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Abstract As the asteroid rotational period is important to the study of the properties of asteroids (e.g.,
super-fast rotators have structures owing an internal cohesion (rather than being rubble piles bounded
by gravity only) so as not to fly apart), constructing an effective and fast method used to search the
period attracts much researchers’ attention. Recently, the Bayesian generalized Lomb–Scargle (BGLS)
periodogram was developed to improve the convergence efficiency of the Lomb–Scargle method. However,
the result of BGLS varies with the frequency range and cannotmeet the two minimum/maximum
requirements for a complete rotation of the asteroid. We propose a robust BGLS-based method that
efficiently determines rotational periods. The proposed method employs a polynomial series to fit folded
light curves with potential periods, initially calculatedusing the BGLS periodogram, and adopts a merit
function to estimate and refine best-fit periods. We estimatethe rotational periods of 30 asteroids applying
the new method to light curves from the Palomar Transient Factory. Results confirm the effectiveness of the
BGLS-based method in deriving rotational periods from ground-based observations of asteroids. Further
application of the BGLS-based method to sparse light curves, such asGaia data, is discussed.
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1 INTRODUCTION

“Asteroids have been viewed as remnants of planetary
formation” (Demeo & Carry 2014) and are therefore
important in our understanding of the evolution of
the Solar System (Izidoro et al. 2016). Combining the
information on the rotational period of asteroids and
their corresponding size, it can help to distinguish the
interior structures of asteroids (e.g., monoliths, rubble
piles, and shattered but coherent objects) (Harris 1996;
Bagatin et al. 2018; Parker et al. 2008). Additionally, the
spin rate distribution generated by an amount of asteroid
rotational periods provides information on the size and
location in the main asteroid belt (e.g., “the spin rate
distributions of asteroids of3 < D < 15 km in size
show a steady decrease along frequency forf > 5 rev/day,
regardless of the location in the main belt”) (Chang et al.
2017).

Nowadays, more and more surveys have been con-
ducted or are planned in the near future for asteroid
discovery (e.g., CSS, PS1, ATLAS, and LSST), and such
surveys provide hundreds of thousands of sparse asteroid
light curves, a more efficient way of measuring rotational
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periods is thus essential (Law et al. 2009; Perley et al.
2020; Prusti et al. 2016). An accurate estimate of periods
can help to obtain other precise parameters (such as
the parameters of asteroid shape), because the rotational
period is a significant part of complex inversion research
like convex inversion and the use of the Cellinoid model
(Kaasalainen et al. 2012; Lu et al. 2016).

Generally, besides the second-order Fourier series,
one of the widely used methods adopted in quickly
deriving the rotational periods of asteroids from light
curves (Harris et al. 2014; VanderPlas & Ivezic 2015;
Waszczak et al. 2015), another popular approach of pre-
dicting the rotational period of the asteroid is Lomb–
Scargle (LS, the first-order Fourier series) (Lomb 1976;
Scargle 1982). The Bayesian generalized Lomb–Scargle
(BGLS) periodogram (Mortier et al. 2015) is an extension
of the LS method for the analysis of periodic photometric
time series and is more efficient compared with LS in
obtaining periods. A major characteristic of BGLS is
that it describes the probability distribution to present
a full sine function with the specific frequency in the
data, which cannot meet the two minimum/maximum
requirements for a complete rotation of the asteroid.
Besides, the result of BGLS will vary with the preset
range of frequency. Therefore, the BGLS is not appropriate
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for direct use in searching for the periods of asteroids
from light curves. The present article introduces a BGLS-
based method for finding the best-fit rotational period. By
applying the method to Palomar Transient Factory (PTF)
observations, we present an estimate of rotational periods
for 30 asteroids and obtain results that are consistent with
the results of other research. Furthermore, as more sparse
light curves are made on space missions, such as theGaia
mission, we apply the BGLS-based method to search for
the best-fit period of (216) Kleopatra fromGaia sparse
light curves. Although it is difficult to obtain the period
from sparse data through spectral analysis, the proposed
method derives the correct rotational period for (216)
Kleopatra. This shows the potential application of the
BGLS-based method to sparse light curves, such asGaia
data.

The remainder of the paper is organized as follows.
First, basic knowledge of the LS method and its extensions
is presented in Section2. Subsequently, the asteroid light
curve is described in Section3 and the proposed BGLS-
based method is illustrated in detail in Section4. The
folded light curves and merit function are presented in
this section. Following its description in Section5, the
proposed method is applied in searching for the rotational
periods of 30 asteroids from PTF observations and the case
of sparse light curves for (216) Kleopatra is discussed.
Finally, conclusions and directions of future work are
presented in Section6.

2 LS AND BGLS METHODS

Deriving the rotational period is a significant part in the
inverse process from the observed photometric data of
asteroids. The LS method is widely adopted to analyze
frequencies of time series and to search for best-fit periods
from light curves, especially in the case of unevenly
sampled data (Lomb 1976; Scargle 1982).

However, the original LS method does not include
the weight of data errors or consider the constant
offset effect due to hardware. Studies have investigated
these shortcomings (Ferraz-Mello 1981; Cumming et al.
1999; Zechmeister & Kürster 2009) and proposed the
generalized LS (GLS) method (Zechmeister & Kürster
2009). Nevertheless, all methods face a drawback owing to
the expression of arbitrary power. This shortcoming makes
it difficult to compare peaks. To better evaluate relative
probabilities among peaks,Bretthorst(2001) generalized
the LS according to Bayesian probability theory (i.e., the
BLS method). The BLS is much more efficient than the
traditional LS in finding best-fit rotational periods.

In 2015, Mortier et al. (2015) proposed a Bayesian
formalism for the generalized Lomb–Scargle periodogram
(i.e., the BGLS method) by combining GLS and BLS,
such that the result is intuitive and unique. When adopting

the BGLS, a full sine function model that describes the
periodic signal in time series data is defined as

y(t)i = yi =A cos(2πfti − θ) +B sin(2πfti − θ)

+ γ + ǫi ,
(1)

whereyi is the data point corresponding to the timeti,
A and B are respectively cosine and sine amplitudes,
f is the given frequency,θ is an arbitrary phase offset
and “was chosen by Lomb to make the sine and cosine
model functions orthogonal on the discretely sampled
times” (Bretthorst 2001). γ is the data offset, andǫi
is the noise at timeti (Forbes et al. 1978; Press et al.
2007). This noise is per timeti Gaussian–distributed
around 0 with a standard deviation ofσi, which is
the estimated uncertainty on the data at timeti (ǫi ∼
N(0, σi)). Given dataD = {ti, yi, σi}

N
i=1

(whereN is
the number of observations) and prior knowledgeI, the
best-fit frequency corresponding to the largest value of the
posterior probabilityP (f |D, I) is obtained:

P (f |D, I) =

∫ ∫ ∫

P (fABγ|D, I)dAdBdγ . (2)

The BGLS method has advantages in implementation
and is appropriate for both unevenly and evenly sampled
data; e.g., ground-based light curves and space-based light
curves and it also inherits the advantages of the general
Bayesian method, which are “more flexible models, more
principled treatment of nuisance parameters related to
noise in the data, and the ability to make use of prior
information in a periodic analysis” (VanderPlas 2017).
Furthermore, it performs well in searching for the best-
fit period using periodic photometric data, especially for
sparse light curves even when the limited dataset contains
few observations.

However, as mentioned above, BGLS is a full sine
function model. According to a simpler shape model of
the asteroid (i.e., the ellipsoid model shown as Fig.1)
(Karttunen 1989; Karttunen & Bowell 1989), the light
curve of such an ellipsoid is a double-peaked sinusoid.
Even for the cellinoid model (i.e., an extension of the
traditional tri-axis ellipsoid shown in Fig.2), the light
curve of that should have two maxima or two minima in
one rotational period. The result searched by the BGLS
cannot meet the requirement for a complete rotation of
the asteroid. Moreover, the BGLS will get different results
due to different preset frequency ranges. Hence, the BGLS
is affected largely by the intervals used in the initial
search of the frequency range. It is thus time-consuming
to preliminarily set an optional frequency interval when
searching rotational periods of a huge number of asteroids
or searching rotational periods from a sparse light curve
collected for months. Therefore, we need to modify the
BGLS method before we use it to estimate the asteroid
rotational period.
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Fig. 1 Ellipsoid shape model.
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Fig. 2 Cellinoid shape model.

3 ASTEROID LIGHT CURVES

In this article, the periodic variability term due to rotation
M (corrected magnitude) is handled with different forms
in PFT data andGaia data. For PTF data, theM is
modeled as

M = m−H − 5 log
10
(r∆) + 2.5 log

10
[φ (α)] , (3)

wherem is the apparent magnitude,H is the absolute
magnitude,r and ∆ are respectively the heliocentric
distance and geocentric distance, andφ (α) is the phase
function1. The phase function in Equation (3) is used to
simulate the scattering effect corresponding to different
solar phase angles, especially covering the opposition
effect. Several phase models are used to simulate the
scattering characteristics by combining the opposition
effect at a small phase angle and the linear relationship
at a large phase angle (Shevchenko 1997; Bowell et al.
1989; Muinonen et al. 2010). In this work, the magnitude
data we utilize to estimate the rotational period is
extracted fromWaszczak et al.(2015) and is corrected for
distance and phase function. According to the workflow
of Waszczak et al.(2015), the single-parameterG12 form
of the Muinonen et al. model (Muinonen et al. 2010) is
employed and it is expressed as

1 The form of Eq. (3) follows the definition inWaszczak et al.(2015),
theM andm correspond to theδ andV , respectively.

φ ≡ G1φ1 +G2φ2 + (1−G1 −G2)φ3 , (4)

whereG1 andG2 are defined as

G1 =

{

0.7527G12 + 0.06164 if G12 < 0.2

0.9529G12 + 0.02162 otherwise
,

G2 =

{

− 0.9612G12 + 0.6270 if G12 < 0.2

− 0.6125G12 + 0.5572 otherwise
.

(5)

Whereas the handling process ofM for Gaia data is
rewritten as

M =























m− 0.047344 + 0.16405m− 0.046799m2

+0.0035015m3, if 2.0<m ≤ 6.0,

m− 0.0032 ∗ (m− 6.0), if 6.0<m ≤ 16.0,

m− 0.032, if m>16.0,
(6)

which follows the process ofEvans et al.(2018).
To measure the rotation period through analyzing light

curves with the BGLS method, the function ofM with
respect to observation timet is written as

M(t)i = Mi =A cos(2πfti − θ) +B sin(2πfti − θ)

+ γ + ǫi ,
(7)

where the definitions of parameters are the same as
Equation (1), note that the phase offset parameterθ has no
relationship with the phase functionφ(α) in Equation (4),
and it “was chosen by Lomb to make the sine and cosine
model functions orthogonal on the discretely sampled
times” (Bretthorst 2001).

4 BGLS-BASED METHOD

To mitigate the problems existing in the BGLS, in
this article, we propose a BGLS-based method that is
more suitable for estimating the rotational periods of
asteroids. The overall process of the BGLS-based method
is illustrated in detail as follows.

4.1 Process of the BGLS-based Method

A complete light curve of an asteroid covering a full
rotation have two minima and two maxima. The general
BGLS method only finds the period for the periodic
photometric time series, which is half the asteroidal
synodic period (where this period can be searched for
only when the interval is set suitably). Therefore, firstly,
we adopt the BGLS to search for possible periodsP =
[p1, p2, · · · , pNp

], whereNp is the number of intervals that
we preset. Secondly, as pre-setting the frequency range is
necessary for BGLS, we think it is may be effective to
evaluate multiple candidate periods obtained by different
ranges (e.g., dividing a full range into multiple small
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ranges) to find the best-fit one. In this work, we preset
10 frequency ranges and each range contains one hour, in
other words, we divide 10 hours evenly into 10 intervals2

to search for 10 possible results adopting the BGLS. For
each result, we apply a polynomial series to fit the folded
light curves:

M̂i =
K
∑

j=0

xj ∗ (ti mod (Pm ∗ 2)), (8)

whereM̂i is the synthetic data point at timeti while xj

is the coefficient of the polynomial.K3 is the degree of
the polynomial under the assumption thatPm is them-th
possible rotational period.

Subsequently, a new merit function

χ2

m =

N
∑

i=1

(Mi − M̂i)
2, (9)

is defined for estimating the derived possible periods using
the BGLS and refining the best-fit result, wherem is the
index of the possible periods, namelym = 1, 2, · · · , 10,
and N is the number of observation points with the
corrected magnitudeMi (cf. Eq. (3) and Eq. (6)).

Finally, the possible period derived using the BGLS
with the smallestχ2 is the best-fit result. Furthermore, its
double is the rotational period of the asteroid.

4.2 Algorithm

To sum up, we search the period step by step in each range
and find one candidate period in each range (i.e., in each
range, BGLS gives only one result with a corresponding
probability of 1). After that, we use the polynomial fitting
to find which candidate period is the best-fit. The overall
process of the proposed BGLS-based method is described
in Algorithm 1.

Algorithm 1 BGLS-based method
Input:

Time Series,t;
Corrected Magnitude,M;
Uncertainty in apparent magnitude,err.

Output:
Best-fit rotational period,P .

1: Preset 10 intervals from 0 to 10 hours.
2: Search possible periodsPm (m ∈ [1, 10]) adopting the

BGLS periodogram in each interval.
3: Fit a polynomial using Eq. (8).
4: Calculateχ2

m
using Eq. (9).

5: Find the index of the minimum ofχ2 and updateP =
Pindex ∗ 2.

6: return P .

2 The range of intervals can be changed depending on the specific
requirement. The asteroid rotational periods are not longer than 20 hours
and we thus initially search for periods by dividing the period range into
10 intervals (i.e., 1 to 10 hours).

3 In this work, K is equal to 12, which is an empirical value.

5 RESULTS AND DISCUSSION

5.1 Synthetic Light Curves

In this part we provide two synthetic examples that expose
the effectiveness of the BGLS-based method. Supposing
the longitude and latitude of the pole orientation is
(0◦, 90◦) in the ecliptic frame and the rotational period
is P = 5 hr, six semi-axes are[1, 0.8, 0.9, 0.8, 0.7, 0.6],
the synthetic light curves are generated in Figure3 and
Figure5 based on the cellinoid shape with the Gaussian
noise N(0, 1). The two light curves contain different
observation points: 100 and 30, respectively.

The results searched by the BGLS-based method are
shown in Figure4 and Figure6. From the folded light
curves figure we can learn the light curve with 100
observations shows the result5.0336 hr whereas the sparse
light curve shows the result5.0209 hr. The error influenced
by Gaussian noise is∼ 1 min –∼2 min. The difference of
searched results is caused by the noise, obviously, we can
see the noise points in the sparse light curve are smaller
than those in the light curve with 100 observations.

5.2 Real Light Curves

To evaluate the performance of the BGLS-based method,
we employ ground-based light curves (e.g., the PTF4) and
sparse space-based light curves (e.g., the secondGaia data
release,Gaia DR2) to complete experiments, respectively.

The PTF is a synoptic survey conducted using a
wide-field survey camera designed to search out the
transient and variable sky (Law et al. 2009; Rau et al.
2009). Waszczak et al.(2015) searched all PTF (R and
g-band) data from 2009-March-01 through 2014-July-18
for all numbered asteroids as of 2014-July-12 and gave
the processed data in an online document (i.e., table 4
in Waszczak et al. 2015). In our work, we extracted the
magnitude corrected for distance and phase function from
Waszczak et al.(2015) into the period analysis.

Gaia5 is a space observatory that measures the posi-
tions, distances, and motions of stars with unprecedented
precision (Prusti et al. 2016; Perryman et al. 2001). A
synthetic presentation about the case of GDR2 photometric
data is given byGaia Collaboration et al.(2018). We
correct that the magnitude (G-band) also follows the work
of Evans et al.(2018) (Eq. (6)).

5.3 Applications

In total, we search for the best-fit rotational periods of 30
asteroids using our proposed BGLS-based method from
the light curves observed in the survey of the PTF.

An appropriate step length of the frequency should
balance the computational cost and accuracy. If the step

4 http://ptf.caltech.edu
5 https://www.cosmos.esa.int/web/gaia/

http://ptf.caltech.edu
https://www.cosmos.esa.int/web/gaia/
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Fig. 3 Synthetic Light Curves with Gaussian Noise. Fig. 4 Folded Light Curves with Gaussian Noise.
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Fig. 5 Synthetic Light Curves with Gaussian Noise. Fig. 6 Folded Light Curves with Gaussian Noise.

length is larger the prediction result might be not so
accurate, if the step length is finer the computational cost
is too huge and the accuracy of the prediction result may
improve little. To find the proper step length, a numerical
experiment is conducted with different step lengths of the
frequency, namely 0.0001, 0.001, and 0.0025. The results
are listed in Table1. The computing time is the total
time required to search for the rotational periods of the
30 asteroids. The table shows that the finest step length
of 0.0001 obtains the correct periods, while the results are
not satisfactory when the step length is0.0025 although
the computational cost is low. To balance the accuracy and
computational cost, we suggest a step length of0.001 in
the large-scale searching of rotational periods of a huge
number of asteroids.

We compare the results of our work and the previous
work of Waszczak et al.(2015). The obtained rotational
periods are listed in Table2.

Table 2 shows that the rotational periods of some
asteroids are almost consistent with the results of previous
work (e.g., asteroid 300, asteroid 6221, and asteroid
13919), some results have a deviation of about 1 minute

(e.g., asteroid 1633, asteroid 1778, and asteroid 2627).
The asteroid 2804 shows the most obvious difference,
the period of asteroid 2804 is recorded as 8.10 hr in
Chang et al.(2014). Supposing the rotational period of
asteroid 2804P = 8.1 hr, the result searched by
Waszczak et al.(2015) P̂ = 6.128 hr, then we can get the
relationshipP̂ ≃ 3/4P .

For the difference in derived periods between this
work and Waszczak et al.(2015), the phase offset term
may be a reason. The two works handle the phase term
of the sine function with different forms and this could
bring a difference in calculation. Additionally, as both
of our methods and the previous method (Waszczak et al.
2015) are based on a periodic time-series analysis, the pole
and shape of an asteroid are not considered, resulting in
deviations in the obtained results.

The folded light curves of 30 asteroids are shown in
Figure 7, where thex-axis andy-axis of each subfigure
are respectively the time and magnitude calibrated for
the phase function and distance. Figure7 reveals that the
majority of folded light curves cover a whole rotational
period. This confirms that the BGLS-based method has
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Fig. 7 Folded light curves of 30 PTF asteroids using the BGLS-basedmethod.Red points are data andgray curves are
the fitting results.

a good recovery capability in searching for the rotational
periods of asteroids.

The application of the BGLS-based method to PTF
data shows that the proposed method performs well
in determining the rotational periods of asteroids using
the light curves obtained from ground-based observa-
tions. Nevertheless, there are asteroid surveys conducted
in space; e.g., theGaia mission (Prusti et al. 2016;
Perryman et al. 2001).

We obtain the period for (216) Kleopatra from limited
sparse light curves inGaia DR2. The total number of
observations is17 as shown in Figure8.

The light curve of (216) Kleopatra in Figure8 seven
points lying approximately on a vertical line. These seven
points were observed on two consecutive days; i.e., these
seven points were collected for one whole rotational period
and can be used to search for the rotational period adopting
the BGLS-based method. In a series candidate periods
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Table 1 The Rotation Periods Obtained Using Different
Step Lengths

Obj ID Step Length Step Length Step Length
0.0001 0.001 0.0025

00300 6.85 6.85 6.86
00543 10.72 10.72 10.73
01633 6.64 6.64 6.65
01778 4.82 4.82 4.81
01913 13.98 13.98 13.98
02217 6.94 6.94 6.94
02270 7.79 7.79 7.79
02627 7.65 7.66 7.65
02804 8.14 8.14 8.14
03640 3.27 3.26 3.27
04365 9.88 9.88 9.88
04385 5.57 5.57 5.57
05673 5.82 5.83 5.82
05770 13.98 13.98 19.75
05823 2.80 2.8 0 2.80
06221 13.79 13.79 13.79
06932 3.79 3.79 3.79
07380 4.37 4.38 12.03
07751 9.42 9.42 9.42
07980 10.43 10.43 10.43
07998 6.50 6.50 6.50
08080 3.53 3.53 3.52
08245 4.72 4.72 4.75
08859 3.90 3.90 3.89
09196 8.27 7.10 7.09
09234 6.06 6.06 6.06
10947 3.15 3.15 3.15
11515 3.34 3.34 3.35
13919 6.00 6.00 6.00
14430 4.83 4.8 4.83

Computing time 263.7518 85.7628 74.0981

The rotational period is in hours and the computing time is in
seconds.
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Fig. 8 The light curve of (216) Kleopatra obtained from
the Gaia DR2.

obtained by BGLS, the most possible result lies in the
range of (2, 3) hours with the minimum ofχ2 (cf. Eq. (9)),
the periodogram in the range (2, 3) hours is shown in
Figure9. From the plot we can see the probability of point

Table 2 The Comparison of Rotation Period between
Waszczak et al.(2015) and This Work

Obj ID Period Period
(Waszczak’s Work) (Our Work)

00300 6.8504 6.8503
00543 10.7643 10.7246
01633 6.6367 6.6416
01778 4.8050 4.8183
01913 13.9854 13.9837
02217 6.9254 6.9395
02270 7.7272 7.7920
02627 7.6719 7.6552
02804 6.1280 8.1368
03640 3.2632 3.2594
04365 9.7957 9.8764
04385 5.5518 5.5655
05673 5.8237 5.8251
05770 13.9758 13.9837
05823 2.8010 2.8003
06221 13.7881 13.7884
06932 3.7980 3.7949
07380 4.3641 4.3752
07751 9.4195 9.4156
07980 10.4345 10.4316
07998 6.5026 6.5028
08080 3.5331 3.5332
08245 4.7157 4.7160
08859 3.8981 3.8985
09196 7.0999 7.0956
09234 6.0570 6.0561
10947 3.1486 3.1514
11515 3.3368 3.3439
13919 5.9984 6.0000
14430 4.8393 4.8300

Fig. 9 The periodogram of (216) Kleopatra obtained by
BGLS.

2.6927 corresponds to 1, so the best-fit rotational period of
(216) Kleopatra is finally obtained as5.3854 hours, which
is consistent with the result obtained byCellino et al.
(2009), Cellino et al.(2019) andPál et al.(2020). Folded
light curves are shown in Figure10.

6 CONCLUSIONS

A BGLS-based method was proposed to search asteroid
rotation periods and it was applied to 30 asteroid light
curves obtained from the PTF. The rotation periods
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Fig. 10 Folded light curves for (216) Kleopatra.Red
markers are observations calibrated for the phase function
while grey light curves are polynomial fitting results.

derived from the BGLS-based method are consistent with
that of Waszczak et al.(2015), which suggests that the
BGLS-based method is efficient in searching asteroid
rotation periods. In addition, this method was applied to
a sparse light curve of (216) Kleopatra obtained from
the Gaia DR2. The derived rotation period based on the
BGLS-method is consistent with the published periods
(Cellino et al. 2009, 2019; Pál et al. 2020). Therefore, the
proposed method can be applied to the asteroid light curves
in the Gaia DR3 in the near future. There is a limitation
in the BGLS-based method, that it has not considered
the applications for non-principal-axis rotational asteroids.
But the research of non-principal-axis rotational periodsof
asteroids is also important and meaningful, we will pay
attention to such issues in subsequent work. A Python
code of our BGLS-based method has been published on
GitHub6, which can be used by the asteroid community.
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