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Abstract The observatory control system (OCS), a part of automated control of Large Sky Area Multi-
Object Fibre Spectroscopic Telescope (LAMOST), runs on theCentOS6 platform and implements the
communication between modules based on Common Object Request Broker Architecture (CORBA).
However, CORBA is complicated and has limited development support; moreover, the official support for
CentOS6 has ended. OCS inherently has some shortcomings such as the over-concentration of control and
the blocking of device status processing, which hinder the realization of automated observation control of
LAMOST. Therefore, this study designs and implements a universal observation control system (UOCS)
for optical telescopes. The UOCS takes the device command asthe basic execution unit, controls the device
execution logic using observation script, controls the observation logic by event-driven messaging, and
realizes mutual decoupling between modules via a distributed control mode, thereby ensuring high system
robustness. The UOCS performs significantly better than OCSin terms of the observation performance,
operator complexity, and communication error. Currently,UOCS is applied to the automated control of
some devices and subsystems in LAMOST observation. It will be applied to the automated observation
control of Multi-channel Photometric Survey Telescope by 2021.
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1 INTRODUCTION

The Large Sky Area Multi-Object Fibre Spectroscopic
Telescope (LAMOST), also known as the Guo Shou
Jing Telescope, is a Schmidt optical reflecting telescope
(Cui et al. 2012), located in the Xinglong Observatory
of the National Astronomical Observatories (NAOC),
Chinese Academy of Sciences. Owing to its large aperture
and wide field-of-view, LAMOST can observe up to 4000
objects simultaneously in a single exposure, making it the
most efficient telescope in terms of spectral acquisition
worldwide (Zhao 2015). To date, LAMOST has obtained a
catalogue of more than 10 million astronomical spectra1.

An observatory control system (OCS), which is the
communication center of a telescope, is a software for
autonomous observatory control that integrates important
functions, such as selecting the observation target, mak-

1 http://dr7.lamost.org/

ing observation flows, distributing commands, handling
exceptions, controlling devices or subsystems, and human-
computer interaction (Zhao 2000). Therefore, OCS is a key
element in the autonomous control of a telescope, and it is
pivotal in integrating the functions of the entire telescope
control system.

The OCS is a distributed control system based on the
CentOS6 computing platform, and it uses the Common
Object Request Broker Architecture (CORBA) as the mid-
dleware (Wang et al. 2006). The design and development
of the OCS commenced in 2000 and was completed
and applied to the LAMOST in 2008 (Sun & Luo
2008). Since then, OCS has been providing vital support
for observations using the LAMOST. However, as the
LAMOST survey continues to gradually advance, a few
shortcomings of the OCS have been revealed, some of
which may even make the OCS defunct. Some of these
shortcomings are listed below.

http://dr7.lamost.org/
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(1) Difficulties in upgrading and maintenance.
Updates and maintenance are no longer available s-
ince version 3.3 of CORBA (2012)2, making CORBA
incompatible with newer operating systems, such as
CentOS7. The ACE ORB (TAO), which forms the basis
for the communication functions of the OCS, is a
version of CORBA implemented based on the Adaptive
Communication Environment (ACE) library. However, the
TAO has only limited third-party development support.
Moreover, because the official support for CentOS6 has
ended, obtaining a stable and reliable system is difficult,
rendering the security of OCS vulnerable.

(2) Over-centralization of command control. Although
the OCS adopts distributed control, it is distributed only
among the internal modules. Furthermore, the device agent
performs only the simple function of translating the control
commands and states between the OCS and devices, and
it plays no role in the business logic of control. The
command executor, being the core component, integrates
the tasks of sending commands, execution, and exception
handling. This results in increased complexity of the
business logic of internal control, a higher degree of
coupling with other modules, and lower stability of the
entire system. For example, if an error occurs in a parallel
command, all parallel commands need to be re-executed,
failing which no subsequent command could be executed.

(3) Foreground and background are not separated. The
necessity of separately restarting a single module was not
fully considered in the design of OCS. Therefore, if an
error arises, it can be rectified only by restarting the entire
system – this interrupts the entire observation process,
reducing the observation efficiency.

(4) Status transmission channel is indistinguishable.
The OCS status is classified into command execution
status and device normal status: the former is fed back to
the command executor to control the observation process,
while the latter is used to display the status of the
subsystems or devices. No status is prioritized, and all
statuses are transmitted via a single channel. Consequently,
if the channel is blocked by the device’s normal status, the
command executor cannot receive the command execution
status, whose logic priority is higher than that of the
device normal status. Thus, subsequent commands cannot
be executed, resulting in interrupted observation flow.

Owing to these shortcomings, the OCS can only
be used for the manual control of some subsystems;
however, the control of other subsystems also requires
manual intervention through the subsystem of the control
computer. This results in low observation efficiency and
difficulties in operation and maintenance. Further, as
mentioned above, OCS could become unusable because

2 https://www.corba.org/

of the incompatibility of CORBA and newer operating
systems (e.g., CentOS7). In view of these problems, a
new control system must be developed and applied to the
observation control of LAMOST.

Accordingly, this study designs a universal observa-
tion control system (UOCS) based on the asynchronous
coroutine function of Python and implements it in an
optical telescope. For a complete inclusion of the design
concepts of OCS, the advantages and disadvantages of
OCS are summarized and analyzed, and the overall
reorganization design is performed comprehensively.
Further, the developed UOCS is more advanced than
OCS, and has improved suitability for diverse astronomical
observation scenarios. Based on the device control com-
mand and the lightweight messaging middleware, ZeroMQ
(Dworak et al. 2012), independent data and message bus
and a device control system are developed for UOCS.
The execution logic between the devices is controlled
by observation scripts, and the serial-parallel distributed
observation control is realized by combining the event
and device commands. The UOCS performs command and
exception handling using independent device and service
modules, and it realizes human-computer interaction for
the telescope by using the local user interface or network
remote interface. The UOCS performs significantly better
than OCS in terms of the observation performance,
operator complexity, and communication error.

2 DESIGN OF THE UOCS ARCHITECTURE

To reduce the degree of coupling of the internal modules
and ensure a stable and efficient operation of the telescope,
we adopted a distributed control structure with separated
foreground and background for the UOCS (Fig.1).

The foreground handles the interaction between the
telescope and the observer – it shows detailed information
of each module of the telescope and generates observation
control events and control commands for the devices and
services. Based on the control mode, it can be divided into
local control and remote web control.

The background is the business logic center of the
telescope observation control system, and it comprises the
following three modules. (a) Communication bus module:
it transmits the control commands, status information,
and observation data between the modules. (b) Device
module: a device directly controlled by the UOCS
during observation; it can be divided into various types,
such as camera module, filter module, optical system
module, dome module, and the module for mounting
telescope control (TCS). (c) Service module: it provides
the algorithms, logic control, and other services for
the UOCS. According to the type of service, service
modules are classified into various types, including the

https://www.corba.org/
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Fig. 1 Framework of the universal observation control system (UOCS) (GUI: Graphical User Interface; VM: Virtual
Machine; TCS: Telescope Control System; ICS: Instrument Control System; OSS: Observation Schedule System; DHS:
Data Handling System; SMS: Site Monitor System).

Fig. 2 Parsing process of the observation script.

observation target selection module, script generation
module, script parse module, command execution module,
status collection module, and site service module.

2.1 Communication Protocol

The UOCS communication protocol can be divided into
internal communication protocol and device communica-
tion protocol. The device communication protocol varies
for each device and is not discussed here. In the initial
stages of designing the internal communication protocol of
the UOCS, we considered referring to the communication
structure of RTS2 and using the classic TCP/IP protocol
(Kubánek et al. 2006, 2008). However, the complexity of
the network structure worsens with the number of modules,
which poses challenges to the development at the initial
stages and maintenance at the later stages. Thus, we
used the XPUB/XSUB pattern of ZeroMQ to connect

all modules of UOCS. Each module generates messages
that represent its own status and sends them to the
communication bus, and at the same time, subscribes to the
messages that it needs to process from the communication
bus.

According to the data type and the required effective-
ness, the communication bus can be divided into two types:
(a) message bus, which is used to transmit small amounts
of data with high real-time performance, such as control
commands and device status; and (b) data bus, which is
used to transmit large amounts of data with low real-time
performance, such as images and other data.

Messages comprise a SenderID and message body,
and it can be divided into three types depending on the
content of the message body: (a) command message, which
is generated by the command executor and user interface
to control devices; (b) status message, which includes the
status of command execution and device information; and
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Fig. 3 Schematic explaining the functions of the command executor.

(c) event message, which is a real-time message generated
by each module according to the running conditions – it is
used to perform logical control of the modules and has a
unidirectional control flow.

Fig. 4 Binary command execution state code.

2.2 Script Generator and Parser

Depending on the scientific objectives and observation pro-
cedures, the UOCS executes the control of multiple devices
and service modules in serial, parallel, or serial-parallel
combinations. Even for the same module composition, the
observation procedures will vary for different telescopes
with different scientific objectives. An observation script is
a configuration file that describes the execution sequence
of each device of the telescope; each observation task
has a unique requirement, and all such requirements are
realized by configuring different observation script files.

The details on the UOCS observation task are discussed
later in Section4.2.2.

The observation script only describes the control
logic of the observed devices, which cannot be controlled
directly. In the script parsing process (Fig.2), the
scripts are first modified according to the observed
target, and then parsed into a command flow queue
with the creation time as the unique identifier. Each
queue represents the command flow required by a
device for sequential execution. For example, in the
“Move” command of TCS, “precmd=Telescopepark”
indicates that the “Move” command is executed following
the “Park” command, and “nextcmd=CameraExposure”
indicates that the “Exposure” command of the camera is
executed following the “Move” command.

2.3 Control Command Executor

The command executor is the core module of autonomous
observation, and controls the execution sequence of the
devices based on the command flow generated by the script
parser. The command executor consists of a command flow
queue, command task queue, and status monitoring module
(Fig. 3). The command task queue holds the tasks that are
being executed currently or about to be executed by each
device, while the status monitoring module receives the
command execution status.
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During command execution, a command is first
selected in order from the command flow queue of
the device list. If no dependent command is present
or all commands in “precmd” have been executed, a
command task is created in the task queue, and the
commands are sent to a virtual machine. Further, the
current task is suspended, awaiting resumption by the
command execution status.

The command execution status is generated by the
device virtual machine in real time and indicates the latest
status of command execution. Figure4 shows the binary
command execution state code, which is used to represent
all states in a command execution.

Figure 5 shows the transition diagram of finite state
automation for command execution, which can be used to
monitor the command execution process. The initial state
of each command is “Undo,” which changes to “Started”
after the command is sent. “Active” and “Done” indicate
the start and completion of command execution by the
device, respectively. The exception handling process of
command execution is introduced later in Section2.5.

Upon receiving the command completion status,
the status module resumes the waiting task, changes
the command state as “Done,” and executes the next
executable command; this process is continued until all
commands in the command queue are executed.

2.4 Device Virtual Machine

The device virtual machine is an independent unit that is
directly connected with the devices. It receives commands
and global status, converts the device control command
format, distributes commands, generates command ex-
ecution statuses, analyzes device exceptions, generates
abnormal events, and alarms the UOCS. It is the core
component of device control.

Although the execution processes, methods, and
communication protocols of the command differ with
each device, all undergo the four processes of translation,
execution, monitoring, and logout. The “Device” base
class implements the basic control logic of the commands
and provides various rewritable interfaces, enabling the
quick development of device virtual machines. For the
connection mode of a device, it can be dynamically
modified through the configuration file.

Figure6 shows the internal operational process of the
device virtual machine. The virtual machine only receives
one command in the automatic observation mode, but
receives multiple commands simultaneously in the manual
observation mode. The execution priority of commands
could be low, medium, or high. For example, if a new
command has lower priority than the current command,

the new command is moved to the command queue. After
the execution of the current command, the command with
the highest priority is obtained from the command queue.
On the contrary, if the new command has higher priority
than the current command, the execution of the current
command is stopped, and the new command is executed.

During the operation of the virtual machine, the real-
time status of the device is regularly queried by a routine
command, and then the running status and device status
are sent to the status collector module. The running status
is a real-time status of the virtual machine generated
according to the command execution. The device status
represents the detailed information of the device. Each
command execution is a separate coroutine task. Figure7
schematically describes the process of command execution
in detail.

Although the command executor can automatically
control the execution sequence of the devices according
to the observation script, if the control logic is confused
in the manual observation mode, observation errors could
arise, affecting the observation efficiency. For example, in
the camera exposure command, if the TCS moves during
camera exposure, the target image would be distorted.

The global status is a set of running statuses of each
module in the UOCS. The virtual machine determines if
the command can be executed according to the global
status, prior to beginning the execution. For example, the
camera exposure command is executed only if the statuses
of the TCS and the filter are respectively “tracking”
and “ready.” In the command execution process, the
command execution state is monitored based on the real-
time status information of the device. In case exceptions
occur, an exception event is generated (discussed in the
next subsection).

2.5 Exception Handling Mechanism

Depending on the producer, exceptions could be either
device exceptions or internal exceptions. Device excep-
tions are produced by the device module during command
execution and are of three types: command delete
exception, command execution timeout exception, and
command execution exception. Internal exceptions include
memory leakage and other exceptions that occur during
the module operation. Exceptions are first attempted to
be solved within the module; if this is unsuccessful, an
exception event is generated and sent to the message bus,
which is captured by the user interface and alerted to
the observer. The observer will either ignore, re-execute,
abandon, or suspend the observation depending on the
content and level of the exception.
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Fig. 5 State transition diagram of finite state automation.

Fig. 6 Operation process of the device virtual machine.

Fig. 7 Command execution process of the device virtual machine.
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Fig. 8 Process flow of status collection.

Fig. 9 Transmission performance of the message bus for messages ofdifferent sizes.

2.6 Status Collector

The status collection module collects, summarizes, col-
lates, and distributes the status information of all modules
in the UOCS.

Although the device running statuses in the UOCS
differ depending on their functions, they have the same
state characteristics. For example, all modules consist ofan

offline (VMExit) and waiting status (ready). The running
statuses of all modules are set to “VMExit” when the
status collection module starts and are updated and sent
to the message bus in real time upon receiving the latest
running status of each module. When a module exits, the
status collection module sets the module running status to
“VMExit” and generates a “module exit event” to notify
all modules in the UOCS.
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Fig. 10 Transmission performance of the data bus for images of different sizes.

Fig. 11 Performance of message bus under different sizes of data transmitted by the data bus.
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Fig. 12 Performance of the status collector at different status delivery intervals.

Fig. 13 LAMOST structure: subsystems and devices (DHS: Data Handling System; AMS: Auxiliary Monitoring System;
AO: Active Optics System; FP: Focal Plane; SSS: Survey Strategy System; Teld: Telescope).

3 TESTING OF UOCS PERFORMANCE

Following the completion of the UOCS design, we de-
ployed the UOCS in the LAMOST working environment
for simulation observation. The UOCS server runs on four
cores (including eight logical cores) and has a memory
of 32 GB. The device client simulates 50 devices through
five computers, each running on an Intel Core i3–2100
Processor (clockspeed: 3.10 GHz) with 4 GB of memory.
All computers were connected through a 10 Gb switch
and used the CentOS7 operating system. To verify if the
performance of the UOCS communication system can

meet the requirements of astronomical observation and
control, a series of communication performance tests were
conducted.

3.1 Performance of Communication Bus

3.1.1 Performance of message bus

The device client randomly generates data (8 B, 16
B...1 kB) composed of alphanumeric characters and sends
them to the message bus. The next data are sent after
receiving the current data returned by the message bus.
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To ensure measurement accuracy, each data unit is sent 1
000 000 times repeatedly; the test results are presented in
Figure9.

The message bus takes 33µs on average to deliver
the received message. Although the message delivery
time prolongs or shortens based on the data size, the
difference is only±5µs. The network bandwidth increases
the with increasing size of the message packets, reaching a
maximum of 28 MB s−1.

3.1.2 Performance of data bus

The device client randomly generates (1 MB,
8 MB...128 MB) image data and sends them to the
data bus. The next image is sent after receiving the data
returned by the data bus. To ensure measurement accuracy,
each image is repeatedly sent 10 000 times; Figure10
presents the test results.

As seen from the figure, the data delivery time
increases with increasing size of the data packets. The
longest time of 1.75 s was required to deliver the data
of size 128 MB. The network bandwidth reaches a
maximum of 75 MB s−1 for the data packet of size
16 MB, and subsequently remains around 71 MB s−1. This
phenomenon occurs because the internal cache of the data
bus is full, resulting in a delay in forwarding the data.

3.1.3 Influence of data bus on message bus

The data bus and message bus are two independent
transmission modules. Nevertheless, when sharing the
same network hardware, they influence each other because
of hardware resource contention. Figure11 shows the
impact of such a phenomenon on message delivery, when
the data bus and message bus are deployed on the same
computer.

For the image transmission on the data bus, compared
with the independent transmission on the message bus,
the message delivery time increased 10-fold. The delivery
time differed for images of different sizes. For an image of
size 1 MB, the message delivery time was approximately
200µs. The maximum delivery time for a single message
was approximately 500µs, for transmitting an image of
size 128 MB.

3.2 Performance of Status Collector

The status collector receives and delivers the latest
status information. Note that the integrity and real-time
collection of status information influence the stability of
the entire system. The device client generates two types of
information about the detailed status and the running status
of the device in a certain time interval (1 ms, 2 ms... 10 ms),

and it delivers the information to the status collector. The
size of the running status information of the device is
fixed at 8 B, whereas that of the detailed status of the
device differs, e.g., 8 B, 16 B...1 kB. Figure12 shows
the performance of the status collector at different status
delivery intervals.

As shown in Figure12, the packet loss is closely
related to the status delivery interval and packet size. If the
delivery interval is 6 ms or longer, no packet loss occurs.
However, if the interval is shorter than 6 ms, the packet loss
rate increases with increasing packet size. The maximum
packet loss rate of 63% occurs when the interval is 1 ms
and packet size is 1024 B.

The status collector collects the status information
of only the subsystems and device control systems. For
example, the active optical control system of LAMOST
sends only the current key information to the status
collector, and does not contain the real-time information
of thousands of controllers. Furthermore, the status
transmission interval of the subsystems and the device
control system is substantially longer than the millisecond
level, which is basically secondary. Therefore, the status
collector of the UCOS fully meets the demands of the
current telescope for status collection.

4 APPLICATION OF UCOS TO LAMOST

During the first phase of survey of LAMOST (2011 –
2017), more than nine million low-resolution spectra were
obtained3. At the beginning of the second phase, the
medium-resolution survey was included, and more than
2 million low-resolution spectra and medium-resolution
spectra have been obtained since 201745. According to the
observation plan, the plate will be exposed two or three
times, with an exposure time of 20 – 30 min for low-
resolution spectra and 10 – 20 min for medium-resolution
spectra.

4.1 Observation Flow of LAMOST

The LAMOST comprises several subsystems (Fig.13),
including the data handling system (DHS), survey strategy
system (SSS), telescope control system (TCS), instrument
control system (ICS), auxiliary monitoring system (AMS),
and observation control system (OCS). The subsystems
comprise one or several systems or devices, which are
independent of each other and deployed in different control
computers. For example, TCS consists of the mounting of
telescope (Teld), focal plane (FP), dome, guiding system
(Guide), and active optics System (AO), among others.

3 http://dr5.lamost.org/
4 http://www.lamost.org/dr8/
5 http://dr7.lamost.org/

http://dr5.lamost.org/
http://www.lamost.org/dr8/
http://dr7.lamost.org/
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Fig. 14 OCS Control Flow.

Fig. 15 Flowchart of LAMOST observation script.

The ICS system includes the camera cluster control system
(Camera) and optical fiber control system (Fiber); the DHS
processes the images obtained from cameras (Luo et al.
2010). Plates are generated by SSS according to the sky
survey and provided to astronomers for selection. Each
plate comprises several files, including those on the central
star, guide star, 4000 targets, active optical parameters,and
other observation information.

During observation, the LAMOST is operated in col-
laboration with the guide operator, Teld and FP operators,
AO operator, and ICS and DHS operators. Figure14shows
the control flow of LAMOST observation. Each block
represents an operation and contains information about the
name, execution time, and steps required to complete the
operation. The horizontal operation is sequential, whereas
the vertical operation is a parallel operation.

Before the beginning of the observation, the as-
tronomer selects the required observation plate from
the plate list based on the meteorological conditions
and observation plan, and notifies all the operators to
commence observation. Successively, the guide operator
sends the plate information to all subsystems, following
which other operators perform corresponding operations,
such as pointing of Teld toward a specific bright star,
moving away of FP, MB confocal, Teld pointing and
tracking, FP moving back and tracking, MA correction,
guiding, MA re-correction, fiber moving and tracking,
camera exposure, and image packaging. The time required
for a plate differs with the survey type. For example, in
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Fig. 16 Control logic of LAMOST observation.

a medium-resolution survey, for two exposures (wherein
each exposure lasts 10 min), it is 61 min; for three
exposures (wherein each exposure lasts 20 min), it is
105.5 min. In a low-resolution survey, for two exposures
(wherein each exposure lasts 20 min), it is 81 min; for
three exposures (wherein each exposure lasts 30 min),
it is 135.5 min. Furthermore, regarding the number of
operation steps for a plate, the operator requires 38 steps
for two exposures, and 43 steps for three exposures. During
observation, the operators orally update each other of the
operation progress, entailing 5% communication errors,
which must be rectified by repeated confirmation by the
operators.

4.2 UOCS Application to LAMOST

To ensure a stable and reliable observation of LAMOST,
the UOCS is implemented in individual steps according
to the principle of “simple first, complex second.” First,
the automated control between modules is achieved,
which surmounts the communication obstacles between
the subsystems and devices. Subsequently, the interfaces
of all subsystems and devices with UOCS are converted,
ultimately realizing automated observation control of the
LAMOST.

4.2.1 Selection of communication bus

Currently, LAMOST comprises 10 devices or subsystems
that must be connected with the UOCS. Among these,
32 cameras are controlled by the camera control system

(Tian et al. 2018); each camera generates 32 MB-images,
resulting in a total image size of 1024 MB. Recall from
Figure11 that for the data of size 32 MB transmitted by
the data bus, the delivery time of the message bus is 300
ms, which fully meets the requirement of the LAMOST
in terms of the timeliness of observation and control.
Therefore, in LAMOST, we deploy the message bus and
the data bus together in the UOCS server to reduce the
complexity of the system.

4.2.2 Control Flow of UOCS

The control flow of the UOCS observation script for
LAMOST (Fig. 15) is generated according to the control
sequence between the subsystems and devices by compre-
hensively analyzing the operation steps of the operators.
Unlike the centralized control mode for subsystems in
OCS, UOCS is a distributed control mode for devices. In
the figure, blocks of each color represent a command to
be executed by the device. The script generator converts
it into an XML file, while the script parser generates the
control command stream. Each block is a device control
command containing the device name, command name,
and parameters, among others. Two sequential commands
are connected by an arrow, the beginning of which
represents the current command, whereas the pointing end
represents the next command to be executed. A command
list represents a serial command queue, which contains the
commands that are executed sequentially. Different lists
are parallel, which indicates that these commands can be
executed simultaneously.
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Fig. 17 Device agent used to perform conversion for
subsystems and devices.

Fig. 18 “Teld” virtual machine dialog box.

Figure 16 shows the control logic of UOCS obser-
vation, which is implemented via device commands and
event mechanisms. The dashed-line in the figure represents
the event control flow between modules, while the solid
line represents the control flow between the command
executor and devices or subsystems.

The OCS and other subsystems are developed by
different units. Despite the existence of a unified com-
munication protocol, to realize automated control through
UOCS, the control details of the subsystems and devices
must be first understood, and then a perfect exception
handling and control mechanism must be designed – this
process requires a long time to study and prepare. The
camera control system was maintained by the UOCS
development team consisting of personnel familiar with
the communication interface and execution logic. The fiber
control system contains fewer commands, a simple logic,
and less manual intervention. Therefore, automated control
of these two subsystems of the UOCS was first realized; the
automated control of other subsystems and devices will be
gradually realized in the future.

Because the internal communication protocol within
UOCS differs between the camera and fiber control, we
used the device agent shown in Figure17 to perform
conversion for subsystems and devices.

4.2.3 Camera agent

The camera agent involves four control commands:
“Exposure,” “Abort,” “Pause,” and “Readout.” Each
command involves multiple operation steps. For exam-
ple, “Exposure” requires four steps: “Ready,” “Setup
Parameters,” “Start Exposure,” and “Close.” In the UOCS
observation script, the camera contains only one command
for control exposure. If the four-step control method is
adopted, the control script of UOCS not only becomes
redundant, but also increases the complexity of the control
logic of the command executor, making the whole system
unstable. Therefore, the exception handling and camera
control tasks are assigned to the camera agent in the
UOCS. “CameraVM” is used to send a control command
to the camera agent, which divides the command into
several sub-control commands according to the camera
protocol and sends them to all cameras. Additionally, the
camera agent converts the cameras status into the internal
device status of UOCS and feeds it back to the status
collector through “CameraVM.”

4.2.4 Fiber agent

Fiber control involves three commands: “power-on,”
“fiber movement,” and “power-off.” Upon receiving the
“start observation” command, the script parser loads
the information of 4000 fibers as parameters into the
“Move” command, which is sent to “FiberVM” by
the command executor. Further, “FiberAgent” sends the
above-mentioned three commands to the fiber control
system.

4.2.5 Other subsystem agents

To ensure the implementation of the entire observation
process in UOCS, the control commands for other
subsystems and devices are received by deploying a virtual
machine in the control computer. The virtual machine
displays a dialog box with voice notification to prompt
the operator to execute the corresponding operation. Upon
completing the execution, the operator selects “Done” or
“Error” according to the operation result and returns the
command execution status to the executor.

4.3 Comparison of UOCS and OCS

Figure19 shows the control interfaces of the UOCS and
OCS. In OCS (figure a), all information is displayed in
the same interface; therefore, details on the operation
information of all devices or subsystems are not available.
For example, the information of only the overall progress
of the cameras is displayed, while the operation details of
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(a) Control Interface of OCS

(b) Control Interface of UOCS

Fig. 19 Comparison of the control interfaces of UOCS and OCS.

each camera are hidden. On the other hand, the UOCS
(figure b) provides a dedicated control and status display
interface for each device.

Figure 20 shows the camera control interface of
UOCS, which displays detailed information of 32 cameras
during exposure. Compared with that of OCS, the layout
of UOCS is more rational, and it more clearly displays
the running status of each module. Therefore, each device

can be controlled independently, greatly improving the
convenience for operation control and debugging.

During observation, in the case of OCS, the as-
tronomer selects a plate, informs the guide operator
to notify other operators of the observation target, and
starts the next plate when all the images have been
packaged. Figure21 shows the observation control flow
of UOCS. The UOCS automatically sends it to all devices
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Fig. 20 Camera control interface of UOCS.

Fig. 21 Observation control flow of UOCS for LAMOST.

or subsystems after the astronomer selects a plate; the
next plate is started after the exposure of the last image.
Optimizing these two aspects can reduce 6.5 min for each
plate, and decrease the number of operation steps by 15 for
two exposures and 19 for three exposures.

The UOCS performs significantly better than OCS in
terms of the observation performance, operator complex-
ity, and communication error. The efficiency of UOCS in
medium-resolution surveys is improved by a minimum of
6.8% and maximum of 10.6%, and that in low-resolution
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Fig. 22 Flow chart of Mephisto observation script.

Fig. 23 Observation control logic of Mephisto.

surveys is improved by a minimum of 4.8% and maximum
of 6.2%. Further, the operational complexity of UOCS is
reduced by 39.4% for two exposures and 44.2% for three
exposures. In UOCS, operators are no longer required to
orally update each other of the operation progress, because
the operations required for the subsystems and devices are
automatically broadcasted through the UOCS system, thus
avoiding the communication error of 5%.

5 SIMULATION OF MEPHISTO OBSERVATION
CONTROL

The Multi-channel Photometric Survey Telescope
(Mephisto) has a primary mirror of aperture 1.6 m, and
it is equipped with three high-precision charge-coupled
device cameras (Li et al. 2020). It can obtain data
amounting to 3.8 GB in a single exposure (nearly 6 TB

of data per night) and transmits them to the data center
in real time. After online processing through DHS, if a
transient source is found, all users are notified via the
internet. Additionally, Mephisto can stop observation of
the current target and start observation of an emergency
target, accessed via internet.

Mephisto is aimed at obtaining the spectral data of
billions of stars and galaxies, and millions of quasars
through a 10-year survey. To achieve this goal, Mephisto
must operate efficiently and obtain the maximum number
of observation targets possible within a specified time.
Thus, Mephisto has the characteristics of short exposure,
high switching frequency of observation targets, high
data obtention rate, and a rich telescope communication.
Therefore, a stable, real-time, and rapid anomaly analysis
and processing of the OCS system are required.
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Fig. 24 Execution of target observation in Mephisto.

The communication protocol and interface between
the UOCS and various devices, and the observation mode
and strategy of the Mephisto are determined through
several meetings and discussions. Figures22and23depict
the observation script and control logic of the Mephisto
based on UOCS. Differing from LAMOST, every target of
Mephisto is exposed twice using the same set of filters.
The telescope needs to be slightly adjusted after the first
exposure, prior to the beginning of the second exposure.
During the second image readout, the UOCS control
telescope points toward the next target, thus maximizing
the observation time.

We built a virtual observation and test environment of
Mephisto based on UOCS and began a series of simulation
works. Figure24 shows the execution process of the
observation of a target by Mephisto. The green, blue, and
gray blocks, respectively, indicate the commands that are
completed, being executed, and awaiting execution. To
verify the exception handling ability of UOCS, so as to
prepare for its later application to Mephisto, we simulated
various abnormal scenarios that could arise in various
devices of Mephisto, based on the maintenance experience
gained from LAMOST.

6 FUTURE WORK

As for LAMOST, although the unified management of
the device running status is realized through UOCS,
the communication obstacles between the devices and

subsystems are eliminated, and the automatic observation
process between the modules is completed preliminarily
– this reduces the occurrence of observation accidents
caused by communication errors between observers.
However, the automatic control of only the camera cluster
system and fiber system has been realized as of now,
whereas the other devices and subsystems still require to
be controlled manually via dialog-box prompts of UOCS.
Therefore, longer strides need to be made for a fully
automated observation control of LAMOST. In the future,
we plan to realize the unified management of all devices
and subsystems first, which can be controlled manually
by the UOCS to reduce the number of observers and
operational steps. Subsequently, we will realize the fully
automated control of the subsystems in individual steps
and improve the observation efficiency.

The development and construction of each device
of Mephisto are progressing steadily. The UOCS will
complete offline simulations, start online testing of
some devices, and perform a comprehensive system
debugging after the completion of telescope construction,
ultimately realizing the automated observation and control
of Mephisto by 2021.

7 CONCLUSIONS

The UOCS uses multiple command queues to implement
the serial and parallel controls of multiple devices through
observation scripts based on device commands. Further, it
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uses the event-driven messaging mechanism to implement
the control logic among the modules in the system.
The device command control based on the coroutine can
dynamically adjust the command execution according to
the priority of the commands. The global state ensures
the correct execution of mutually exclusive commands
between the devices. The concept of distributed control
ensures the stable operation of the entire system to the
maximum extent possible.

Currently, UOCS has been implemented for the
automated control of the camera cluster system and fiber
system of LAMOST. As of now, according to the control
logic of Mephisto, the observation process has been
simulated. In the future, it will be used for the observation
control of Mephisto.
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