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Abstract Spectrum denoising is an important procedure for largéesgaectroscopical surveys. This work
proposes a novel stellar spectrum denoising method basddemBayesian modeling. The construction
of our model includes a prior distribution for each stellabslass, a spectrum generator and a flow-based
noise model. Our method takes into account the noise ctielatructure, and it is not susceptible to
strong sky emission lines and cosmic rays. Moreover, it Ie &b naturally handle spectra with missing
flux values without ad-hoc imputation. The proposed metisoglvaluated on real stellar spectra from the
Sloan Digital Sky Survey (SDSS) with a comprehensive listamihmon stellar subclasses and compared
to the standard denoising auto-encoder. Our denoisingadetemonstrates a superior performance to the
standard denoising auto-encoder, in respect of denoisiaditg and missing flux imputation. It may be
potentially helpful in improving the accuracy of the cldissition and physical parameter measurement of
stars when applying our method during data preprocessing.

Key words: methods: data analysis — methods: numerical — methodsst&tat — techniques:
spectroscopic

1 INTRODUCTION bottleneck for spectrum reconstruction. Through minimiz-

ing the loss objective function, the encoder learns a feed-

With the rapid improvement of astronomical observationtopward latent representation of its input, and the decoder
technology, modern large-scale sky surveys, such as theconstructs the signal from the latent space.
Sloan Digital Sky Survey (SDSSAhumada et al. 2020

and the Large Sky Area Multi-Object Fiber Spectroscopic Despite the success of these algorithms, there are still
Telescope (LAMOST or Guo Shou Jing Telescope'several unresolved issues. A standard wavelet method and

Cuietal. 2012 provide an unprecedented amount ofauto-encoder require a complete _spectrum as th_e input.
astronomical data and enable us to explore our univers&lOWEVer, some spectral observations have missing flux
The immense volume of astronomical data not only offer&/2lues due to bad equipment conditions. Existing methods
new opportunities but also brings challenges. adopt an ad-hoc approach and directly impute thg missing
A fundamental data processing task is SpeCtrun9bservat|ons by some values ((_e.g. zero). In addition, the
denoising when handling spectra. To clean astronomicdlPSCum sometlmgs has a distorted shape and has a
spectra, a wavelet is a standard tool. The WaveleYvaveIength—connectlon problem, because the full spectrum

shrinkage method applies the wavelet transform to nois§1S combined from the blue and red channels. For some

observations, shrinks wavelet coefficients by some soft§peCtra’ the two parts are misaligned. Lastly, the flux &lue

thresholding or hard-thresholding rules, and takes théometimes ge’F contaminated bY st.r(-)ng hight-sky emission
inverse wavelet transform to estimate the sigarfoho !lnes or .cosmlc rays. ",1 each mdmdual gxposure. They

1993 Donoho & Johnstone 1994995. Machado et al, induce bias to the existing denoising algorithms.

(2013 developed a wavelet-based method for galaxy  Thiswork proposes a novel model to address the above
spectra and estimated their redshifts. An auto-encodgroblems. Based on deep Bayesian modeling, this paper
(Hinton et al. 2006Vincent et al. 201pis another popular puts forward a stellar spectrum denoising method, which

denoising method in machine learning. Its success reliesot only denoises spectra but also recovers the defective
on allowing only limited information to pass through a spectra. Sectior2 presents the description of used data.
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Fig.1 The left subfigure illustrates a distorted mapping whereddesity estimation is affected. The right subfigure

illustrates a locally isometric mapping where the locatatise is preserved. Our generagoimplements this isometry
property to avoid distortion in the latent space.

Section3 introduces our proposed model. The applicatiorwe subtract this composite spectrum from the average of
and experimental results of our model are indicated irmultiple composite spectra. One subtracted spectrum from
Section4. We summarize and conclude our paper inan exposure data becomes a training spectrum.

Section5. Test datasets also get prepared for model performance
evaluation. We select an additional set of spectra with

2 DATA band SNR greater than 60. One test dataset consists of up
to 300 spectra for each stellar subclass. We also select an

The Sloan Digital Sky Survey (SDS$ihumadaetal. additional group of spectra whoseband SNR is between

2020 has been the most successful sky survey project ia0 to 20 to extract new noise from their multiple-exposure

the history, which now provides images, optical spectrada'[a. The final test dataset is constructed by randomly

infrared spectra, IFU spectra, stellar library spectral anadding these realistic noises to the spectra with high SNR.

catalog data. Current data release is Data Release Tée goal for the denoising model is to reconstruct the

(DR16). This work is conducted based on the stellaioriginal clean spectra with high SNR.

spectral observations from SDSS DR16. In this study, we

select a comprehensive list of common stellar subclasses THE DENOISING MODEL

for model training and evaluation: O-type, B-type, A-type,

F-type, G-type, K-type, M-type, cataclysmic variables3.1 Deep Bayesian Modeling

(CVs), carbon class and WD class (including CaIciumWD,We now develop our proposed model for stellar spectrum
CarbonWD, WD, WDcooler and WDhotter). P prop P

_ denoising based on the basic Bayesian modgH(2).
Our proposed model will have several components;

ior distribution f h stell bel Suppose the signal spectrum of a stas is R”. Itis a
one prior distribution qr each stellar su <_:ass, a spetru D-dimensional unobserved vector, and we want to recover
generator and a NoiseFlow observation model. Se

i ) o ft from noisy observations. Modern astronomical surveys
Section 3 for more details. For the training dataset of

take multiple exposures to get several noisy observations
the spectrum generator, the top 200 spectra are selected

. Vi, ,yn € RP of the clean signal spectrust We
among egch stellar subclass sorted by*t-ltnand_5|gnal-t0-. express the observations in a signal-plus-noise model,
noise ratio (SNR). Each selected spectrum is normalized
to have unit absolute flux summation, and is interpolated
to a fixed uniform grid with the length of 2048 over the
wavelength ranging from 4000 to 9000A. Meanwhile,  whereg; is a D-dimensional noise vector. The noise could
the training dataset of the NoiseFlow observation modehave complex correlation structure across pixels. Most of
is prepared as follows. We extract the multiple-exposur¢he time, only a single average spectrum is used, we can
data from the spectra with their SNR ranging from 20directly setn = 1 in the above. However, our method
to 30. For every exposure, we connect the red and bluis more powerful and can exploit multiple-exposure data
parts of the spectrum, and apply the same interpolatiowhere only the red or blue part of the spectrum is recorded
and normalization as processing the training data. Theim each exposure. Our denoising framework is inspired by

yi=s+e¢, fori=1,--- n,
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Fig.2 The neural network architecture of our observation modik Blue pixel only depends on the immediately
preceding fiveyellow pixels of the input spectrum. This proposed architecture is morsip@nious in parameterization

and focuses on extracting local correlation structure eftbise.
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Fig. 3 The masked likelihood for a partially observed spectrune yeh ow pixelsrepresent the observed pixel values and
thegrey pixels correspond to the missing ones. The likelihood of a pixetianted if and only if the-th pixel and its
immediateK preceding pixels are observed. Our observation model camally deal with spectra with missing values.
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Fig.4 The modeling workflow of our method. The core Bayesian moalehée yellow box consists of three parts: one
spectrum generator, one Gaussian KDE for each stellarasgahd one NoiseFlow model. Spectra with various levels of
SNR are supplied for the training of different model compuseWith iterative optimization, it outputs the corresgomg
latent variables and the denoised spectra.

In the abovep(s) is a prior density encoding the likelihood
of the signals; p(y|s) is the probability density of
the observedy, given the signal vectos. Based on
some state-of-the-art deep density estimation methods (se
Sect.3.2), we will construct an expressive pripfs) and

the following fundamental but powerful Bayesian model

1)
(2)

Y1, aYn|S Np(y|s)a
s ~p(s).
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Fig.5 The three dimensional space for the latent variabteutputted by the encoder. The horizontal axis in the left
subfigure isz; and the vertical axis is,. The horizontal axis in the right subfigure 4 and the vertical axis iss. It

is evident that observations from the same stellar sub&bassa cluster in the latent space. Tiegl circles indicate the
outlier spectra. This learned latent space informs thetaigriable structure for most stellar observations.

an observation model(y|s) by neural networks. Given In this model, the class label variafilehas a uniform prior
the trained model and the observations --- ,y,, the distribution over all stellar subclasses. The constructio
true signal vectors can be inferred from the posterior and training of the latent priors(z|C) and the generator
distributionp(s|y1, - ,yn)- function G will be addressed in Sectior8.3 The
Several additional adjustments of the model areobservation model(y|s) will be discussed in SecticB4.
necessary. It is not straightforward to model a cleariThe final model training and denoising workflow will be
spectrums € R? in a high dimensional spadg”. To  summarized in SectioB.5.
effectively construct a model for the signal spectrum, we  Given our trained model in Equation8)¢(6), the
exploit that, for a collection of astronomical spectra, theposterior distribution of the latent variabteand the class
signal vectors of various stars typically reside over a low labelC' is proportional to the joint distribution
dimensional manifold. This intrinsically low-dimensidna .
structure can be effectively employed for spectrum datap (2,Cly1, - yn) o HP(Yj|g(Z)) x p(z|C) x p(C).
analysis. For exampld,awlor et al. (2016 used a local i
non-linear dimension reduction technique to discover the
manifold structure. The low dimensional nature of theMonte Carlo Markov chain (MCMC) methods can be
data implies that all clean spectra can be represented @pplied to draw samples from the posterior distribution.
a variable in a low dimensional space. Denote this lowHowever, the MCMC technique is known to be computa-
dimensional variable by € RZ, and we can construct a tionally expensive and not scalable to large datasets. For
mappingG such that the signal = G(z) is the mapped large-scale modern astronomical surveys, we can adopt
value ofz. Based on this mapping, the prior over the signaithe faster maximum-a-posterior (MAP) estimation. In this
s can be directly expressed as a prior over the latent spat¥y. the latent variables and the class label' are found
p(z). More specifically, we will take the stellar clags by

into account and construct the prip(s|C) conditional
on each stellar subclass. The final hierarchical model is 3 ¢ — argmax{zlogp yilG(2)) + log p(z|C)
summarized as below. U= @
Y17"'aYn|SNP(Y|S)7 (3)
+ logp(C) ;.
s =G(a), @ 5(C)
2|C ~p(z|C), ®) With the computed MAP estimatiof, the cleaned and
C ~p(C). (6)

denoised spectra are given oy G(z).
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Fig.6 The three panels correspond to the cases where the missingaflues occur at the left end, middle and right
end of each spectrum, respectively. The horizontal axisesgmts the width of the missing range. The vertical axis is
the reconstruction loss of our model. The reconstructies lacreases with the growing number of missing pixels. The
model performance is not sensitive to the location of thesimgs pixels, but missing at the left end (blue end) incurs
slightly higher loss as the blue end is feature-rich for nspstctra.

3.2 Background on Deep Density Estimation to be easily invertible and the log-determinant should be

_ _ _ _easy to computeRezende & Mohamed2016 devised
This subsection reviews some works on deep dens't}ﬂlanar and radial flow as basic blocks fgr NICE

estimation. These works serve as the basis for buiIdingDinh etal. 2013 adapts additive coupling layers to
. . . D .

our deep Bayesian denoising model. Suppgse R form a normalizing flow, and its successor Real NVP

represent aD-dimensional observation, for which we (pjnp et a1, 2017 extends the transformation by stacking

want to estimate its distribution. In the deep leaming,gine coupling layers. They all have a tractable triangular
literature, most density estimation methods are based 0§}, -pian matrix for the bijective mapping.

the intuition that we can transform a simple base density Autoregressive flow is another popular and tractable

mz(2) into @ more complex ong(x) via an invertible  5o00a0h o density estimation. It factorizes the joint

differentiable transformx = f(z). The function f is density as a product of conditional densitipéc) =

parameterized by a neural network to achieve flexible an(ﬁ p(zalx1.a_1) via the chain rule of probability
d d—

adaptive transformation. By the basic formula of density(Uria etal. 2015 This factorization makes the Jacobian

transformation, it holds that
_ af ! inverse autoregressive flow (IARingma et al. 201yand
=m(f! det . 8 . )
P(x) = ma(f 7 (x)) |de ( ox >’ ®) the masked autoregressive flow (MAFapamakarios et al.

Several methods have been proposed for deep densig?18 take this approach. Under this approach, the
estimation. The approach of normalizing flovizirh et al. prediction of current value depends on all of its past values
2014 choosesf as a sequence of composite functions,WhiCh is referred to as the autoregressive property. They
e, f = fiofs0-- 0 fx. In this way,p(x) can be Use independent standard Gaussian distributions as the
regarded as an invertible and differentiable transforamati Pase density. The mean and variance pére functions of
f of a base densityr,(z). The base density can be the preceding observation vecter.,_; or the preceding
simple multivariate Gaussian distribution. The relatiips ~ fandom numbers. They both use MADEdrmain et al.
between the observation datand latent variable canbe 2019 as their basic building blocks for the function
represented as </ h; %5 hy--- <% zvia astack Mapping.
of hidden variables. Under the invertible (or bijective)
assumption off, z can be calculated as= f~!(x) given ~ 3-3 The Generator and Latent Prior
x. Based on Equatior8], the log probability density can
be directly computed as

tractable as the Jacobian becomes a triangular matrix. The

We first detail our spectrum generat@rand the prior
density p(z|C') for the latent variable. The generator is

log p(x) = log m,(z) + log |det (ﬂ)‘ obtained from the auto-encoder framework, but with an
additional local isometry constraint. In the standard auto
K _ (9 encoder framework, an encod&rmaps an observation
= logm,(z) +Zlog det (dhzzl)‘ , y to the latentz = £(y), and then mapz € RE

=1 back to the original high-dimensional spaké’ by the
where the scalar valudog |det(dh;/dh;_1)| is the generator (decoded. The training target is to minimize
logarithm of the absolute value of the determinant ofthe reconstruction loss

the Jacobian matriXdh;/dh;_1), also called the log-

: 2
determinant. The series of transformations are required ors Eylly =G
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Fig.7 The five rows show examples of stellar spectra denoised bygdheolutional denoising auto-encoder and our
method for the stellar subclasses O, B, A, F, G, respectildilg left column shows the true spectrum and its synthetic
counterpart with noise. Thpurple curve is the clean spectrum that both denoising algorithms tryetmver, and the
grey curve is the spectrum added with noise. The spectra denoised byaltmririthms are compared in the right column.
The denoised spectrum from our modgdl(ow curve) is much closer to the purple clean spectrum than the stendar
auto-encoder resulblue curve).

The standard convolutional auto-encoder architecture cato a high-density region (on the top right). To avoid the
be specified for€ and G. However, the generato§  issue, we constructlacally isometric mapping such thai
obtained hereby could create distortion in the latent spacgreserves the distance between samples in the latent space
RE, affecting density estimation. The left subfigure of R. In other words, it holds that

Figure 1 shows an example of distorted mapping, where

some low-density points (on the bottom right) are mapped

1G(z) = 6(z)| = ||z - 2|,



X. Kang et al.: A Novel Stellar Spectrum Denoising Method based on DeeeBian Modeling

A K-type Stellar Spectrum Before and After Noise Addition

A K-type Stellar Spectrum Prediction

169-7

1751 — noisy spectrum 06
s true spectrum =
e E 0s T‘“‘Il 'I i
5§ 125 5 [ 3
a a “ Ly
B j00 B )
& o)
; < 0 | Y
z 015 = L I' |
)
[
E 250 E 03 ! 1
z z | ‘-\l,l
§ 025 H Ll —— true spectrum
0z —— autoencoder predicted spectrum
.00 | our predicted spectrum
4000 5000 5000 7000 8000 3000 4000 5000 000 7000 2000 2000
Wavelength [4] Wavelenagth [4]
A M-type Stellar Spectrum Before and After Noise Addition A M-type Stellar Spectrum Prediction
175 {|— noisy spectrum 45
— true spectrum 4 l-
g 150 T f“; oLl ﬁl i I
NE = 06 "I\" f f . Ly I|
£ s g "(’l qu
B 100 E] 'y |
5 s
s 075 5 04
050 03
E 025 E oz
S S — true spectrum
2 oo 2 o1 iAW —— autoencoder predicted spectrum
—025 i our predicted spectrum
T T T 00 1— T T
ap00 5000 6000 7000 8000 9000 4000 5000 6000 7000 8000 9000
Wavelength [4] Wavelength [4]
A CV Stellar Spectrum Before and After Noise Addition A CV Stellar Spectrum Prediction
—— noisy spectrum —— true spectrum
T — true spectrum _ 101 — autoencoder predicted spectrum
=3 T our predicted spectrum
E g
i 08 i o8
2 B
& o)
5 06 506 e m
= i [ & 'u.
i i “ r‘ﬂ'; e
5 04 N A
E E
2 2
12 02
4000 5000 5000 7000 8000 3000 000 7000 2000 2000
Wavelength [4] Wavelenagth [4]
A CarbonClass Stellar Spectrum Before and After Noise Addition A CarbonClass Stellar Spectrum Prediction
—— noisy spectrum a4
—— true spectrum 07
= 1% = 0
= = [ ' z [t
E E 06
3w Ef L .1 *‘ \‘i \ ‘,
g g 05 e q ] ]
o) s
R T
B FACE] l
T 00 =
E £ 02
Q E — true spectrum
-05 o1 —— autoencoder predicted spectrum
our predicted spectrum
T T T oo T T T
ap00 5000 6000 7000 8000 9000 4000 5000 6000 7000 8000 9000
Wavelength [4] Wavelength [4]
A WDClass Stellar Spectrum Before and After Noise Addition A WDClass Stellar Spectrum Prediction
175 —— noisy spectrum { o« —— true spectrum
_ —— true spectrum _ 14 ’4‘ —— autoencoder predicted spectrum
%150 = \( - our predicted spectrum
12 A
51 5 L
g 5 10 \
E 100 E
2 o015 2
E as0 E a8
B © =
£ E 0a i
5 025 5
2 2 ¥
0.00 02 \\_
ap00 5000 s000 7000 8000 9000 2000 5000 6000 7000 2000 9000
Wavelength [4] Wavelength [4]

Fig.8 The five rows show examples of stellar spectra denoised bgdheolutional denoising auto-encoder and our
method for the stellar subclasses K, M, CV, Carbon, WD, retsgay. The left column shows the true spectrum and its
synthetic counterpart with noise. Tiperple curve is the clean spectrum that both denoising algorithms tryetmver,
and thegrey curve is the spectrum added with noise. The spectra denoised byalbgdrithms are compared in the right
column. The denoised spectrum from our modellbw curve) is much closer to the purple clean spectrum than the
standard auto-encoder resudtye curve).

wherez,z' € R is a pair of latent variables satisfying the low dimensionalz. It approximately holds that
|z — 2’| < ¢ for somed. The local isometry property p(s) = p(G(z)) = p(z). This helps us to approach the
is illustrated in the right subfigure of Figurg where density estimation and effectively avoid the computation
the distance between the red and blue points is preserved det af for a complex transformation functiofi in
under the mapping;. The isometry property allows us Equatlon 3)_

to obtain the spectrum densipys) by directly accessing
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B-type Star Denoising Loss Comparison 242/300=0.807
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Fig.9 The loss comparison for the convolutional auto-encoder @mdmethod for the ten stellar subclasses. The
horizontal axis is the reconstruction loss for the coniohal denoising auto-encoder, and the vertical axis is the
reconstruction loss for our method. Eagdlow point in a subfigure corresponds to one synthetic noisy spectrina. T
blue line indicates where the two methods have equal performancet ptasts in each subfigure fall below thitue
ling, indicating that our method has smaller reconstructios.ld&e title of each subfigure also reports the proportion of
spectra for which our method has smaller reconstructios I0sir method demonstrates improved performance.

With the additional local isometry constraint, the In the above, the latent value ig E(y). The
objective function to train the generator becomes perturbatiord is a random variable, drawn from a uniform

. 2 5 distribution over the sphere of raditisn R”. Similar loss
e Ey"s{[Hg(Z)_g(Hé)H_ﬂ Hly =G } functions had been employed in the work3efig et al.
(10)
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Fig.10 Model performance under varying levels of signal-to-nosto (DERSNR). The left panel shows how the
reconstruction loss (vertical axis) depends on the DENR of the input synthetic spectrum (horizontal axis). Tigatr
panel shows how the DERNR of the denoised spectrum (vertical axis) varies withDE&®R SNR of the input synthetic
spectrum (horizontal axis). The reconstruction loss dagsntrease very quickly as DEBNR decreases in the left
panel, while the DEESNR of the denoised spectra is stable in the right panel.
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Fig. 11 An illustrative example. In the left panel, the DERNR of the synthetic noisy spectruigréy curve) is 2.79 and
the DERSNR of the true spectrunpgrple curve) is 60.96. In the right panel, the reconstruction loss betwihe true
spectrum gurple curve) and the predicted spectrum from our modelow curve) is 1.0 x 1073,

2020 Atzmonetal. 202p to train the auto-encoder to valuee,  for the d-th pixel depends on its immediaf€
learn the manifold structure. preceding pixels via

After training £,G based on Equationl(), we can 5
compute the latent variables for all training samples. plendlen,(a-x:(a-1) = N(endltna, (exp ana)”) , (11)
Then., basgd on this collgction of latent variables,-a. kemehhere g = ful€nta—ry@-1), na =
density estimator (KDE) is deployeq owaforthetrammg fol€n(a_ry(a-1)), and f, and f, are two functions
samples of each stellar subcl&SsThis helps us to obtain - expressed by neural networks. The architecturg,odnd

p(z|C) for each subclass'. fo will be specified later. The two functionf, and f,

. _ determine the mean and the standard deviation for the
3.4 The NoiseFlow Observation Model noisee,.q at thed-th pixel. In particular, we have
This subsection constructs the observation modgls) €nd = End €xp(ng) + find , (12)

for y,, given the true signal = G(z). Recall that we have

used the additive noise mode] = y,, — s. Our goal is where £, ~ N(0,1) follows the standard Gaussian

equivalent to construct a noise density moele},) and set distribution. Equivalently, the random variable can be

p(ynls) = p(e,). The density model is built upon the idea expressed by the following inverse expression

of Papamakarios et a(2018 such that the observation

model has an auto-regressive structure. Compared with

their model, our model only depends on a local groupThe above specifies the local dependence structure for

of pixels within an observation, is more parsimoniousd = K + 1,---,D. For the firstK pixels, there are

in parameterization, and focuses on extracting the locatlot enough preceding pixels for us to determine the

correlation structure of the noise. conditional likelihood 11). Instead, for the firsk pixels,
Suppose the noise vector is written ag = the noisee,,4 is imposed to follow a univariate Gaussian

(€én1,€n2, *+ ,enk). FOord = K + 1,---, D, the noise distribution with a fixed mean; and a fixed standard

&nd = (€nd — pind) eXp(—ana) - (13)
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Fig. 12 An illustrative example. In the left panel, the DERNR of the synthetic noisy spectruigréy curve) is 2.13 and
the DERSNR of the true spectrunp(rple curve) is 31.32. In the right panel, the reconstruction loss betwihe true
spectrum gurple curve) and the predicted spectrum from our mode ow curve) is 1.3 x 1073,

deviation o4 = exp(—ay). In summary, our model with the third dimension. The resultidgis of dimension
parameters to be trained include: the scalar valugs,;, N x (D — K) x C. In this way, for thed-th pixel (d =
ford = 1,---, K; and two neural network function§, K +1,---,D), we get aC-dimensional feature vector for
andf,. it.

AS ji,q anda,q depend orE,, (- k).(qa—1) by design, . . _
the Jacobian in density transformation Equatighig an After that,h is used as the input of the following— 1
upper triangular matrix. As a result, the absolute value ofinear hidden layers with RELU, to sequentially reduce the
the determinant can be easily computed as dimension of hidden variables frolWW x (D — K) x C

to N x (D — K) x C’ for someC’ < C. In the sequel,
there are two separate linear hidden layers mapping from
‘ Z Ond - 14) N x(D-K)xC'toN x (D — K) x 1, one is foru
A=K and the other is fory, and we transposg and . back
It follows that the log density of the observation modelto N x 1 x (D — K). At this moment, vectops and «

log ‘ det

becomes contain the mean and standard deviation information for
ena With d = K + 1,--- . D. As for the first K pixels,
logp(yn(s) = p(en) their scalar mean and standard deviation valpgsd, for
D d = 1,---,K) get included via the final masked linear
:Zlogp(ﬁnd)Jr > 1ogp(endlén (@—x):@-1)) layers.
d=K+1
K Moreover, the observation model developed hereby
Z [ (1/2) exp(—20a) (end — pra)? — Oéd} can naturally handle a spectrum with missing flux values
d=1 N due to bad pixels. We can create a mask venigrsuch
that m,q = 1 if all of v, a—x, - ,Ynd—1,Yn,a are
+ . ;1 [_ (1/2) exp(—2aa) (€na — fina)* observed, andn,,; = 0 otgerwise. Theyobser\gjation log-

likelihood fory,, becomes
— and} + const .

(15)

The last equality holds up to some irrelevant constant
const.

For our observation model, we develop a neural X
network architecture for local noise feature extractian, a &% (ynls) Z mnalogp(end)
shown in Figure2. In the first layer, local features are =t D
extracted by a one-dimensional convolution layer. This + Z M 108 P(Endl€n. (i) (d-1)) -
convolution layer has one input channel aGdoutput A1 ’

channels, kernel siz&’, one stride and zero padding. Its (16)
outputh is of dimensionV x C x (D — K + 1), where  In other words, the likelihood of théth pixel is taken into

N is the mini-batch sample size. In accordance of theaccount if and only if thel-th pixel and its immediatéds
aggressive structure, we drop one redundant column (thereceding pixels are observed, which is shown in Figure
first column) in the third dimension of the hidden stafe ~ The masked likelihood allows us to deal with partially
such that its dimension becomasx C x (D — K). We  observed spectrum without resorting to ad-hoc missing
then take a transpose to exchange the second dimensigalue imputation.
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Fig. 13 The five rows show examples of synthetic stellar spectra migsing values and the denoising results for the
stellar subclasses O, B, A, F, G, respectively. The leftrmolishows the true spectrum and its synthetic counterpant wit
noise and missing values. Tiparple curve is the clean spectrum that both denoising algorithms tnetmver, and the
grey curve is the spectrum added with noise and missing values. Thergmnoised by both algorithms are compared
in the right column. The denoised spectrum from our mogeldw curve) is much closer to the purple clean spectrum
than the standard auto-encoder redoliti€ curve).

3.5 Modeling Workflow 1. Train an encodef and a locally isometric generator
G based on a collection of high-SNR optical stellar
spectra.

'Frhe m4a|:1 w?jrkflow O_f ou:j mo?el IS summa:jlzeddml 2. Use Gaussian kernel density estimation (Gaussian
'gurea. n or er_to train an .apply our proposed modet, KDE) to estimate the prior distribution of the latent
basically four main steps are involved:
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Fig.14 The five rows show examples of synthetic stellar spectra witbsing values and the denoising results for
the stellar subclasses K, M, CV, Carbon, WD, respectivelhe Teft column shows the true spectrum and its synthetic
counterpart with noise and missing values. Paeple curve is the clean spectrum that both denoising algorithms try to
recover, and thgrey curveis the spectrum added with noise and missing values. Theraminoised by both algorithms
are compared in the right column. The denoised spectrum frenmodel yellow curve) is much closer to the purple
clean spectrum than the standard auto-encoder rétudtgurve).

variablez for each stellar subclass obtained from the 4. For each test spectrum, use the Gaussian KDE, the
encoder trained in the first step. NoiseFlow model and the generat@rtrained in the

3. Train a NoiseFlow observation model with the first three steps to obtain its corresponding latent
observational noise extracted from low-SNR optical  variable and its clean and complete spectrum with
stellar spectra. iterative optimization of Equatiorvy.
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4 RESULTS is shown in the right column of Figuréand Figure8. In
each subfigure of the right column, the purple spectrum
This section compares our method with the convolutionalg the true spectrum that both denoising algorithms try to
denoising auto-encoder based on two test datasets. Jacqyer. Though the clean purple spectrum is unknown
particular, two tasks are created for the purpose ofq the denoising algorithm, our proposed method shows
spectrum denoising and missing flux imputation. The,romising ability to recover it from the noisy observation.
experiment is conducted based on the stellar spectrgl,q predicted spectrum from our model (yellow curve) is
observations introduced in Sectian much closer to the purple clean spectrum than the standard
The proposed model is trained over the training datasef  to-encoder result (blue curve). Our proposed method
of Section2. Recall that each training spectrum has beerysg has the capacity to remove strong noisy emission

interpolated over a grid with a size &f = 2048, and we  |ines (see the second row of Fig) and keeps the signal
will set the latent space dimension&s-= 3. This training  emission lines (see the third row of F#).

dataset is supplied to EquatiohQ] to train the generator
G and the encodef with a stochastic gradient algorithm.
The encoder learns a latent representatioe R? for

each training spectrum. FiguBeshows the scatterplot of

Figure 9 shows the overall comparison between our
method and the convolutional denoising auto-encoder in
spectrum denoising for various stellar subclasses. Each

the latent variables for the training dataset. The poings aryeIIOW point in a subfigure represents one synthetic noisy
stellar spectrum. The noisy spectrum gets cleaned and

colored according to the stellar subclasses. Itis evidexit t . .
¢ compared with the true high-SNR spectrum, and the

observations from the same stellar subclass form a cluster.

The latent space can also help us to detect outlier Spectr[,;le,constructlon loss is computed. The reconstruction loss

such as those inside the red circles indicated in Figure IS computed as follows. Suppose thas the true signal

This learned latent space informs us of the latent variabI%_Fr’](:';r:]trl::]e ?Zir::trtl:\(;eti::rlmé);e%gpe(ctrumAb)); /%mltr)]del.
y d=1\8d — Sd .

z structure for most stellar observations. Therefore, we can . . -1 .
. . L each subfigure, the horizontal axis is the reconstruction
use a Gaussian kernel density estimation for each of the ten . -
oss for the convolutional denoising auto-encoder, and the

stellar subclasses to getz|C).

vertical axis is the reconstruction loss of our method.

For comparison, the convolutional auto-encoder getﬁ'he blue line indicates where the two methods have

trained based on a larger dataset. The dataset contains L
) . . equal performance. We can see that most points in each
spectra both with high SNR and low SNR. Besides, for . . S
subfigure fall below the blue line, indicating that our

a fair comparison, the convolution neural network shares . .
. . ethod has smaller reconstruction loss. The title of each
the same architecture (e.g., the same hidden layers and the

same transposed convolution layers) as our genegator subfigure reports the proportion of spectra for which our
P y g method has smaller reconstruction loss. Within each stella

subclass, our method produces higher-quality denoised
spectra for more than 80% of the testing samples. For
To test the model performance, we randomly select asubclasses such as carbon class and WD class, our method

independent group of spectra with high SNR for eacrfémonstrates improved performance for almost 100% of
stellar subclass, as described in Sec@oifhese selected he tést samples.
spectra are regarded as the ground truth that the model We further consider how the signal-to-noise ratio
endeavors to predict. Then we extract another noisy dataseffects our model performance. For the synthetic spectra,
from an independent group of stellar spectra with SNRwe measure their signal-to-noise ratio by the formula given
ranging from 10 to 20. The noise is randomly sampledby Stoehr et al(2008. The computed signal-to-noise ratio
and added to the above clean test spectra. These constitigedenoted as DEFSNR. To decrease DEBNR of the
our benchmark test dataset for method comparison. Eaaynthetic data to a specific level, we add additional
stellar subclass is created with 300 test spectra. gaussian noise with various noise levels to each spectrum.
Figure 7 and Figure8 exhibit some examples of This procedure results in a new group of test dataset.
denoised spectra for ten stellar subclasses. We choose ofike left panel of FigurelO shows how the boxplot of
representative result from each of the ten stellar subetassthe reconstruction loss varies across distinct DEWR
to demonstrate the power of our method. The left columrevels. The reconstruction loss does not increase very
shows the spectrum before and after noise contaminatioquickly as DERSNR decreases. When the DERIR
where the purple curve is the high-SNR spectrum ands below 3, the median reconstruction loss is still about
the grey curve is the clean spectrum with added noisel0~2. To illustrate how the spectrum looks like at this
The noisy spectrum gets cleaned by the standard autéevel of reconstruction loss, we plot a few examples in
encoder and our proposed method. The denoised spectrufiguresl1-12 The grey curve in the left panel of Figuté

4.1 Spectrum Denoising
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Fig. 15 The loss comparison for the two methods applied to the npisgtsa with missing values. Each panel corresponds
to one stellar subclasse. The horizontal axis is the renaet&in loss for the convolutional denoising auto-encoaled the
vertical axis is the reconstruction loss for our method.rBatiow point in a subfigure corresponds to one synthetic noisy
spectrum with missing values. Tbhiielineindicates where the two methods have equal performance.pdogs in each
subfigure fall below thélue line, indicating that our method has smaller reconstructios.ldge title of each subfigure
also reports the proportion of spectra for which our methasl $maller reconstruction loss. Our method demonstrates
improved performance.
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is one synthetic spectrum with DEBNR equaling to still below 10~3. Generally, the model performance is not
2.79. The reconstruction loss between the true spectruraensitive to the location of the missing pixels, but missing
and the denoised spectrum in the right panel is about the left end (blue end) incurs slightly higher loss. This
1.0 x 10~3. Figure 12 shows one more example where is due to the fact that the blue end is feature-rich and
the DERSNR of the synthetic spectrum %12 and the  contains more information for spectrum reconstruction for
reconstruction loss is abouit3 x 10~3. The right panel most spectra.

of Figure 10 compares the DESNR before and after Figure13 and Figurel4 plot a few examples for the
denoising for the above dataset. For most spectra, theien stellar subclasses. The left column shows the spectrum
DER_SNR after denoising is above 100. From the rightbefore and after noise addition and flux value removal. The
panel of FigurelO, we can also find that the DEBNR  purple spectrum is the original spectrum with high SNR.
of our model output is stable regardless of the DERR  The grey spectrum has noise added, but at the same time,
of the input spectrum. This is because our model prioa random interval of flux values is removed. The missing
component and the generator in Equatiods-(6) are fluxis plotted as an interval of zeros. The purple spectrum
fixed after model training. The denoised spectra, which arés the ground truth spectrum that both algorithms try to
generated by the prior and the generator, will always haveecover. The denoised and imputed spectrum is shown

the same level of SNR of the training dataset. in the right column. Our predicted spectrum is shown in
yellow, and the result of convolutional auto-encoder is
4.2 Spectrum Denoising with Missing Flux shown in blue. Our resulting spectra are much closer to the

true spectra in these cases. The overall result for this test

Besides the above test dataset, another test datasetdigta is summarized in Figuts. The interpretation of the
created to evaluate model performance for spectrurfigure is similar to that of Figur®. Although our model
denoising with missing flux values. To construct thishas a moderate lead over the convolutional auto-encoder
benchmark data, almost the same procedure of Se¢tion in F-type and G-type classes, the performance difference
is taken. Realistic noise is added to the clean spectrurfargins are wider in the other stellar subclasses.

with high SNR. In addition, we randomly remove the flux

values over an interval range of wavelength. The intervap SUMMARY AND CONCLUSIONS

of missing pixels is also randomly selected for each tesfn this paper, we propose a new efficient deep Bayesian
spectrum. '

model for stellar spectral denoising, defective spectral
Based on the idea of masked likelihood Equatib®(  recovery and sky emission lines or cosmic rays removal.
our trained model can be directly employed to denoisecompared with the existing methods, our model makes a
spectrum with partially missing flux values. In other greater usage of available data, exhibits a high robustness
words, our model does not require re-training to deahnd a superior performance in spectral denoising. In

with this kind of data. HOWeVer, the standard denoisin%ummary, our approach has the fo"owing advantages:
convolutional auto-encoder requires re-training to adapt

this dataset. Its original training data also get randomly
removed flux values over a random wavelength range.
The missing values are imputed by zeros, and the
denoising convolutional auto-encoder aims to reconstruct
the original full spectrum from the zero-imputed spectrum. 2.
The full spectrum is employed for its loss computation and
parameter update.

1. The observation modeb(y|s) takes into account
the noise correlation structure. It is able to properly
handle the strong sky emissions, cosmic rays, and the
background noise of the observational instruments.
When some part of the observation is missing due
to unpredictable errors (e.g. pipeline handling error,
defective spectra), our model only computes the
likelihood of the observed pixels, without resorting to
ad-hoc missing value imputation.
Our prior modep(s) encodes how a true signal should
look, making our model less susceptible to defective or
distorted observations (due to combining the blue and
red channels).
4. Our proposed model can also directly exploit multiple-
exposure data, making the posterior inference more
reliable than using only one single average data.

Figure 6 shows the performance of our model
depending on different positions and widths of the missing
range. The three panels correspond to the cases where the
missing flux occurs at the left end (blue end), the middle
and the right end (red end) of the spectrum, respectively.
In each panel, the horizontal axis is the number of missing
pixels out of the totalD = 2048 pixels. The vertical axis
is the reconstruction loss. As expected, the reconstmuctio
loss increases with the growing number of missing pixels.
When the length of missing pixels is 800 (i.e., 40% ofThe proposed method can be considered as a novel
the whole spectrum), the median reconstruction loss isnodel for large-scale astronomical spectral surveys and
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will benefit subsequent astronomical research. In futuré&niversity.

work, we will continue refining the proposed model and

investigating its proper applications in other astronahic References

spectral analysis tasks. For example, our model will

be applied during stellar spectral data preprocessingthumada, R., Prieto, C. A., Aimeida, A., etal. 2020, ApJS),24

when performing stellar classification or estimating stell 3

physical parameterd s, logg, [Fe/H]). Atzmon, M., Gropp, A., & Lipman, Y. 2020, arXiv preprint
arXiv:2006.09289
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