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Abstract Solar flare prediction plays an important role in understanding and forecasting space weather.
The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA’s Solar
Dynamics Observatory, is to study the origin of solar variability and characterize the Sun’s magnetic activity.
HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence
data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still
limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun,
for predicting solar flares on the web based on HMI’s data products. Specifically, we construct training data
by utilizing the physical parameters provided by the Space-weather HMI Active Region Patch (SHARP)
and categorize solar flares into four classes, namely B, C, M and X, according to the X-ray flare catalogs
available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction
problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system
employs several machine learning algorithms to tackle this multi-class prediction problem and provides an
application programming interface (API) for remote programming users. To our knowledge, DeepSun is
the first MLaaS tool capable of predicting solar flares through the internet.
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1 INTRODUCTION

Solar flares and the often-associated coronal mass ejections
(CMEs) highly impact the near-Earth space environment
(Liu et al. 2017; Liu et al. 2020a). They have the potential
to cause catastrophic damage to technology infrastructure
(Daglis et al. 2004). According to the U.S. National
Space Weather Strategy, released by the Space Weather
Prediction Center, it is a challenging task to correctly
predict solar flares and CMEs. Recent efforts led by
the United States and its partners resulted in substantial
progress toward monitoring, prediction and mitigation
plans, but much more effort is still needed.

Research has shown that the magnetic free energy
stored in the corona, quickly discharged by magnetic
reconnection, powers solar flares and CMEs (Priest
& Forbes 2002). The process of building the coronal

free energy is controlled by the structural evolution of
the magnetic field on the photosphere where plasma
dominates the process. Observing and measuring the
structure and evolution of the photospheric magnetic
field can provide valuable information and clues to the
triggering mechanisms of flares and CMEs. There are
many physical properties or parameters, as we will discuss
later in the paper, that characterize the static photospheric
magnetic field, such as integrated Lorentz force, magnetic
helicity injection, unsigned magnetic flux, vertical electric
currents, magnetic shear and gradient, and magnetic
energy dissipation.

Researchers spent significant efforts attempting to
understand the physical relationship between flare pro-
ductivity and non-potentiality of active regions (ARs) as
specified by the physical parameters. This led researchers
to apply different methods to predict flares that are not
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based on physical models, but rather based on statistical
modeling and machine learning (Barnes et al. 2016).
Machine learning gives computer programs the ability to
learn from data and progressively improve performance.
It utilizes input data, also called training data, and learns
hidden insights in the training data to build a predictive
model that will be used later to make predictions on unseen
test data.

In our previous work (Liu et al. 2017), we reported
the results of solar flare prediction using the random forest
(RF) algorithm in Breiman et al. (1984). We constructed
a database of solar flare events considering the physical
parameters provided by the Space-weather HMI Active
Region Patch (SHARP), and categorized solar flares into
four different classes, namely B, C, M and X, based on
the X-ray flare catalogs available at the National Centers
for Environmental Information (NCEI)1. We employed the
RF algorithm and the physical parameters or features to
perform multi-class classification of solar flares, predicting
the occurrence of a certain class of flares in a given AR
within 24 h.

In this paper, we extend our previous work in
Liu et al. (2017) by considering two additional multi-
class classification algorithms: multilayer perceptrons
(MLPs) and extreme learning machines (ELMs). We
implement these algorithms into a machine-learning-as-
a-service (MLaaS) framework, called DeepSun, which
allows scientists to perform multi-class flare prediction
on the internet. Specifically, our work here makes two
contributions.

1. We develop an ensemble (ENS) method for multi-class
flare prediction that performs better than the existing
machine learning algorithms including RF, MLP and
ELM according to our experimental study.

2. We design and implement DeepSun, which is the first
MLaaS system of its kind for solar flare prediction.

The rest of this paper is organized as follows. Section 2
describes the data and the SHARP predictive parameters
used in this study. Section 3 describes the machine learning
algorithms employed by DeepSun. Section 4 explains
the methodology followed to evaluate the performance
of these machine learning algorithms. Section 5 presents
and compares the prediction results obtained from the
machine learning algorithms. Section 6 details the design
and implementation of the DeepSun framework. Section 7
surveys related work and compares DeepSun with existing
computing systems providing similar services. Section 8
concludes the paper and points out some directions for
future research.

1 In the NCEI catalogs, the B class is the lowest flare class (Liu et al.
2017).

Table 1 Thirteen SHARP Parameters Used in Our Study

Parameter Description
ABSNJZH Absolute value of the net current helicity
AREA ACR Area of strong field pixels in the active region (AR)
EPSZ Sum of z-component of normalized Lorentz force
MEANPOT Mean photospheric magnetic free energy
R VALUE Sum of flux near polarity inversion line
SAVNCPP Sum of the modulus of the net current per polarity
SHRGT45 Fraction of area with shear > 45°
TOTBSQ Total magnitude of Lorentz force
TOTFZ Sum of z-component of Lorentz force
TOTPOT Total photospheric magnetic free energy density
TOTUSJH Total unsigned current helicity
TOTUSJZ Total unsigned vertical current
USFLUX Total unsigned flux

2 DATA AND SHARP PARAMETERS

In 2012, SHARP data were released. The main goal of the
SHARP data was to facilitate AR event forecasting (Bobra
et al. 2014). These data are available in the Joint Science
Operations Center (JSOC)2 as hmi.sharp series which
includes magnetic measures and parameters for many ARs.
In 2014, another data series, cgem.Lorentz, was produced
based on the SHARP data. This series includes the Lorentz
force estimations. The main goal of this series was to help
diagnose the dynamic process of ARs. Bobra et al. (2014)
considered 25 physical parameters in the SHARP datasets
that characterize the AR magnetic field properties. The
authors relied on a univariate feature selection method to
score the 25 parameters, and suggested that the top 13
out of the 25 parameters be regarded as predictors for
flare activity. Table 1 summarizes these 13 parameters
and their descriptions. More details about the 13 magnetic
parameters can be found in Liu et al. (2017). Following
Bobra et al. (2014) and Liu et al. (2017) we use the same
13 SHARP parameters in the work presented here.

We constructed a database based on the SHARP
parameters extracted from the solar images that are
available at JSOC and the X-ray flare catalogs provided by
NCEI (Liu et al. 2017). We consider the period between
May 2010 and December 2016. We select and record 845
flares in this period, among which 128 flares are of class B,
552 flares are of class C, 142 flares are of class M and 23
flares are of class X where identified locations of the C-,
M- and X-class flares are within about ± 70° of the central
meridian (Liu et al. 2017). These 845 flares come from 472
ARs. The duration of a flare ranges from several minutes to
hours. The duration of an AR ranges from days to months.
If there are several flares from the same AR on the same
day, the highest-class flare is recorded; if there are several
highest-class flares on the same day, only the last such flare
on that day is recorded. If two different ARs produce flares
on the same day, the highest-class flare for each AR on

2 http://jsoc.stanford.edu/

http://jsoc.stanford.edu/
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Table 2 Numbers of Flares and ARs per Solar Flare Class

Flare Class Number of Flares Number of ARs
B 128 88
C 552 281
M 142 88
X 23 15

that day is recorded separately. See section 2 of Liu et al.
(2017) for more details on the criteria applied to select the
845 flares. Table 2 summarizes the flare information.

We created and stored 845 corresponding da-
ta samples (records) in our database, displayed in
Figure 1 and accessible at https://nature.njit.
edu/spacesoft/Flare-Predict/, where each da-
ta sample contains values of the 13 SHARP parameters or
features listed in Table 1. Specifically, we created one data
sample (record) for each flare. Thus, each record in our
database has only one flare and corresponds to one date.
The “Flare Date” column featured in Figure 1 indicates the
first time on the flare date when all 13 SHARP parameter
values are available, and the “Start Time” column indicates
the start time of the flare on that date. Choosing SHARP
parameter values measured at the beginning of the flare
date is in accordance with our objective of predicting flares
within 24 h. The two digits following a class label (B,
C, M, X) are ignored in performing flare prediction. For
simplicity, the two digits are specified without a dot (e.g.,
“B1.6” is specified as “B16”).

Because the 13 SHARP parameters have different
scales and units, we normalize the parameter values as
follows. Let x̂k

i (xk
i , respectively) denote the normalized

(original, respectively) value of the ith parameter of the
kth data sample. Then

x̂k
i =

xk
i −mini

maxi −mini
,

where maxi (mini, respectively) is the maximum (min-
imum, respectively) value of the ith parameter. The
normalized values range from 0 to 1.

3 MACHINE LEARNING ALGORITHMS

DeepSun employs three machine learning algorithms
for flare prediction: RFs (Breiman et al. 1984), MLPs
(Rosenblatt 1958; Braspenning et al. 1995) and ELMs
(Huang & Chen 2007, 2008). RF is a tree-based algorithm
comprised of multiple binary classification and regression
trees (CARTs) while both MLP and ELM are feed-forward
artificial neural networks (ANNs; Braspenning et al. 1995).
All the three algorithms are well suited for multi-class
classification. In addition, we develop an ENS algorithm,
which works by taking the majority vote of RF, MLP
and ELM. When there is no majority vote for a test data
sample, the ENS algorithm returns “no-verdict”. Since

there are three machine learning algorithms, this “no
verdict” case occurs when the three algorithms assign the
test data sample to three different classes.

We implemented the machine learning algorithms in
Python leveraging the scikit-learn package (Pedregosa
et al. 2011). Each algorithm has different optimization
parameters to be tuned based on the training and test
datasets. Our RF algorithm, which is the same as the one
used in Liu et al. (2017), is composed of 1000 trees. We
set the number of randomly chosen features to six when
splitting a node to build a tree. The configurations and
parameter settings of the MLP and ELM algorithms are
described in detail below3. The parameter values were
chosen to optimize the performance of each algorithm.

3.1 Multilayer Perceptrons

MLP is a variation of the single perceptron model
originally introduced by Rosenblatt (1958). MLP consists
of at least three layers: an input, an output, and one or
several hidden layers. The number of hidden layers is
a configuration parameter that can be adjusted by the
user. MLP is a multi-class learning algorithm that can be
applied for non-linearly separable problems. Each node,
except the input nodes, is a neuron that incorporates a
non-linear activation function. It utilizes back-propagation
to calculate the weights used in the network’s activation
function.

The MLP algorithm generally works as follows. We
create weighted connections from each node in the input
layer to each node in the first hidden layer h1. The process
is repeated to create connections from subsequent hidden
layer hi to hi+1 until hL where L is the total number of
hidden layers. The connection from a node in a source
layer, si, to a node in a target layer, ti, is created with
a weight wi to generate a weighted sum that is passed
to the next connection through the activation function.
The weights of the connections are adjusted based on
corrections that minimize the error in the entire output to
produce the final result. We use the rectified linear unit
(ReLU; Nair & Hinton 2010) as the activation function and
optimize the log-loss function utilizing stochastic gradient
descent where the log-loss is also known as the cross-
entropy loss function. Most of the parameters in our MLP
model are set with the default values provided by the scikit-
learn library in Python (Pedregosa et al. 2011) except that
the number of hidden layers is set to 200, the number of
neurons in each hidden layer is set to 150, the learning rate
is set to 0.001 and the batch size is set to 200.

3 The source code of the machine learning algorithms can be
downloaded from https://web.njit.edu/˜wangj/MLaaS.

https://nature.njit.edu/spacesoft/Flare-Predict/
https://nature.njit.edu/spacesoft/Flare-Predict/
https://web.njit.edu/~wangj/MLaaS
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Fig. 1 Screenshot featuring our online flare database.

3.2 Extreme Learning Machines

ELM is a classification, regression and clustering al-
gorithm that works for generalized single hidden layer
feed-forward networks (Huang & Chen 2007, 2008). It
has input, output and single or multiple hidden layers
where hidden nodes’ parameters do not need to be tuned.
The parameters of the hidden nodes can randomly be
assigned with non-linear transforms or inherited from their
ancestors without being updated. In most cases, the output
weights of ELM are learned in a single step which tends to
be a linear model. ELM often has better scalability with a
much faster learning speed.

The ELM algorithm generally works as follows. We
determine the transfer function (activation function), the
number of hidden layers, which is set to 1, and the number
of neurons, which is set to 200, in the hidden layer. Then
we assign weights and biases of neurons in the input
layer where no tuning is needed. Finally we calculate
the output weights. In our ELM model, we utilize the
hyperbolic tangent (tanh) as the activation function and
use the cross-entropy loss function with a regularized least
squares solver.

4 PERFORMANCE EVALUATION
METHODOLOGY

We conducted a series of experiments to evaluate the
performance of the machine learning algorithms presented
in Section 3 considering two types of datasets. The first
type of dataset, referred to as original datasets, was
obtained by duplicating the database described in Section 2
to create 100 identical copies of the database where
each copy was an original dataset. Each original dataset
contained 128 B-class, 552 C-class, 142 M-class and 23
X-class flares where each flare corresponded to a record in
the dataset. There were 845 flares and hence 845 records
in each original dataset. Totally there were 100 original

datasets. In addition, to mitigate the class imbalance
problem that poses a major challenge in machine learning
(see, e.g., Japkowicz & Stephen 2002), we created the
second type of dataset, referred to as modified datasets,
by randomly selecting 142 unique C-class flares from the
total of 552 C-class flares. To avoid any bias, we repeated
this random selection 100 times, so we ended up with 100
modified datasets, where each modified dataset contained
128 B-class, 142 C-class, 142 M-class and 23 X-class
flares. Due to the few X-class flares, the modified datasets
were still imbalanced datasets though they were not as
unbalanced as the original datasets.

We used 10-fold cross validation in which for each
dataset, we randomly shuffled to create 10-fold partitions
using the KFold function provided by the scikit-learn
library in Python (Pedregosa et al. 2011). Each machine
learning algorithm was trained by nine of the 10 folds, and
the 10th fold was used for testing. Notice that because the
10 folds in each original dataset were created randomly, the
prediction results obtained from the 100 original datasets
were different even though the 100 original datasets were
identical. Notice also that each data sample (i.e., each
record in our datasets) corresponded to one date and
contained one flare. Each data sample either belonged
to the training dataset or belonged to the testing dataset.
There was no data sample belonging to both training and
testing datasets. Thus, the testing data were not seen during
training. To further reduce the errors associated with
cross validation, we repeated the 10-fold cross validation
procedure 100 times for each of the 100 original (modified,
respectively) datasets, which resulted in 10 000 tests for
the original (modified, respectively) datasets. The average
values obtained from the 10 000 tests were calculated and
reported.

In assessing the performance of the algorithms, we
converted the multi-class classification problem at hand
into four binary classification problems for the four classes
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B, C, M and X respectively. For example, consider the
binary classification problem for class B in a dataset. Here,
we say a data sample is positive if it is in class B, or
negative if it is not in class B, i.e., it is in class C, M or
X. We define true positive (TP), false positive (FP), true
negative (TN) and false negative (FN) as follows. TP is a
data sample where an algorithm predicts the data sample
to be positive and the data sample is indeed positive. FP
is a data sample where the algorithm predicts the data
sample to be positive while the data sample is actually
negative. TN is a data sample where the algorithm predicts
the data sample to be negative and the data sample is
indeed negative. FN is a data sample where the algorithm
predicts the data sample to be negative while the data
sample is actually positive. We also utilize TP (FP, TN
and FN respectively) to represent the number of true
positives (false positives, true negatives and false negatives
respectively).

Because we are tackling imbalanced classification
problems, we adopt two performance metrics, balanced
accuracy (BACC; Brodersen et al. 2010) and true skill
statistics (TSS; Hanssen & Kuipers 1965). BACC is
defined as follows

BACC =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
,

and TSS is defined as follows

TSS =
TP

TP + FN
− FP

TN + FP
.

BACC considers both sensitivity (also known as the true
positive rate or recall) and specificity (also known as
the true negative rate). It calculates the accuracy in the
positive dataset and in the negative dataset separately, and
is especially useful when the datasets are imbalanced,
i.e., one dataset has many more elements than the
other. In addition, because of its unbiasedness over the
class-imbalance ratio (Woodcock 1976), we follow the
suggestion of Bloomfield et al. (2012) to use the TSS
score, which is the recall subtracted by the false alarm rate.
We obtain BACC and TSS for each binary classification
problem. There are four binary classification problems. We
then calculate the average of the BACC and TSS values
obtained from the four classification problems, and take
the average as the result for the multi-class classification
problem.

5 PREDICTION RESULTS

Table 3 (Table 4, respectively) compares the BACC and
TSS values of the four machine learning algorithms
presented in Section 3 for each binary classification
problem and for the overall multi-class classification
problem relying on the original (modified, respectively)

Table 3 Flare Prediction Results Using 13 SHARP
Parameters and Four Machine Learning Algorithms on
Original Datasets

Class B Class C Class M Class X Average
BACC
ENS 0.659 0.635 0.618 0.610 0.631
RF 0.635 0.630 0.590 0.580 0.608
MLP 0.616 0.620 0.584 0.575 0.599
ELM 0.629 0.619 0.586 0.573 0.601

TSS
ENS 0.318 0.269 0.236 0.220 0.261
RF 0.271 0.259 0.179 0.160 0.217
MLP 0.231 0.241 0.169 0.150 0.198
ELM 0.259 0.238 0.172 0.146 0.204

Table 4 Flare Prediction Results Using 13 SHARP
Parameters and Four Machine Learning Algorithms on
Modified Datasets

Class B Class C Class M Class X Average
BACC
ENS 0.871 0.691 0.790 0.670 0.756
RF 0.834 0.663 0.749 0.645 0.723
MLP 0.818 0.659 0.757 0.599 0.708
ELM 0.791 0.641 0.721 0.608 0.690

TSS
ENS 0.745 0.380 0.551 0.362 0.507
RF 0.708 0.378 0.537 0.330 0.488
MLP 0.661 0.285 0.526 0.010 0.371
ELM 0.618 0.296 0.446 0.227 0.397

datasets. In these tables, the highest performance metric
values are highlighted in boldface. It can be seen from
the tables that the proposed ENS algorithm outperforms
the existing algorithms RF, MLP and ELM in both the
original and modified datasets. Furthermore, the results
from the modified datasets are better than those from
the original datasets. This is due to the fact that the
modified datasets have more balanced class distributions
than the original datasets in the sense that the ratio of
the number of X-class flares to the number of C-class
flares is higher in the modified datasets than in the original
datasets. It is worth noting that the performance of all
the algorithms degrades in predicting X-class flares. This
probably happens because the X class has much fewer
flares than the other classes, and hence the algorithms
cannot gain enough knowledge about the X-class flares.
Overall, there were approximately less than 2% of data
samples receiving “no verdict” in both the original and
modified datasets.

6 THE DEEPSUN FRAMEWORK

6.1 System Design

The four machine learning algorithms (ENS, RF, MLP,
ELM) presented in Section 3 have been implemented into
our DeepSun system where the algorithms are utilized as
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a back-end, also known as the server-side, engine for the
MLaaS platform. Figure 2 presents the overall architecture
of the DeepSun framework. The system supports two
different types of users: web and programming. The
web user invokes the service by accessing a graphical
user interface (GUI) to perform flare predictions. The
programming user can utilize any programming language
that supports HTTP requests, such as Java, C++, Python,
Node.js, JavaScript modules in React or other frameworks
to perform flare predictions.

MLaaS is a representational state transfer (REST)
application programming interface (API) that supports
JavaScript Object Notation (JSON) formatted payloads
in the request and response. JSON is a plain-text and
lightweight data-interchange format. It is structured with
attributes and values in an easy way for humans to read and
write. JSON is language independent but it is easy to parse;
therefore almost every programming language supports
it. The request transmits the user’s data from the front-
end to the back-end and must include well defined JSON
formatted test data to predict or training data to create a
predictive model. The response transmits the result from
the back-end to the front-end, which is a well formatted
prediction result or the predictive model identifier. Here,
the front-end means the client-side that can be a web-
designed interface for the web user or a program for the
programming user.

6.2 System Implementation

When a user visits DeepSun’s home page, the user
sees three options. Option 1 allows the user to select
the pretrained models provided by DeepSun. Option 2
enables the user to upload his/her own training data to
create his/her own machine learning models for solar flare
prediction. Option 3 allows the user to perform solar
flare prediction using RESTful services. Figure 3 features
DeepSun’s home page, which can be accessed at https:
//nature.njit.edu/spacesoft/DeepSun/.

6.2.1 Pretrained models in DeepSun

The pretrained models are ready-to-use models that were
created utilizing the database described in Section 2. With
the pretrained models, a user has three options to load
test data samples containing the 13 SHARP parameters
or features listed in Table 1: (1) Manually enter the data
samples with values of the 13 SHARP parameters one
by one in the provided text boxes. (2) Load sample data
provided by the DeepSun engine. (3) Load the user’s own
data in a file, in which each line contains the values of the
13 SHARP parameters. The user may invoke the services
to predict all the loaded, or entered, test data at once

or make predictions one by one. Figure 4 displays the
webpage of pretrained models on which four predictions
were made using the ENS algorithm.

6.2.2 Custom models in DeepSun

DeepSun allows the user to load his/her data to train and
create his/her custom model to predict solar flares. The
training data are saved in a file meeting DeepSun’s format
requirement. When the user creates a custom model, a
model identifier (id) is assigned to the current session.
If the created model is idle for 24 h, it will be deleted.
Once the model is ready, the user goes to DeepSun’s GUI
with the assigned model id to perform flare predictions as
done with the pretrained models. The model id is used
to distinguish between the custom model and pretrained
models. Figure 5 shows the webpage of custom models
with example training data displayed.

6.2.3 RESTful API for DeepSun

Representational state transfer (REST) is an architectural
style that defines rules for creating web services for an API.
A web service application that implements and conforms
to the REST architecture is referred to as a RESTful
application. The RESTful application allows the user to
interact with its system using http requests to access the
data of the system in a well-defined format. Our RESTful
API uses JSON, which is a lightweight format for storing
and transmitting plain text data as described in Section 6.1.

The RESTful API helps the programming user
perform solar flare predictions relying on the pretrained
or custom models. The API supports the POST request to
predict solar flare occurrence or create a custom model,
and the GET request to get a random data sample from our
training database. The interface supports JSON formatted
strings for requests’ body and their result. The interface
also supports two different debug levels; they are (i) INFO
which is the default debug mode and (ii) DEBUG to return
additional data with the result.

The return result from the POST request is a JSON
object including the predicted solar flare occurrence and
its class. Each test data sample is associated with a
JSON object that includes two attributes. One attribute
is “fcnumber” which is the numerical representation for
the solar flare class where we define “1” (“2”, “3”, “4”
respectively) to represent class B (C, M, X respectively).
The other attribute is “fcname” which is the solar flare class
name.

In addition, the RESTful API utilizes the POST
request to create a custom model. The body of the
request must be JSON formatted strings for an array of
JSON objects. Each object must contain the 13 SHARP

https://nature.njit.edu/spacesoft/DeepSun/
https://nature.njit.edu/spacesoft/DeepSun/


Y. Abduallah et al.: Machine-Learning-as-a-Service for Solar Flare Prediction 160–7

Fig. 2 Overview of DeepSun.

Fig. 3 Screenshot depicting the home page of DeepSun.

Fig. 4 Screenshot showing the webpage with pretrained models of DeepSun.
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Fig. 5 Screenshot displaying the webpage with custom models of DeepSun.

parameters and its flare class label where the label must
be one of B, C, M or X. The return result of this POST
request is a JSON object that contains the custom model
identifier (id) which can be exploited for flare prediction.
The custom model includes all the four algorithms (ENS,
RF, MLP, ELM). Since the API is a RESTful interface, any
programming language that supports HTTP calls, such as
Java, C++, Python, Node.js, JavaScript modules in React
or other frameworks, can be used to invoke the API.
Figure 6 depicts the RESTful API page on which the

definitions of the available methods and client examples
are displayed.

We present a simple Python program for invoking
the RESTful API to get a data sample (record) as shown
in Listing 1 followed by another Python program to
perform solar flare prediction as featured in Listing 2.
More example programs can be found on our API
main page accessible at http://nature.njit.edu/
spacesoft/MLaaS/api.

Listing 1 Python Program to Get a Data Sample Using the DeepSun RESTful API

1 # import the requests library
2 import requests
3 # api-endpoint including the query parameter
4 URL = "https://nature.njit.edu/spacesoft/MLaaS/api/v1/data?query=getsampledata"
5 # sending get request and saving the response as response object
6 r = requests.get(url = URL)
7 # saving data in json format
8 data = r.json()
9 print(data)

Listing 2 Python Program to Perform Solar Flare Prediction Using the DeepSun RESTful API

1 # import the requests and simplejson modules
2 import requests
3 import simplejson as json
4 # defining the api-endpoint
5 API_ENDPOINT = "https://nature.njit.edu/spacesoft/MLaaS/api/v1/predict"

http://nature.njit.edu/spacesoft/MLaaS/api
http://nature.njit.edu/spacesoft/MLaaS/api
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6 # payload in JSON format data to be sent to api
7 # NOTE JSON is not python format; dumps and then loads, makes it JSON format
8 payload = ’{"parameters":{"TOTUSJH":2699.42,"TOTBSQ":58985000000,"TOTPOT":1.07e+24,’
9 payload = payload + ’"TOTUSJZ":53457900000000,"ABSNJZH":47.02,’

10 payload = payload + ’"SAVNCPP":4510260000000,"USFLUX":3.58771e+22,’
11 payload = payload + ’"AREA_ACR":1511.12,"TOTFZ":-3175.7,"MEANPOT":15255.1,’
12 payload = payload + ’"R_VALUE":4.482,"EPSZ":-0.1021,"SHRGT45":49.982}}’
13 payload = json.dumps(payload)
14 payload = json.loads(payload)
15 print(payload)
16 # sending post request and saving response as response object
17 r = requests.post(url = API_ENDPOINT, data = payload)
18 print(r)
19 # saving response text
20 result=r.json()
21 print(result)

7 RELATED WORK

There are two groups of work that are closely related
to ours. The first group is concerned with solar flare
forecasting. Many studies in this group used parameters
derived from the line-of-sight (LOS) component of the
photospheric magnetic field and produced probability
outputs for the occurrence of a certain magnitude flare in
a time period (Liu et al. 2017). Some researchers (e.g.,
Gallagher et al. 2002) relied on sunspot classification
and Poisson statistics to provide probabilities for an AR
to produce flares with different magnitudes within 24 h.
Song et al. (2009) used three LOS magnetic parameters
together with the ordinal logistic regression (OLR) method
to predict the probabilities of a one-day flare. Bloomfield
et al. (2012) suggested that the prediction probabilities
should be converted into a binary (i.e., yes-or-no) forecast
before they can be translated as flare-imminent or flare-
quiet. Following this suggestion, Yuan et al. (2010)
employed support vector machines (SVMs) to obtain a
clear true or false flare prediction for different flare classes.

On the other hand, the full vector data provide
more information about the photospheric magnetic field
structure compared to the LOS field. This type of infor-
mation may provide better flare prediction performance,
but due to the limitation imposed by ground-based vector
magnetic field observations, the work on flare forecasting
is limited. For example, Leka & Barnes (2003) utilized
a small sample of vector magnetograms from the Mees
Solar Observatory and applied a discriminant analysis
to differentiate between flare-producing and flare-quiet
ARs within a few hours. The authors later extended their
work and used a larger number of samples with a 24-
hr prediction window to generate probabilistic forecasts
(Barnes et al. 2007).

Since May 2010, the Helioseismic and Magnetic
Imager (HMI) onboard the Solar Dynamics Observatory
(SDO) has been producing high quality photospheric
vector magnetograms with high-cadence and full-disk

coverage data (Bobra & Couvidat 2015). Relying on
these data, Bobra & Couvidat (2015) calculated a number
of magnetic parameters for each AR. They selected 13
from all the available parameters and achieved good
prediction performance utilizing an SVM method for flares
greater than M1.0 class. Nishizuka et al. (2017) applied
a number of machine learning algorithms to HMI data
and produced prediction models for ≥M and X-class
flares with reasonably high performance. More recently,
we employed a long short-term memory network for flare
prediction (Liu et al. 2019).

The second group of related work is concerned with
services computing. Benmerar et al. (2018) developed
a brain diffusion magnetic resonance imaging (MRI)
application to overcome the software-as-a-service (SssS)
limitations caused by intensive computation. The applica-
tion provides APIs that tackle browser paradigms to reduce
the parallel computation rendered in the client side of the
browser.

Wu et al. (2018) developed an automated testing
technique to detect cross-browser compatibility issues so
that they can be fixed. These cross-browser issues cause
problems for an organization to create JavaScript web
applications. The authors employed an existing record-
and-play technique, Mugshot (Mickens et al. 2010),
to design an incremental cross-browser incompatibility
algorithm. The system starts off by injecting the record
library into the browsers, collects traces and events to be
replayed, and runs the detection algorithm to find different
types of incompatibilities among the browsers.

Song et al. (2012) presented a machine learning
algorithm for IT support services to automate the problem
of determination and classification, and also find the root
cause of such a problem. The algorithm is an online
perceptron that learns about the user’s problems from
the data that were generated from logs and monitors
information across different systems. The algorithm then
categorizes the problems by finding the actual root cause
from what it learned from the data. The algorithm
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Fig. 6 Screenshot showing the RESTful API page of DeepSun.

employs an incremental learning technique and is able to
automatically adjust the classifier parameters.

Li et al. (2018) described a new software documenta-
tion recommendation methodology that adopts a learn-to-
rank (LTR) technique. LTR is an application of supervised
and semi-supervised machine learning techniques. Their
strategy combines the social context from a question-and-
answer online system and the content of official software
documentation to build the LTR model to provide accurate
and relevant software documentation recommendations.
Their experimental results demonstrated that this approach
outperforms traditional code search engines including the
Google search engine.

Our DeepSun system differs from the above works in
two ways. First, DeepSun provides services dedicated to
solar flare prediction, which has not been addressed by the
existing services computing systems. Second, in the solar
flare forecasting area, DeepSun is the first MLaaS system,
to our knowledge, that allows scientists to perform multi-
class flare predictions through the internet.

8 CONCLUSIONS AND FUTURE WORK

We present an MLaaS framework (DeepSun) for solar
flare prediction. This framework provides two interfaces:

a web server where the user enters the information through
a GUI and a programmable interface that can be used
by any RESTful client. DeepSun employs four machine
learning algorithms, namely the RF, MLP, ELM and ENS
algorithms. Our experimental results demonstrated good
performance of the ENS algorithm and its superiority over
the other three machine learning algorithms.

In our work, we rely on the database constructed in Liu
et al. (2017), which contains 845 data samples belonging
to four flare classes: B, C, M and X across 472 ARs.
These data samples are unevenly distributed. Specifically,
there are 128 B-class, 552 C-class, 142 M-class and 23
X-class flares where each flare corresponds to a data
sample. To mitigate the class imbalance problem, we create
modified datasets by randomly selecting 142 unique C-
class flares from the total of 552 C-class flares. Balancing
the data samples changes the flare occurrence frequency
but provides better performance results as shown in
Section 5. Our goal here is to gain a better understanding
of the relative performance of the four machine learning
algorithms in dealing with different imbalanced datasets.
The models studied here are mainly used for scientific
purposes, not for operations.

Because there are four flare classes, we perform four-
class classification to predict which class of flares would
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occur within 24 h. In practice, it is likely that there is no
flare within 24 hr. To handle this situation, we adopt a
two-step method. In the first step, a test record is fed to a
binary classification model, which is similar to the binary
classification tools described in Liu et al. (2019). This
binary classification model predicts whether or not there
is a flare within 24 h. If the prediction outcome is “no”,
then the test record represents a non-flare event, meaning
there is no flare within 24 h. If the prediction outcome is
“yes”, then we enter the second step where we feed the
test record to the DeepSun tool presented here to further
identify which flare class the test record belongs to. If the
test record is classified into class B (C, M or X), then we
predict there is a B (C, M or X) class flare within 24 h.

In the current work, we focus on data samples
composed of SHARP parameters. The HMI aboard the
SDO also produces continuous full-disk observations
(solar images). In future work, we plan to incorporate these
HMI images into our DeepSun framework and extend
our previously developed deep learning techniques (Hu
et al. 2018, 2020; Liu et al. 2020b) to directly process the
images. We also plan to combine our recently developed
deep learning algorithms using the SHARP parameters
(Liu et al. 2019) with the image-based techniques and
machine learning algorithms described in this paper for
more accurate solar flare prediction.
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