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Abstract In this work we present a theoretical framework within E@&iss classical general relativity
which models stellar compact objects such as PSR J1614-a2@238AX J1808.4—3658. The Einstein field
equations are solved by assuming that the interior of thepemtrobject is described by a class | spacetime.
The so-called Karmarkar condition arising from this requient is integrated to reduce the gravitational
behaviour to a single generating function. By appealinghgsics we adopt a form for the gravitational
potential which is sufficiently robust to accurately delsercompact objects. Our model satisfies all the
requirements for physically realistic stellar structures
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1 INTRODUCTION Maurya & Govender 201 7Pant et al. 2016 The impact
of electric charge in compact objects has been widely

Since the publication of Einstein's general relativity in Studied within the context of stability and physical
1914, researchers were captivated by the search for exafflility. 1t was shown that the presence of electric
solutions of the field equations. Over the past century £1arge alters the Buchdahl limit required for stability of a
myriad of exact solutions was obtained which attempted€!-gravitating, bounded matter distributio8irigh et al.

to explain observations in cosmology and asstrophysics.z.016 Andreasson et al. 20)2Departure from spherical

The gravitational field exterior to a static, sphericallySymmetry has also been pursued in the context of slowly

symmetric star was first obtained by Schwarzschild if°@ting stars and in the description of gravitational

1916. This vacuum solution was followed by the interior V&ves Herrera et al. 2003k). Various techniques ranging

Schwarzschild solution which describes the gravitationafrorn ad-hoc assumptions, imposition of pressure isotropy,

field of a uniform density spher&¢hwarzschild 1916). applif:gtion of an equation of statg (E0S), use of the
Causality is one of the cornerstones of relativity Whichcondltlon of conformal flatness and Lie symmetry analysis,
requires0 < 9 < 1 (Dev& Gleiser 2002 2003. to name just a few, were relied on to solve the field

dp equations Kanjonjo etal. 2018 lvanov 2018. While

It is clear that causality is violated at each interior X i ]
point of the Schwarzschild constant density Spheret_hese methods yield solutions, there is no guarantee that th

This prompted researchers to consider more realisti€Nsuing models are physically viable. An extensive review

matter configurations which included inhomogeneoué’f exr?lc.t SOIU“‘?”S ‘?f the.Eir\stein field equations (EFEs)

density profiles, anisotropic pressures, electric changjé, describing st.atlc objects |nd|gates that a very s.m.aII dubse

viscosity and scalar fields. Generalization of the perfecPf these satlsfy.all the requirements for realistic stellar

fluid interior matter distribution to include anisotropic models Btephani et al. 2003

stresses has yielded interesting physical characterigtic A natural question which arises in astrophysics is what

such models. It was demonstrated that physical propertidsappens when a star loses hydrostatic equilibrium and
such as surface tension, compactness and surface redshiftdergoes continued gravitational collapse? Oppenheimer
of these stars are sensitive to the anisotropy paranmand Snyder tackled this problem by considering a

eter Sharma & Maharaj 2007Bowers & Liang 1974  spherically symmetric dust cloud undergoing gravitatlona
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collapse Qppenheimer & Snyder 1939 Their model concept of embedding. The Karmarkar condition, which
served as a catalyst in understanding end-states ofeeds to be satisfied if the spacetime has to be a class
gravitational collapse. The Cosmic Censorship Conjecturé embedding, has been widely used to generate various
which ruled out the formation of naked singularities stellar models describing anisotropic sphetgar(arkar
for collapsing matter configurations with reasonablel948. These models have been confirmed to satisfy
initial states was shown to be violated under variousall the stringent stability and physical tests imposed by
assumptions@uo & Joshi 2015Ghosh & Maharaj 2015 the behaviour of the thermodynamic and gravitational
Sherif et al. 201p The study of black holes has moved variables Bhar 2019 TellOrtiz et al. 2019 Maurya et al.
into the observable realm making it a popular researc2019a Jasim et al. 2020Sing et al. 2020 Gedela et al.
topic (Event Horizon Telescope Collaboration et al. 2019 202Q Ivano 202Q Sarkar etal. 2020 Many of these
Black hole physics has evolved immensely from the simplesolutions have been reconciled with observational data
Oppenheimer-Snyder dust model to include anisotropiof compact objects including strange stars, pulsars and
pressures, electromagnetic field, cosmological constant aeutron stars Gedela et al. 201,82019ab; Upreti et al.
well as higher dimensions. 202Q Fuloria 2017 Pantetal. 2020 By utilising a
) ) .. Quadratic equation of state together with the Karmarkar

Vaidya (195 presented an exact solution des’C”bmgcondition, a model for the strange star candidate SAX
the exterior gravitational field of a radiating star. ThiSJ1808.4—3658 was obtained. It was shown that this model
squtpn IS a umque_ case of the EFEs describing aagrees with observational characteristics of this star.
spherically symmetric atmosphere composed of nul urthermore, a comparison of the quadratic EoS model
rf_id'?t'or_]' The Valdyg SOIU_“OH made it p953|ble to mgdebvith modified Bose-Einstein condensation EoS and linear
dissipative collapse in which the collapsing core rad|ate%OS was carried ouGedela et al. 2019cThe Karmarkar
energy to the exterlor. spacetlme in the form of a radlal(:ondition has also been utilised to model dissipative
heat flux or null rf’;ldlatlon. '.I'hfare were §everal e_arlycollapse ensuing from an initially static configuration
attempts at modeling a radlatlng.star W't_h a_va'dyalosing hydrostatic equilibrium and starts to radiate eperg
exter!or. The Pmb'em was matching the interior an 0 the exterior spacetime. The Karmarkar condition
.exter-lor spacgymes acrpss the boundary of the §tar. qugether with the junction condition which represents
junction conditions required for the smooth matching of a onservation of momentum across the collapsing boundary
spher!cally syr‘qmetnc, shear-free line element to Vaislya determines the temporal and gravitational evolution of the
outgoing solution were provided l:l)ﬁf’;mtos(198-3. It model (Naidu et al. 2018 Many of these models indicate
W.as. de.monstrated- that for a rad'a“”g spherical bOd\fheir robustness under the scrutiny of physical viability.
dissipating energy in the form of a radial heat flux, theTo this end, we employ the Karmarkar condition to seek
pressure on the boundary is proportional to the magnitudg model which accurately describes two stellar compact

of the heat flux. This condition ensures conservation OBbjects namely, PSR J1614-2230 and SAX J1808.4—
momentum across the boundary of the collapsing bod;g658 ' '

Since the publication of the Santos junction conditions, This paper is structured as follows: In Sectian

therg has been an gxploglon . of modells descrlbm%e present the EFEs describing the interior spacetime of
dissipative collapse starting with simple solutions andsth the stellar model. The Karmarkar and embedding class

rapidly developing into more sophisticatet_j stfallar moﬂelsI conditions are introduced in Sectich By adopting
Herrera et al (1989; Qhan et aI.(19_949;. Di Prisco et al. a parametric form for one of the metric potentials we
(2007; Herrera & Martine1999; Di Prisco et al(1997 enerate a stellar model in Sectich Matching of

haI\I/e been. ;]ns;_run_wen_tal n _|rr]1_vest|gat|ng tlhi nature ko he interior and exterior spacetimes is accomplished in
coflapse wit |SS|pat|on_ W'_t N a general amework, o tions. The physical features of the model are discussed
thus giving researchers rich insights into these problem§n Section6. We investigate the stability of our model

especially with the inclusion of shear, inhomogeneity and, Section?7. The paper concludes with a discussion and
anisotropy. The thermodynamics of radiating stars Waﬁnding our main results in Sectidh

developed by Govender and co-workers since the early
1990s. Relaxational effects due to heat dissipation an
shear viscosity predict temperature and luminosity prefile

which are significantly different from the Eckart theory of A |ine element within a spherically symmetric anisotropic

thermodynamics_@ovenderet al. 2010Govender 2013  fjyid matter distribution in Schwarzschild coordinates
Govender & Govinder 2001 Recently, there has been (,i) — (¢ r 9, ¢) is delineated in the following form

a resurgence in seeking exact solutions to the EFEs
describing static, compact objects by employing the ds? = e”Mdt? — eNMdr? — r2(d6? + sin? 0d¢?), (1)

g THE EINSTEIN FIELD EQUATIONS
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Fig.1 Variation ofe=*(") ande*(") with r for (i) PSR J1614—-2230 with mad¢ = 1.97 M, and radiusk = 9.69 km for
the models: = 13.5, 18.66, 23.82 and28.98; (i) SAX J1808.4—3658 with mas®/ = 0.9 M, and radius® = 7.951 km
for the models: = 9.56, 13.14, 16.72 and20.3, and the valueg = 0.0001 km~2 andc = 2.5.
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Fig.2 Variation of p with r for (i) PSR J1614—-2230 with masd = 1.97 M., and radiusk = 9.69 km for the models
n = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4—3658 with maskd/ = 0.9 M, and radiusk = 7.951 km for the
modelsn = 9.56, 13.14, 16.72 and20.3, and the values = 0.0001 km~?2 andc = 2.5.
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Fig.3 Variation ofp,. andp; with r for (i) PSR J1614-2230 with magd = 1.97 M and radiusk = 9.69km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4—3658 with mas¥/ = 0.9 M, and radiuskR = 7.951 km
for the models: = 9.56, 13.14, 16.72 and20.3, and the valued = 0.0001 km~2 andc = 2.5.

where the gravitational potentialgr) and \(r) are yet

matter takes the form

Ti = [(pe + p)vjve — Pegin + (Or — Pe)X5iXK],

(2)

where p, p,. and p; are the energy density, and radial
unknown. The energy-momentum tensor for anisotropi@nd transverse pressures respectively gnds in the
perpendicular direction tp,.. The normalised 4-velocity

vectorv! =

’ /9—16{ and the unit spacelike vectq?
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Fig.4 Variation ofp,./p andp,/p with r for (i) PSR J1614—2230 with madd = 1.97 M, and radiusk® = 9.69 km for
the models: = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4—3658 with mask/ = 0.9 M, and radiusk = 7.951
km for the models: = 9.56, 13.14, 16.72 and20.3, and the values = 0.0001 km~2 andc = 2.5.

T e e S S
PSR J1614-2230(n = 13.5) SAX J1808 .4 - 3658 (n = 9.56)

pr(r)
Pr(r)

L L Il L L L L Il L L L L Il L L L L Il
0.05 0.10 0.15 0.20 0.0 0.1 0.2 03 0.4 05

Fig.5 Variation of EoS parameters wighfor (i) PSR J1614—2230 with madg = 1.97 M, and radiusk® = 9.69 km for
the model, = 13.5; (ii) SAX J1808.4-3658 with mass/ = 0.9 M and radiusk = 7.951 km for the modeh = 9.56
and the values = 0.0001 km~2 andc = 2.5.
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Fig.6 Variation of massi{.(r)) with r for (i) PSR J1614-2230 with madg = 1.97 M, and radiusk = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4—3658 with mas&/ = 0.9 M and radiusk = 7.951km
for the models: = 9.56, 13.14, 16.72 and20.3, and the valueg = 0.0001 km~2 andc = 2.5.

79%55 alongr provideg;xv/v* = 1 andg;px/x* =
—1 respectively.
The line element ¥) and momentum tensof’j; Smp = (1—e2") N N (r)e= M) 3)
(2) give rise to the following system of equations r? r ’
(Maurya et al. 2019c

(1) e— M) 1 — =AM
8mp, = ( )r - ( 2 ), 4)
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oA
8mpr = —— VN + —
4 r T

1 /2 20" 2N 4 A NEW PARAMETRIC CLASS OF SOLUTIONS
20" +v ——, (5

N L ) . Inthis paper, we assumed the following metric potential
where (') signifies derivative with respect to the radial

coordinater. A = 14 ar’an(r), (15)
Considering the field equations, Equatiofsdnd 6),  where

the anisotropic factofA) takes the form an(r) = csc” (br2 +o),

A=pt—pr anda, b andc are positive constants amd> 0. We have
_ YA vV EN e selectede?™) such that at the center™ = 1, which
n 2 4 2r r2 ' emphasises that at the center the tangent 3-space is flat

o (6)  and the EFEs can be integrated. Substituting) from
Here we choose the gravitational constahand speed of  Equation (5) into Equation {3), we obtain the remaining

sounde to be unity. metric potentiak”(") as
2
3 THE KARMARKAR CONDITION V() Qhi(r)ha(r)y/ac, (1)
e =[P- m , (16)
The Karmarkar condition required for the spacetime to be . )
type class | embedding is whereP gndQ are mtegratlon.constants.. -
RivtoRoses + RioosR Relying on the metric potentials given by
Rygpq = 121270343 1224 1334, (7) Equations 15 and (16), the expressions fop, p,, A

Ro323
subject toR2323 # 0 (Pandey & Sharma 1981
The non-zero Riemann tensor components for the line p =
element () are

andp, can be cast as
ac, (1) (r? (ac(r) — 2bncot (br? +¢)) + 3)
(ar?ap(r) +1)2 ’

7)
" 2 / /
V0 ) N () () aan(r) "
Ri414 e’ 5 T2 1 ), (8) Dr T (1) (ar2an(r) + 1)’ (18)
A1), 2002 A(r)
Rasos = 16 rosin“6(e 1), ©) _ hs(r)r® (2bhe(r) — ha(r)) (19)
Ri212 = 57")‘/(7")7 (10) hs(r) (1 + aran(r))®
1 20 v(r)—=A(r) Pt =pr + A, (20)
R3y34 = —57“ sin® 6v'(r)e . (12) where
The differential equation derived using the Karmarkar h(r) = oF <1, n+ 2; §; cos? (br? + C)) ,
condition (7) assumes the form 27 4 72
" n—2
2v = Nerr) (12) hao(r) = sin (2 (br® +¢))sin® (br® +¢) *
v/ eMr) —1 hs(r) = 2Pby/acs, — aQhi(r)\/ay, cos (br® + c)
Solving Equation 12), we find the following relation —4b0)
betweere* (") ande (") ’ )
o ) ha(r) = VaQhi(r) cos (br® + ¢) — 2Pb,
AN = (P Ve —1d 13 2
e = ( +Q e ) (13) hs(r) = aouy(r) + bncot (br® + ),
0
whereP andQ are integration constants. he(r) = aPoy(r) — Qv aan(r),
In view of Equation §), the anisotropy of the fluich hz(r) = aBhy(r) cos (br2 + c) csc? (br2 + C) ,
(Maurya et al. 201pis obtained as hs(r) = 2Pb — \/aQhi (r) cos (bTQ 4 C) '

_ V() [2 XN } [y/(r)ev(r) B 1} . (19 The mass functiomn(r), gravitational redshift:(r)
4eA(r) 1 2rB? and compactification factar(r) at the surface and within

r eAr) —
At this juncture, we should point out that wheéa = 0,  the interior of the stellar system are expressed as

the only bounded solution simultaneously satisfying the ardan(r)

Karmarkar condition and pressure isotropy is the interior ~ m(r) = m, (21)

Schwarzschild solution. This solution suffers various " 1

shortcomings including superluminal speeds within the z(r) = -1, (22)

interior of the fluid. To this end, we consider a solution P — th(r)hirb) vaan(r)

describing an anisotropic fluid distribution which will be ) m(r) ar?o, (1) (23)
T = =

taken up in the next section. w r 2 (ar?an(r) + 1)
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5 MATCHING OF INTERIOR AND EXTERIOR
SPACETIME OVER THE BOUNDARY
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affirms that the metric potentials are regular and free from
geometric singularities inside the stars. Also, both roetri
potentialse” (r) ande~*(") are monotonically increasing

To determine the constants b, ¢, P and (@ appearing and decreasing respectively, witt{Fig.1).

in our class of solutions, the interior metric must be

matched smoothly across the boundary with the exteriog » viable Trendsin Physical Parameters

Schwarzschild solution

ds? = (1 - g)dﬁ - (1 - g)_ldﬁ

— 72(d6? + sin® 0d¢?) . (24)
By comparing the interior solutionl) with exterior
solution @4) at the boundaryr = R (Darmois-Isreal
conditions), we obtain

2M
vy 1 =/
‘ R
2
Q (ny/T =7 4 2bR? + 2¢) \/ao,(R)
— P+ :
b(n?+4)
(25)
2M 1

Ay 22— - 26
‘ R~ 1+aR%an(R) (26)
pT(R) =0. (27)

With the help of the boundary condition25)—(27), we

obtain
2M cse™ ™ (bR2 + c)

“= R22M —R) (28)
V1-24 (ahl(R) cos (bR? + ¢) \/an(R) + 4b)
P= 4b ’
(29)
Q= 1 1-— M acsc” (bR? + ¢), (30)

2 R
wherey = (bR* + 0)2.

The constantd and ¢ are free parameters and are
selected in such a way that all the physical properties

of the assumed stars for a suitable rangeradre well-

6.2.1 Density and pressure trends

The matter density, radial pressure, and transverse
pressurep; for stars PSR J1614-2230 and SAX J1808.4—
3658 are non-negative inside the stars and monotonically
decrease from the center to the surface of these stars for
the range ofn mentioned in Tablel (Figs. 2 and 3)
(Zeldovich & Novikov 1971 lvano 2002.

6.2.2 Relation between pressure-density ratios (Equation
of state)

We plot the graphs of the EoS parameters/p, p:/p) to
establish some connection between density and pressures.
Using the trend of plots, we establish a linear, quadratic
or Courant Friedrichs Lewy (CFL) EoS for our model. An
example of starting off with the metric functions and then
establishing an EoS is the classic papeMukherjee et al.
(1997. In this work, they demonstrate that the Vaidya-
Tikekar geometry leads to a linear EoS. From the plots
of figures, we observe the decreasing trend of pressure to
density ratios with- (Fig. 4) for both the stars PSR J1614—
2230 and SAX J1808.4-3658 for the rangexohentioned
in Tablel. Based on the trends in the plots, we calculate
EOS for neutron star PSR J1614-2230 as

pr = 0.861538p + 0.206369p — 0.00223306,  (31)
(32)

for n = 13.5 andn = 28.98 respectively and for the
strange star SAX J1808.4-3658 as

pr = 69.1848p% — 1.27803p + 0.00560289,

pr = 0.276979p2 + 0.155325p — 0.00151322,  (33)

pr = 48.6746p% — 0.639035p + 0.00149093,  (34)

behaved and satisfy the Darmois-Israel conditions. Th&r 7 = 9.56 andn = 20.3 respectively, following the

values of P and () are expressed in Equation8d and
(30) respectively.

6 DISCUSSION OF PHYSICAL FEATURESFOR
WELL-BEHAVED SOLUTIONS

6.1 Geometrical Regularity

The metric potentials (geometrical parameters) for thessta

method of least squares (elaborated on in the Appendix).
The profiles of EoS for PSR J1614-2230 & 13.5)

and SAX J1808.4-3658n( = 9.56) are exhibited in
Figure5. The trends of EOS for other valueswfin their
corresponding ranges of the stars remain the same as in
Figureb5.

6.2.3 Mass-radius relation, redshift and compactification
factor

PSR J1614-2230 and SAX J1808.4-3658 for the range of
n mentioned in Tablé& at the centefr = 0) give the values The mass functionn(r) and gravitational redshift(r)
e’|,—0 = positive constant and‘k(")h:o = 1. This  function of stars PSR J1614—-2230 and SAX J1808.4-3658
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Fig.7 Variation of redshift withr for (i) PSR J1614—-2230 with madd = 1.97 M, and radiusk = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4—3658 with mas¥/ = 0.9 M, and radiuskR = 7.951 km
for the models: = 9.56, 13.14, 16.72 and20.3, and the valueg = 0.0001 km~2 andc = 2.5.
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R = 9.69 km for the models: = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4-3658 with masé/ = 0.9 M, and
radiusR = 7.951 km for the models = 9.56, 13.14, 16.72 and20.3, and the values = 0.0001 km~2 andc = 2.5.
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Fig.9 Variation of anistropyA(r) with r for (i) PSR J1614-2230 with madg = 1.97 M, and radiusk = 9.69 km for
the models: = 13.5, 18.66, 23.82 and28.98; (i) SAX J1808.4—3658 with mask/ = 0.9 M, and radius® = 7.951 km
for the models: = 9.56, 13.14, 16.72 and20.3, and the valued = 0.0001 km~2 andc = 2.5.

for the range ofn mentioned in Tablel are increasing 6.2.4 Anisotropic parameter

and decreasing respectively withThe variation ofm(r)
and z(r) is plotted in Figuress and 7. Also, values of
compactification parametei(r) for both the stars are
increasing functions with, displayed in Figur8and lying

within the Buchdahl limit Buchdahl 195%

In Figure 9, the radial pressuresp,() coincide with
tangential pressure() at the centers of stars PSR J1614—
2230 and SAX J1808.4-3658 for the rangexahentioned
in Tablel, i.e., pressure anisotropies vanish at the center,
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Fig. 10 Variation ofv2 andv? with r for (i) PSR J1614—2230 with mads = 1.97 M, and radiusk = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4-3658 with mas&/ = 0.9 M, and radiuskR = 7.951 km
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Fig.11 Variation ofv;? — v,.2 with r for (i) PSR J1614—2230 with mads = 1.97 M, and radiusk = 9.69 km for the
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Fig.12 Variation of I'(r) with » for (i) PSR J1614—2230 with masd = 1.97 M, and radiuskR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (i) SAX J1808.4-3658 with masé/ = 0.9 M, and radiusk = 7.951 km
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A(0) = 0 and increase outwardB@wers & Liang 1974

Ivano 2002.
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7 PHYSICAL STABILITY ANALYSIS
7.1 Zeldovich’s Condition

The values op,., p; andp at the center are given by

87Tp7'c = 87Tptc

<72Pb\/acsc"(c) +4bQ + 515262)

= acsc”(c) > 0,
(2wa Jacsen(c) — ﬂlﬂgQ)
(35)
and
8mp. = 3acsc™(c) >0 if a>0. (36)

Using Zeldovich’s conditionfeldovich & Novikov 1971,
i.e.,pre/pe < 1, we get

—2Pby/acsc™(c) + 4bQ + 152Q <1
3 (2Pb\/acsc"(c) - 5152@) -

(37)

9.56, 13.14, 16.72 and 20.3, and the values

In view of Equations 6) and 37), we get the following
inequality

2Ab\/a csc™(c)

4b + P12
1 n+2 3

. 2
2F1 (2; 4 523COS (C)>7

acos(c) sin? (¢) esc™(c).

Q - 2Ab\/a csc™(c)

P~ b+ Bibe

IN

; (38)
where
A
e2

7.1.1 Hererra cracking stability of an anisotropic fluid
sphere

The Hererra cracking methodHérrera 199 is used

to analyse the stability of anisotropic stars under radial
perturbations. We also employ the concept of cracking due
to Abreu et al.(2007) to analyse potentially stable regions
within the stellar configuration by subjecting our model to
the condition—-1 < v? —v2 <0

doo _dpe dD _dpe | dBdr
dp dp dp dp = dpdp’

(39)
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Fig.15 Variation of mass with central densipy. for (i) PSR J1614—-2230 with magd = 1.97 M, and radiusk =
9.69 km for the models: = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4-3658 with mas¥/ = 0.9 M, and radius
R = 7.951km for the models: = 9.56, 13.14, 16.72 and20.3, and the valued = 0.0001 km~2 andc = 2.5.

_%ﬁ square brackets represent the anisotropic and relativisti
dp dp corrections respectively. Moreover, both these quastitie

For a physically feasible model of an anisotropic fluid &re positive and increase the unstable range of
sphere, the radial and transverse velocities of sounddhoul  Chandrasekhaf19643 established a condition on
be less than 1, which are referred to as causality condition study the stability of the interior of the Schwarzschild
in the literature. The profiles of? andv? of stars PSR metric and it is defined as
J1614-2230 and SAX J1808.4-3658 for the range: of
mentioned in Tabld are given in Figured 0, which shows 4 19
that0 < v? < 1 and0 < v} < 1 everywhere within the I'>Ter=g+ 5(25)7 (41)
stellar configuration. Therefore, both the speeds sati&fy t
causality conditions and monotonically decreasing naturg, nere 5 is compactification factor and’., is the
Here, we follow the Herrera cracking methoHefrera yiica adiabatic index which is determined from neutral
1992 for analysing the stability of anisotropic stars configuration.
under radial perturbations. Using the concept of cracking, . ) .
Abreu et al.(2007 put forth the idea that the region of Moustakidis(2017) su.ggested that in the interior of a
an anisotropic fluid sphere wherel < v2 — 02 < 0 is fluid sphe-rerc,.. should linearly depend on the pressure
potentially stable. Figur&l clearly depicts that our model and der?suy ratios at the genter and> I,. For a stable

Jyewtonian sphere, Bondi and Chandrasekhar suggested

is potentially stable inside both the stars PSR J1614-22 p n di hand Kh
and SAX J1808.4-3658 for the rangerofmentioned in thatl’ > 3 (Bondi 1964 Chandrasekhar 1964.
The present class of models satisfies Bondi,

Tablel.

Chandrasekhar and Moustakidis conditions for both
compact stars PSR J1614-2230 and SAX J1808.4-3658
for the range of. mentioned in Tabld andT'., linearly
For a relativistic anisotropic sphere, the stability deg®n gepends on the ratige(Q

. .. . . ?(0) *
on the adiabatic indeX', and the ratio of two specific

(40)

—v; =

7.1.2 Bondi stability condition for adiabatic index

heats, defined bideintzmann & Hillebrand{1979, 7.1.3 Energy conditions
T, = 2tee Opr
oo For a physically stable static model, the interior of the

Bondi(1964) suggested that for a stable Newtonian spheregiar should satisfy (i) null energy conditign+ p, > 0
theI" value should be greater th@ For an anisotropic (NEC) (i) weak energy conditiong + p, > 0, p > 0
relativistic sphere the stability condition is reported by(WEC,) andp + p; > 0, p > 0 (WEG,) and (i) strong
Chan et al(1993, energy conditiorp + p, + 2p; > 0 (SEC) Maurya et al.
> 44 [4(pf,o,—pro) + poPro r], 20191. The profiles of energy conditions, i.e. NEC, WEC

3 3lpyolr 2|pyol and SEC, are displayed in Figut8and our models satisfy
wherep,q, pro andpg represent the initial radial pressure, all the energy conditions for both the stars PSR J1614—
tangential pressure and energy density respectively i8230 and SAX J1808.4—-3658 for the rangexahentioned
static equilibrium. The first and last terms inside thein Tablel.
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7.2 Tolman-Oppenheimer-Volkoff Condition for satisfies (Figl5) the static stability criterion4b).
Equilibrium Under Three Forces The Harrison-Zeldovich-Novikov condition is satis-

) ~ fied for both the stars PSR J1614-2230 and SAX J1808.4—
The Tolman-Oppenheimer-Volkoff (TOV) equation ggcg o the range of mentioned in Tabld.
(Ponce de Leon 1987for an anisotropic fluid matter

distribution is expressed as 8 DISCUSSION AND CONCLUSION

_ My(r)(p+pr) eA(r)—v(r)/2 _ dpr + 24(r) =0, Our aim in this paper is to use the Karmarkar condition
r? dr r (42) (which is purely geometric) to establish a physically

where F,, F, and F, are gravitational, hydrostatic viab!e stellar model (alpeit a toy model). Toy mpdels
and anisotropic forces respectively add,(r) is the are |mportant as. they give a sense of-the behavpur of
the various physical and thermodynamical properties of

gravitational mass that can be obtained from the Tolman: vl ) )
Whittaker formula the star and assist in setting up numerical codes and

1 simulations.
My(r) = 20 (r)e (M =Am)/2, (43) In this paper, we have explored a new parametric class
of solutions for anisotropic matter distribution to model
The TOV equation, Equatiod), can be expressed in the compact star PSR J1614-2230 and strange star SAX
the following balanced force equation J1808.4-3658 by invoking the Karmarkar condition and
Fy+ Fp+ Fy =0, (42) 2adopting a form for one of the metric potentiads(”). We

find a range for one of the parametetdpr both stars such
In an equilibrium state, the three forcgg, £, andF;,  that the solutions are well behaved for particular choices
satisfy the TOV equation. The profiles of the three forcesof the free constants and c. We have analysed all the
of the stars PSR J1614-2230 and SAX J1808.4-3658 atgeometrical and physical properties of these two stars and
exhibited in Figurel4in which F, overshadows the other verified the physical viability of the solutions for the same
two forcesFj, and F;, such that the system is in static range ofn.

equilibrium. The graphs of the two stars for different models, i.e.,
(i) n = 13.5, 18.66, 23.82 and28.98 for PSR J1614—
7.3 Harrison-Zeldovich-Novikov Static Stability 2230; (i) n = 9.56, 13.14, 16.72 and 20.3 for SAX
Criterion J1808.4-3658 for parameter valueshof 0.0001 km~—2

. . . . . .. andc = 2.5km™2, are plotted to find the range of
The Harrison-Zeldovich-Novikov static stability critari such that the solutions are well behaved. Furthermore, we

for non-rotating spherically symmetric equilibrium seell ascertained that the range of well behaved solutions for
models assert that the mass of compact stars must be 8o 31614-2230 is, — 13.5 to 28.98 and for SAX

increasing function of its central density under small aadi 11808.4-3658 iz — 9.56 to 20.3, corresponding to the

pulsation, i.., 9 same parameter valuésndec.
M . .
5 >0. (45) For any value in the range of, the geometrical
_ o Pe _ _ arameterge (") ande”(")) are decreasing and increas-
This criterion ensures that the model is static anc{;g respectively throughout the interior of the stars and
stable. It was proposed bidarrison etal.(1969 and  poi cyryes meet at their boundary (Fy. For physical
Zeldovich & Novikov (197]) independently for stable ,arameters such as density, radial and tangential prassure
stellar models. With the help of EquatioB§) and total essure to density ratios and redshift, both the velaitie
mass in that range ofn are non-negative at the center and
M= B aR? csc™ (bR2 + c) 46 monotonically decrease from the center to surface of the
=m(R) = 2 (aR2cscm (bR2 +¢) +1)° (46) stars (Figs2, 3, 4, 7 and 10). Physical parameters mass,
.compactification factor, anisotropy and adiabatic index ar

The expression of mass in terms of the central density is . S . .
increasing outward, which is required for a physically

given by viable stellar configuration (Fig$, 8, 9 and12).
v pR® cse™"(c) esc™ (bR? + ¢) Our models satisfy all the stability conditions for the
(pe) = 2 (pR? csc—"(c) esc™ (bR2 4 ¢) +3) two stars for any value of. in that range, i.e., Herrera
Also cracking condition €1 < v —v2 < 0,0 < v2, v} <
' 1), Bondi condition ' > 4/3), Zeldovich’s condition
oM R3csc™™(c) esc™ (bR? + ¢) - (0 < 2=, B2 < 1) and Harrison-Zeldovich-Novikov

Ope ¢ (LpR2 csc=(c) ese™ (bR? + ¢) + 1)2 criterion g—% > 0) (Figs.11, 12, 15). For the same range
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Table1 The variation in physical parameters, i.e., central adialiadex, central density, central redshift, surface héfds
and compactness factor, for different models of (i) PSR 438230 with masd/ = 1.97 M, and radiusk = 9.69km
for parametersr = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4-3658 with mas&d/ = 0.9 M, and radiuskR =
7.951 km for parameters = 9.56, 13.14, 16.72 and20.3 for the values ob = 0.0001km~2, ¢ = 2.5, G = 6.67 x
107 m? kg 's72, My =2 x 103 kg andC = 3 x 10m s~ 1.

n =135 n=18.66 n=23.82 n=2898 n =956 n=13.14 n=16.72 n = 20.3

Central adiabatic indexX.) 2.5881 3.2254 4.5 8.0523 4.2634 5.1352 6.7296 9.76
Central density 4. g cm—3 x 1014) 4.8075  4.3597 3.9575 3.5959  3.6093  3.4397 3.2792 3.127
Central radial pressuré.,) (dynecm—2 x1034)  9.008 9.5265 9.9761 10.362  2.5136  2.7694 3.0125  3.2432
Central redshift £..) 0.5531  0.5482 0.5435 0.5389  0.22474 0.22402  0.22332 6222
Surface redshiftz,) 0.29815 0.29815 0.29815 0.29815 0.13694 0.13694  0.13694.3694
Compactness factof'- 0.30134 0.30134 0.30134 0.30134 0.16777 0.16777 0.167706707

of n for both stars, the present models hold for all theand
energy conditionsd > 0, p+p, > 0, p+pr > 0,
p + pr + 2p; > 0) which are required for a physically
viable configuration (Figl3). Furthermore, our models
represent a static anisotropic stellar fluid in equilibrium
configuration as the gravitational force, hydrostatic éorc The EoS is defined as the relation between radial pressure
and anisotropic force are, acting in the interiors of stargp,) and density §) within a star. Since the transformation
through the TOV equation, counterbalancing each othesf p, in terms ofp is so cumbersome, here we exploit a
(Fig. 14). curve fitting technique to approximate the EoS. Further,
The physical quantities, i.e., central adiabatic index Figure10, we observe that the plot of — \/@ is
(T'.), central density 4.), central pressurepf.), central r
redshift ¢.(r)), surface redshift;(c)) and compactness
factor ((r) = ST]‘{), are listed in Tablé. From Tablel we
conclude that with larger values of the central adiabatic
index and central pressure are increasing, whereas th
central density and central redshift are decreasing with pr(r) =U + Tp(r) + Sp*(r), (48)
increasing value ofn. Other physical parameters, i.e.,
compactification factor and redshift at the surface, remain Spy(r) = 11U + TSp(r) + STp*(r), (49)
constant for any value in the range of This work has Yo(r)pe(r) = USp(r) + TSp(r) + SXp%(r), (50)
provided a family of parametric solutions of the EFEs 9 9 3 4
obeying the Karmarkar condition. We show that these o (r)pr(r) = UXpr(r) + TEp(r) + 52p7(r), (51)
solutions are sufficiently useful to model compact objectgvherer varies from central to boundary of the star. To
and predict their observed stellar characteristics withirfind the curve via the least squares method, we consider

II(r) = 8n(pr —pt) = —87A.

APPENDIX: EQUATION OF STATE

not a straight line (i.e.‘%; is not a constant), therefore, it is
necessary that the relation betwegrandp is parabolic in
nature. Consequently, in order to get the EoS, we consider
Iéle curve fitting method for quadratic form

very good approximation. the points with difference9.969 and 0.7951 for PSR
J1614-2230 and SAX J1808.4-3658 respectively. Solving
APPENDIX: GENERATING FUNCTION Equations 49), (50 and 61) for S, 7" and U and

gubstituting the values in EquatioAd), we arrive at the

All the spherically symmetric solutions can be generate fequired EoS.

from the two generating functions given bierrera et al.
(2008. The two primitive generating functiongr) and  Acknowledgements The authors are thankful to the

II(r) are defined as learned referee for valuable comments and suggestions that
o) e[f @n(r)-2)dr] improved the paper.
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