain of Chebyshev for
the Earth’s Moon, CCk 3×1 (τ2e) is Chebyshev coefficients
at τ2e for the central body, CEB

k 3×1

(
τEB
3e

)
is Chebyshev

coefficients at τEB
3e for the Earth-Moon barycenter,

CMk 3×1

(
τM3e
)

is Chebyshev coefficients at τM3e for the
Earth’s Moon, CEB

k 3×1

(
τEB
1e

)
is Chebyshev coefficients at

τEB
1e for the Earth-Moon barycenter and CMk 3×1

(
τM1e
)

is
Chebyshev coefficients at τM1e for the Earth’s Moon. If
corresponding time tags, related to the start and end of
Doppler counting interval, fall within the same JPL time
block, the second term in Equations (25)–(27) will vanish
since values of Equations (28)–(32) are all zero.

When the central body of the spacecraft is the Sun,
XSC (t2s) and XSC (t2e) are in general large and nearly
equal. Here we give the following detailed derivation of
the formula for XSC.

The spacecraft orbit around the central body is
obtained by solving the following differential equation
numerically.

dXSC

dt
= h (t,XSC) (33)

where h is the differential equation for spacecraft
trajectories.

The spacecraft state vector at time t2e can be
represented using the s-order Runge-Kutta method
(Montenbruck & Gill 2012).

XSC (t2e) = XSC (t2s) + (t2e − t2s)
s∑
i=1

biki6×1
(34)

where

ki6×1 =

h

(
t2s + ci (t2e − t2s) ,XSC (t2s) + (t2e − t2s)

s∑
j=1

aijki6×1

)
.

(35)
Here aij, bi and ci are coefficients for the s-order Runge-
Kutta method. Thus,

XSC6×1
(t2e) = (t2e − t2s)

s∑
i=1

biki6×1
. (36)

Finally, the complete instruction for the UTD model is
given by performing the following steps.

1) Obtain light time solution of downlink and uplink
radio signals as described in Moyer (2005), starting
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Fig. 3 Changes in simulated two-way Doppler observables due to C11 harmonic coefficient of comet 67P’s gravity field
at 10 s, 30 s and 60 s counting time, from top to bottom respectively.

Table 4 The Mean Value (MV) and Standard Deviation (STD) of the Differences between Simulated
Doppler Changes and Their Polynomial Fits Using Different Models at Different Count Times

10 s-count time 30 s-count time 60 s-count time
m s−1 MV STD MV STD MV STD
DRD model 2.2649e-09 1.7385e-05 9.7848e-09 6.0363e-06 –4.8964e-09 2.4454e-06
UID model 5.4480e-10 2.6865e-08 4.7516e-10 2.8222e-08 –1.6411e-09 2.9575e-08

from t3e. Then t2e is computed iteratively, and,
using this information t1e is computed. Meanwhile,
XE (t3e), XGS (t3e), XC (t2e), XSC (t2e), XE (t1e)

and XGS (t1e) are obtained. Moreover, we need to s-
tore values of τEB

3e , CEB
k 3×1

(
τEB
3e

)
, τM3e , CMk 3×1

(
τM3e
)
,

τC2e, CCk 3×1

(
τC2e
)
, τEB

1e , CEB
k 3×1

(
τEB
1e

)
, τM1e and

CMk 3×1

(
τM1e
)

when obtaining the barycenter positions
of the central body and the Earth from the JPL
ephemeris record.

2) Obtain light time solution of downlink and uplink
radio signals as described in Moyer (2005), starting
from t3s. Then t2s is computed iteratively, and,
using this information t1s is computed. Meanwhile,
XE (t3s), XGS (t3s), XC (t2s), XSC (t2s), XE (t1s)

and XGS (t1s) are obtained. Moreover, we need to s-

tore values of τEB
3s , CEB

k 3×1

(
τEB
3s

)
, τM3s , CMk 3×1

(
τM3s
)
,

τC2s, CCk 3×1

(
τC2s
)
, τEB

1s , CEB
k 3×1

(
τEB
1s

)
, τM1s and

CMk 3×1

(
τM1s
)

when obtaining the barycenter positions
of the central body and the Earth from JPL ephemeris
record.

3) Compute Xd
GS and Xu

GS using Equation (8) and
Equation (21) respectively.

4) If the central body is not the Sun, compute XSC using
Equation (9). If the central body is the Sun, compute
XSC using Equation (36).

5) Compute Xd
E, XC and Xu

E using Equations (25)–(27).
6) Compute rdn (t3e) − rdn (t3s) and run (t3e) − run (t3s)

using Equation (2) and Equation (15) respectively.
7) Compute two-way Doppler observables using

Equation (1).
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It should be noted that the chosen order s in Equation (34)
cannot be too large to ensure the computational efficiency.
The best order is 3 or 4, which can balance both accuracy
and efficiency.

2.4 Our updated Integrated Doppler Model (UID
model)

The UTD model requires celestial ephemeris in the form
of Chebyshev coefficients and polynomials and small
counting intervals since the Taylor series needs to be
convergent. However, if the celestial ephemeris is not in
the form of Chebyshev coefficients and polynomials, such
as for comet 67P, whose position and velocity are obtained
by separate sliding-window Lagrange interpolation or the
counting interval is larger, the UID model is a better
choice.

As described in Andert (2010), the Doppler frequency
shift for the downlink and uplink radio signal can be
expressed as:

PDL (t3) = 1− fRGS

fTSC

= 1−
1− n23βGS (t3) +

1
2 ‖βGS (t3)‖2 − φGS(t3)

c2light

1− n23βSC (t2) +
1
2 ‖βSC (t2)‖2 − φSC(t2)

c2light

(37)

PUL (t3) = 1− fRSC

fTGS

= 1−
1− n12βSC (t2) +

1
2 ‖βSC (t2)‖2 − φSC(t2)

c2light

1− n12βGS (t1) +
1
2 ‖βGS (t1)‖2 − φGS(t1)

c2light

(38)
where t3 is the midpoint of t3s and t3e, i.e. the time tag of
two-day Doppler tracking data, t1 is the transmission time
corresponding to t3, t2 is the reflection time corresponding
to t3, n12 is the normalized vector from the ground
station at time t1 to the spacecraft at time t2, n23 is the
normalized vector from the spacecraft at time t2 to the
ground station at time t3, and βGS(t1) and βGS(t3) are
the normalized velocity of the ground station at time t1
and t3, respectively. βSC(t2) is the normalized velocity of
the spacecraft at time t2, and φGS(t1) and φGS (t3) are the
gravity potential of the Sun and the planet in which the
sphere of influence of the ground station is located at time
t1 and t3, respectively. φSC(t2) is the gravity potential of
the Sun and the planet in which the sphere of influence
of the spacecraft is located at time t2. clight is the speed
of light in a vacuum. The detailed formulas of n12, n23,
βGS(t1), φGS(t1), βSC(t2), φSC(t2), βGS(t3) and φGS(t3)

are described in Andert (2010).

In the UID model, Equation (37) and Equation (38)
can be replaced by

PDL (t3) =
1

Tc

∫ t3e

t3s

(
1− fRGS

fTSC

)
dt (39)

and

PUL (t3) =
1

Tc

∫ t3e

t3s

(
1− fRSC

fTGS

)
dt (40)

respectively where Tc is the count time or count interval of
the Doppler observables, PDL(t3) is the downlink Doppler
effect and PUL (t3) is the uplink Doppler effect. fRGS

is the frequency received by the ground station, fTSC

is the frequency transmitted by the spacecraft, fRSC is
the frequency received by the spacecraft and fTGS is the
frequency transmitted by the ground station.

These two integrals over [t3s, t3e] can apply the
n-node Gaussian quadrature rule and then result in the
following approximations.∫ t3e

t3s

(
1− fRGS

fTSC

)
dt =

(t3e − t3s)

2

n∑
i=1

wiPDL

(
t3e − t3s

2
ξi +

t3e + t3s
2

)
(41)

and∫ t3e

t3s

(
1− fRSC

fTGS

)
dt =

(t3e − t3s)

2

n∑
i=1

wiPUL

(
t3e − t3s

2
ξi +

t3e + t3s
2

)
(42)

where wi and ξi are coefficients for the n-node Gaussian
quadrature rule. Finally, the two Doppler observables can
be computed as

Cunramped =

clight (PUL (t3) + PDL (t3)− PUL (t3)PDL(t3)) .
(43)

3 MODEL VALIDATION AND ANALYSIS

The UTD and UID two-way Doppler models were im-
plemented in the self-developed software tools WUDOGS
(Jin et al. 2020). All the tests and analysis in this
paper were performed by this software suite. It is noted
that the differences between the different expressions
for the relativistic Doppler effect are in the range of
a few mHz (Andert 2010). The UTD and UID models
are thus respectively validated since UTD model is the
improved version of DRD model and UID model is
the improved version of the model described in Andert
(2010). In this section, these two models are respectively
validated by two case studies of the Rosetta mission,
which are the asteroid Lutetia flyby case and comet 67P
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Table 5 The Mean Value (MV) and standard deviation (STD) of the Differences between Simulated
Doppler Changes and Their Polynomial Fits Using UTD Model at Different Count Times

1 s-count time 5 s-count time 10 s-count time
m s−1 MV STD MV STD MV STD
Equation (44) 1.1818e-07 6.8814e-04 1.1817e-07 1.3844e-04 1.1814e-07 6.8314e-05
Equation (45) 1.2091e-07 5.0376e-06 1.2091e-07 1.0244e-06 1.2090e-07 5.3174e-07

orbiting case. In these two cases, changes in the two-
way Doppler observables due to the asteroid mass and
comet 67P gravitational spherical harmonic coefficient
C11 were respectively computed applying DRD and
updated formulas. These changes were then fitted utilizing
polynomials. The standard deviation of corresponding
change residuals (the changes minus fit) reflects the
numerical noise level. Similar methods for obtaining
numerical noise level are presented in Zannoni & Tortora
(2013), in which a “six-parameter fit” (Curkendal &
McReynolds 1969) is used. However, “six-parameter fit” is
a simple approach for determining the information content
of Doppler data in heliocentric cruise instead of target
flyby or orbiting phase (Curkendal & McReynolds 1969).
Finally, numerical errors in the computation of the time in
Chebyshev domain are discussed.

3.1 Case Study 1: Rosetta Asteroid Lutetia
flyby—Validation and Analysis of UTD Model

Rosetta spacecraft performed a fly-by at asteroid Lutetia
on 2010 July 10. During the flyby, the spacecraft was
tracked with NASA’s Deep Space Network (DSN) 70-
m antenna (DSS 63) near Madrid, Spain and two-way
Doppler tracking data were thus recorded at DSS 63
throughout the flyby (Pätzold et al. 2011). The numerical
noise will be analyzed by computing the changes in the
simulated two-way Doppler observables due to the mass
of Lutetia. The simulation setup is summarized in Table 1.

Two sets of the simulated two-way Doppler observ-
ables can be generated by assuming a zero mass for Lutetia
and by considering the Lutetia GM, respectively. Their
difference is the Doppler change due to Lutetia GM. We
compute this kind of “two-way Doppler” change with
the DRD model, the GID model and the UTD model, as
illustrated in Figure 2. The Doppler count intervals are
chosen to be 1 s, 5 s and 10 s (upper, middle and lower
in Fig. 2), respectively since the spacecraft passed by the
asteroid rapidly.

In Figure 2, the blue lines mean the Doppler
changes using different models. The red lines signify the
polynomial fits for Doppler changes. The yellow lines
indicate the residuals, which are the differences between
the simulated Doppler changes and their polynomial
fits. It can be seen that a number of numerical errors

are introduced in the computation of “two-way Doppler
difference” employing Moyer’s DRD model. Also, the
GID model was not effective for this case since the central
body is the Sun. During the tracking span described in
Table 1, the average Earth-spacecraft and Sun-spacecraft
ranges are 3.05 AU and 2.72 AU respectively. Large
numerical errors will be introduced if computing XSC

utilizing Equation (9). However, we can see that curves
related to the UTD model are smooth, indicating that
the UTD model is less sensitive to numerical errors
compared with the DRD model and the GID model. The
mean value and standard deviation of the residuals (the
differences between the simulated Doppler changes and
their polynomial fits) are further computed, as summarized
in Table 2.

During the Rosetta Lutetia flyby, the noise level of the
two-way Doppler data recorded at DSS-63 at 1 s count
time was around 0.1 mm s−1. Assuming a white phase
noise, the noise level can be around 0.045 mm s−1 at 5 s
count time and 0.032 mm s−1 at 10 s count time. We can
see from the standard deviation that the accuracy of the
computation of two-way Doppler observables relying on
the DRD model and the traditional GID model are both
close to the noise level of the measurement. Information on
the mass of the asteroid is then obscured by the numerical
noise. The UTD model, suggesting an accuracy of better
than 6×10-4 mm s−1 at 10 s count time, shows a much
better performance than the DRD and GID models.

3.2 Case Study 2: Rosetta comet
67P/Churyumov-Gerasimenko
Orbiting—Validation and Analysis of the UID
Model

When the Rosetta spacecraft began to escort the comet 67P
in the autumn of 2014 (Godard et al. 2015), the center
of integration changed into the comet. The ephemeris
of comet 67P was generated by the Rosetta navigation
group (Godard et al. 2015) and was then made into
the form of SPICE SPK type-18 kernel (Acton 1996).
The algorithms used by this type of kernel for the
comet 67P implement separate sliding-window Lagrange
interpolation of position and velocity instead of Chebyshev
coefficients and polynomials. The UTD model cannot
be thus used in the computation of two-way Doppler
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Fig. 4 Changes in simulated two-way Doppler observables due to the mass of Lutetia utilizing the UTD model at 1 s, 5 s
and 10 s counting times, from top to bottom respectively.

observables in this case since the difference in barycenter
position for the comet 67P at different time tags cannot be
computed employing Equation (25). The UID model can
then be chosen to reduce the numerical errors.

The way of validating and analyzing the UID model
resembles those of case study 1. The changes in the
simulated two-way Doppler observables due to C11

harmonic coefficient of the comet 67P gravity field are
computed. Here we choose C11 because it is non-zero
for comet 67P (Pätzold et al. 2016a) and the perturbation
magnitude on Doppler observables is easy to be obscured
by numerical noise. The simulation setups are described
in Table 3. The orbital altitude during the chosen tracking
pass is around 10 km.

Two sets of simulated two-way Doppler observables
can be generated by assuming a zero C11 and by consider-
ing the given C11 harmonic coefficient, respectively. Their
difference is the Doppler change due to the comet 67P C11

term. We compute this kind of “two-way Doppler” change
with the DRD model and the UID model, as illustrated
in Figure 3. The Doppler count intervals are chosen to

be 10 s, 30 s and 60 s (upper, middle and lower in Fig. 3)
respectively.

In Figure 3, the blue lines mean the Doppler
changes using different models. The red lines signify the
polynomial fits for Doppler changes utilizing different
models. The yellow lines correspond to the residuals,
which are the differences between the simulated Doppler
changes and their polynomial fits. It can be seen that the
change in the computed observables due to C11 harmonic
coefficient is totally obscured by the numerical noise since
the real shape of curves related to the DRD model cannot
be shown. By contrast, the small numerical errors in
the change due to C11 harmonic coefficient result in a
smooth curve and a fit residual close to zero. Likewise,
the mean value and standard deviation of the residuals (the
differences between the simulated Doppler changes and
their polynomial fits) are further computed, as summarized
in Table 4.

The noise level of the two-way Doppler tracking
data at 1 s count time is around 0.1 mm s−1, resulting in
the measurement accuracy at 10 s, 30 s and 60 s count
time interval of around 0.032 mm s−1, 0.018 mm s−1 and
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0.013 mm s−1, respectively. The standard deviations with
DRD formulation are beneath but close to the mea-
surement accuracy, suggesting an insufficient calculation
accuracy. The UID model is by contrast marginally
significant with respect to the measurement accuracy.

3.3 Numerical Errors Caused by the Time in
Chebyshev Domain

In order to exploit the performance of both updated
models, two details are necessary to stress here. One is the
time representation in the navigation software, the other is
the computation of time in the Chebyshev domain.

As described in Zannoni & Tortora (2013), the
numerical noise is dominated by the time component,
which reflects the range rate between the Earth station
and the spacecraft. Our software thus represents the time
using two variables in pairs (ntint, tfrac), where ntint is an
integer, representing the number of Barycentric Dynamical
Time (TDB) days that elapsed in J2000 and tfrac is a
double precision value, representing the time in TDB
seconds that elapsed since noon of the current day.

However, it is also necessary to discuss numerical
errors in the computation of time in the Chebyshev domain.
This factor exerts much influence on the UTD model
but little influence on the UID model. This is because
barycenter position differences of celestial bodies are
computed in the UTD model, especially for the Earth.
For some versions of celestial ephemeris such as the JPL
ephemeris, corresponding official subroutines are provided
for computing the time in Chebyshev domain to a high
precision. However, official subroutines, related to some
versions of celestial ephemeris such as the SPICE SPK
kernel, are not accurate for computing the time in the
Chebyshev domain.

The time tag of the SPICE SPK kernel is TDB
seconds past the J2000.0 epoch. An SPK format planetary
ephemeris contains one or more “segments,” which
contain Chebyshev polynomial coefficients for the position
of the bodies as a function of time. One segment contains
a number of records. The first two elements in each
record are the midpoint and radius of the time interval
covered by coefficients in this record. The other elements
in the record are coefficients utilized for each component.
The transformation, given in SPICE subroutines, from
the domain of the record to the domain of Chebyshev
polynomials (from –1 to 1), is computed as

τSPICE =
tsecond − tmid

tradius
(44)

where τSPICE is the time in the domain of Chebyshev poly-
nomials applying the formula given in SPICE subroutines,
tmid is the midpoint time in a single SPICE ephemeris

record, tsecond is the input time and tradius is the length of
a single SPICE ephemeris record. Here tsecond, tmid and
tradius are all TDB seconds past J2000. However, loss of
significance will be also induced if time is represented by
a single double-precision value, as described in Zannoni &
Tortora (2013). An alternative formulation is expressed as

τSPICE =
ntint − tmid

tradius
+

tfrac

tradius
. (45)

Even though tmid and tradius are all TDB seconds past
J2000, both of them are integer values or one integer
value plus 1/2. No round-off errors will be induced for
the representation of 1/2 using IEEE754 double-precision
floating-point arithmetic. The first term in Equation (45)
can be thus computed to a high precision. The second term
will also not induce large numerical errors since tfrac is a
small double-precision value.

The same steps with case study 1 are repeated here.
Two sets of “two-way Doppler changes” due to Lutetia
GM are computed utilizing the UTD model. The only
difference is the choice of formulas for computation of
Chebyshev time when computing Xd

E and Xu
E. The count

time interval is chosen to be 1 s, 5 s and 10 s.
In Figure 4, the blue lines mean the Doppler changes

using different formulas for the time in Chebyshev domain.
The red lines signify the polynomial fits for Doppler
changes applying different formulas for the time in
Chebyshev domain. The yellow lines correspond to the
residuals, which are the differences between the simulated
Doppler changes and their polynomial fits. It can be seen
that large numerical errors are induced in the computation
of the time in Chebyshev polynomial domain employing
Equation (44), given in SPICE subroutines. The effect
of numerical noise can be by contrast mitigated using
Equation (45). The mean value and standard deviation
of the residuals (the differences between the simulated
Doppler changes and their polynomial fits) are summarized
in Table 5. Equations (44) and (45) imply that Chebyshev
time is computed utilizing Equation (44) and (45).

The numerical errors, as shown in Table 5, due to
the computation of Chebyshev’s time are larger than the
measurement accuracy. The mass information of the target
asteroid will be therefore obscured by numerical noise,
which can be impaired using Equation (44). Of course,
understanding the structure of different types of celestial
ephemerides is the basis of utilizing Equation (45).

4 CONCLUSIONS

The traditional Moyer’s DRD formulation is widely used
for the computation of two-way Doppler observables.
However, the computation of DRD formulation in the
computer will induce a large loss of significance. This
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problem has been solved for some massive planet missions.
However, few references discussed this problem for small
body missions. In this paper, two updated models for
small body missions, by the name of UTD model and
UID model, were described in order to mitigate the effect
of this type of numerical error. Both formulations and
corresponding analysis were implemented in our own
software suite—WUDOGS.

We first indicated that the main source of numerical
noise in DRD formulation is the simple differencing
between the geometrical range (first-order term) at the
start of the counting interval and that at the end of
the counting interval. The formulation and corresponding
detailed instructions of the UTD model were then
presented. This formulation, based upon the fact that
the geometrical range difference can be expanded into a
multidimensional Taylor series, is an improved version
of GEODYN-II’s interplanetary Doppler model. The most
significant improvement is taking account of the case
when the Sun is the center of integration. However, this
formulation is merely effective for small count time. The
UID formulation and corresponding detailed instructions
were therefore presented for the case of larger count time.
The two-way Doppler observables in this formulation are
computed by the numerical integration of the Doppler
frequency shift over the counting interval.

The UTD model and UID model were validated by two
case studies of the Rosetta mission, which are the asteroid
Lutetia flyby case and comet 67P orbiting case. The change
in two-way Doppler observables due to asteroid Lutetia’s
mass was computed in the first case of asteroid Lutetia
flyby. Large numerical errors due to the loss of significance
were induced by the computation of Doppler observables
applying the DRD model and GEODYN-II’s interplanetary
Doppler model. The magnitude of the errors is close to
the measurement accuracy in actual practice of the mission
whereas use of the UTD model can reduce the numerical
noise in computed observables by two order-of-magnitude.
Likewise, the change in two-way Doppler observables
due to comet 67P’s gravitational harmonic coefficient
C11 were computed in the second case of comet 67P
orbiting. The information on C11 in Doppler observables
is totally obscured by large numerical errors induced by
the DRD model whereas use of the UID model can
also reduce the numerical noise in computed observables
by two order-of-magnitude. Moreover, computing time
in the Chebyshev domain, as one of the steps in UTD
formulation, is also related to numerical errors caused by
the loss of significance. Two formulations of computing
the Chebyshev time were given at last for analyzing their
contribution to numerical errors, as an example of Earth
ephemeris of SPICE kernel.

In summary, numerical noise induced by the computa-
tion of two-way Doppler observables employing the DRD
model is unneglectable. The noise level is very close to
or even larger than the two-way Doppler measurement
accuracy in the majority of current missions. UTD and
UID formulation can be thus adopted since both of them
showed an accuracy from better than 6 × 10−3 mm s−1 at
1 s counting time interval to better than 3 × 10−5 mm s−1

at 60 s counting time interval. The improvement indicated
by the UTD and UID models will benefit spacecraft
navigation of China’s first asteroid exploration mission.
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Appendix A: DERIVATION OF UTD FORMULA

Basically, rdn (t3s) and rdn (t3e) can be expressed as:

rdn (t3s) =

√√√√√[(XE (t3s) +XGS (t3s))− (XC (t2s) +XSC (t2s))]
2 +

[(YE (t3s) + YGS (t3s))− (YC (t2s) + YSC (t2s))]
2 +

[(ZE (t3s) + ZGS (t3s))− (ZC (t2s) + ZSC (t2s))]
2

(A.1)

rdn (t3e) =

√√√√√[(XE (t3e) +XGS (t3e))− (XC (t2e) +XSC (t2e))]
2 +

[(YE (t3e) + YGS (t3e))− (YC (t2e) + YSC (t2e))]
2 +

[(ZE (t3e) + ZGS (t3e))− (ZC (t2e) + ZSC (t2e))]
2

(A.2)
run (t3s) and run (t3e) can be expressed as:

run (t3s) =

√√√√√[(XE (t1s) +XGS (t1s))− (XC (t2s) +XSC (t2s))]
2 +

[(YE (t1s) + YGS (t1s))− (YC (t2s) + YSC (t2s))]
2 +

[(ZE (t1s) + ZGS (t1s))− (ZC (t2s) + ZSC (t2s))]
2

(A.3)

run (t3e) =

√√√√√[(XE (t1e) +XGS (t1e))− (XC (t2e) +XSC (t2e))]
2 +

[(YE (t1e) + YGS (t1e))− (YC (t2e) + YSC (t2e))]
2 +

[(ZE (t1e) + ZGS (t1e))− (ZC (t2e) + ZSC (t2e))]
2

(A.4)

Let
Xd
E = XE (t3e)−XE (t3s)

Y dE = YE (t3e)− YE (t3s)

ZdE = ZE (t3e)− ZE (t3s)

Xd
GS = XGS (t3e)−XGS (t3s)

Y dGS = YGS (t3e)− YGS (t3s)

ZdGS = ZGS (t3e)− ZGS (t3s)

XC = XC (t2e)−XC (t2s)

YC = YC (t2e)− YC (t2s)
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ZC = ZC (t2e)− ZC (t2s)

XSC = XSC (t2e)−XSC (t2s)

YSC = YSC (t2e)− YSC (t2s)

ZSC = ZSC (t2e)− ZSC (t2s)

Xu
E = XE (t1e)−XE (t1s)

Y uE = YE (t1e)− YE (t1s)

ZuE = ZE (t1e)− ZE (t1s)

Xu
GS = XGS (t1e)−XGS (t1s)

Y uGS = YGS (t1e)− YGS (t1s)

ZuGS = ZGS (t1e)− ZGS (t1s) (A.5)

The rdn (t3e) and run (t3e) can be expressed as:

rdn (t3e) =

√√√√√√
[(
XE (t3s) +Xd

E +XGS (t3s) +Xd
GS

)
− (XC (t2s) +XC +XSC (t2s) +XSC)

]2
+[(

YE (t3s) + Y dE + YGS (t3s) + Y dGS

)
− (YC (t2s) + YC + Y SC (t2s) + YSC)

]2
+[(

ZE (t3s) + ZdE+ZGS (t3s) + ZdGS

)
− (ZC (t2s) + ZC + ZSC (t2s) + ZSC)

]2 (A.6)

run (t3e) =

√√√√√[(XE (t1s) +Xu
E +XGS (t1s) +Xu

GS)− (XC (t2s) +XC+XSC (t2s) +XSC)]
2
+

[(YE (t1s) + Y uE + YGS (t1s) + Y uGS)− (YC (t2s) + YC + YSC (t2s) + YSC)]
2
+

[(ZE (t1s) + ZuE + ZGS (t1s) + ZuGS)− (ZC (t2s) + ZC+ZSC (t2s) + ZSC)]
2

(A.7)

Then, we obtain

rdn (t3e) =

√√√√√√√√√√√√√√√

(r
d
n (t3s))

2
+

2 (XE (t3s) +XGS (t3s)−XC (t2s)−XSC (t2s))
(
Xd
E +Xd

GS −XC −XSC
)
+

2 (YE (t3s) + YGS (t3s)− YC (t2s)− YSC (t2s))
(
Y dE + Y dGS − YC − YSC

)
+

2 (ZE (t3s) + ZGS (t3s)− ZC (t2s)− ZSC (t2s))
(
ZdE + ZdGS − ZC − ZSC

)
+(

Xd
E +Xd

GS −XC −XSC
)2

+(
Y dE + Y dGS − YC − YSC

)2
+(

ZdE + ZdGS − ZC − ZSC
)2

(A.8)

run (t3e) =

√√√√√√√√√√√√√√√

(r
d
n (t1s))

2
+

2 (XE (t1s) +XGS (t1s)−XC (t2s)−XSC (t2s)) (X
u
E +Xu

GS −XC −XSC)+

2 (YE (t1s) + YGS (t1s)− YC (t2s)− YSC (t2s)) (Y
u
E + Y uGS − YC − YSC)+

2 (ZE (t1s) + ZGS (t1s)− ZC (t2s)− ZSC (t2s)) (Z
u
E + ZuGS − ZC − ZSC)+

(Xu
E +Xu

GS −XC −XSC)
2
+

(Y uE + Y uGS − YC − YSC)
2
+

(ZuE + ZuGS − ZC − ZSC)
2

(A.9)

In order to simplify the formula, we use the following substitutions,

Xu = Xu
E +Xu

GS −XC −XSC

Y u = Y uE + Y uGS − YC − YSC

Zu = ZuE + ZuGS − ZC − ZSC

Xd = Xd
E +Xd

GS −XC −XSC

Y d = Y dE + Y dGS − YC − YSC

Zd = ZdE + ZdGS − ZC − ZSC

Rux = XE (t1s) +XGS (t1s)−XC (t2s)−XSC (t2s)

Ruy = Y
E
(t1s) + YGS (t1s)− YC (t2s)− YSC (t2s)

Ruz = ZE (t1s) + ZGS (t1s)− ZC (t2s)− ZSC (t2s)
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Rdx = XE (t3s) +XGS (t3s)−XC (t2s)−XSC (t2s)

Rdy = Y
E
(t3s) + YGS (t3s)− YC (t2s)− YSC (t2s)

Rdz = ZE (t3s) + ZGS (t3s)− ZC (t2s)− ZSC (t2s) (A.10)

Then, the rdn (t3e) and run (t3e) at time t3e become a function of (Xd, Y d, Zd) and (Xu, Y u, Zu), respectively:

rdn (t3e) = fd
(
Xd, Y d, Zd

)
=

√
(rdn (t3s))

2
+ 2RdxX

d + 2RdyY
d + 2RdzZ

d + (Xd)
2
+ (Y d)

2
+ (Zd)

2 (A.11)

run (t3e) = fu (X
u, Y u, Zu)

=
√

(run (t3s))
2
+ 2RuxX

u + 2RuyY
u + 2RuzZ

u + (Xu)
2
+ (Y u)

2
+ (Zu)

2 (A.12)

Furthermore,
(
Xd, Y d, Zd

)
can be treated as the downlink change vector D, whose corresponding unit vector is nd.

(Xu, Y u, Zu) can be treated as the uplink change vector U, whose corresponding unit vector is nu. Rdx, Rdy and Rdz can
be regarded as the three components of the vector Rd, and Rux , Ruy and Ruz can be regarded as the three components of
the vector Ru. When the count time is small, rdn (t3e) can be written as a Taylor series that is calculated from the values
of the derivatives of fd at (0,0,0).

rdn (t3e)− rdn (t3s) =f
(1)
d (0, 0, 0) ‖D‖+ 1

2
f
(2)
d (0, 0, 0) ‖D‖2 +

1

6
f
(3)
d (0, 0, 0) ‖D‖3 +O

(
‖D‖3

) (A.13)

where the derivatives are
f
(1)
d (0, 0, 0) =

ndRd

rdn (t3s)
(A.14)

f
(2)
d (0, 0, 0) =

rdn (t3s)− 1
rdn(t3s)

(ndRd)

(rdn (t3s))
2 (A.15)

f
(3)
d (0, 0, 0) =

−3rdn (t3s) (ndRd) +
3

rdn(t3s)
(ndRd)

3

(rdn (t3s))
4 (A.16)

Likewise,

run (t3e)− run (t3s) =f (1)u (0, 0, 0) ‖U‖+ 1

2
f (2)u (0, 0, 0) ‖U‖2 +

1

6
f (3)u (0, 0, 0) ‖U‖3 +O

(
‖U‖3

) (A.17)

where the derivatives are
f (1)u (0, 0, 0) =

nuRu

run (t3s)
(A.18)

f (2)u (0, 0, 0) =
run (t3s)− 1

run(t3s)
(nuRu)

(run (t3s))
2 (A.19)

f (3)u (0, 0, 0) =
−3run (t3s) (nuRu) +

3
run(t3s)

(nuRu)
3

(run (t3s))
4 (A.20)

Finally, (Xd
GS, Y

d
GS, Z

d
GS) and (Xu

GS, Y
u

GS, Z
u
GS) can be calculated directly by Equation (A.10). (XSC, YSC, ZSC) is calculated

by Equation (41). (Xu
E , Y

u
E , Z

u
E), (X

d
E , Y

d
E , Z

d
E) and (XC , YC , ZC) should be computed using the Chebyshev polynomial

differencing scheme. Here we give the following derivation of the scheme in Appendix B.

Appendix B: DERIVATION OF BARYCENTER CELESTIAL POSITION DIFFERENCE AT TWO
DIFFERENT EPOCHS

Two different epochs are named ta and tb. Here we assume that tb is larger than ta. Basically, the position of a celestial
body at time tt XR(tt) can be calculated by the following expansion

XR (tt) =

N−1∑
k=0

Ck3×1 (τt) .Pk (τt) (B.1)
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Pk(τt) is computed utilizing the recurrence relation-
ship

P0 (τt) = 0

P1 (τt) = τ

. . .

Pk (τt) = 2τtPk−1 (τt)− Pk−2 (τt) (B.2)

where τt is time tt normalized between –1 and +1 on the
time interval covered by the coefficients. The change in
body position from time ta to time tb can be computed as

XR =

N−1∑
k=0

[Ck3×1
(τb)Pk (τb)− Ck3×1 (τa)Pk (τa)]

(B.3)
Suppose that{

Ck3×1
= Ck3×1 (τb)− Ck3×1 (τa)

Pk = Pk (τb)− Pk (τa)
(B.4)

XR can be rewritten as

XR =

N−1∑
k=0

[
Ck3×1 (τa)Pk + Ck3×1

Pk (τb)
]

(B.5)

where Pk is computed relying on the following recurrence
relationship.

P0 = 0

P1 = τb − τa

. . .

Pk = 2τbPk−1 + 2 (τb − τa)Pk (τa)− Pk−2 (B.6)

The position of the Earth is obtained from the position
of the Earth-Moon barycenter and the Earth’s Moon.
This scheme for the Earth is therefore computed as
Equation (26) and Equation (27).
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