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Abstract In this work we present a theoretical framework within Einstein’s classical general relativity
which models stellar compact objects such as PSR J1614–2230and SAX J1808.4–3658. The Einstein field
equations are solved by assuming that the interior of the compact object is described by a class I spacetime.
The so-called Karmarkar condition arising from this requirement is integrated to reduce the gravitational
behaviour to a single generating function. By appealing to physics we adopt a form for the gravitational
potential which is sufficiently robust to accurately describe compact objects. Our model satisfies all the
requirements for physically realistic stellar structures.
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1 INTRODUCTION

Since the publication of Einstein’s general relativity in
1914, researchers were captivated by the search for exact
solutions of the field equations. Over the past century a
myriad of exact solutions was obtained which attempted
to explain observations in cosmology and astrophysics.
The gravitational field exterior to a static, spherically
symmetric star was first obtained by Schwarzschild in
1916. This vacuum solution was followed by the interior
Schwarzschild solution which describes the gravitational
field of a uniform density sphere (Schwarzschild 1916a,b).
Causality is one of the cornerstones of relativity which
requires0 < dp

dρ < 1 (Dev & Gleiser 2002, 2003).
It is clear that causality is violated at each interior
point of the Schwarzschild constant density sphere.
This prompted researchers to consider more realistic
matter configurations which included inhomogeneous
density profiles, anisotropic pressures, electric charge,bulk
viscosity and scalar fields. Generalization of the perfect
fluid interior matter distribution to include anisotropic
stresses has yielded interesting physical characteristics of
such models. It was demonstrated that physical properties
such as surface tension, compactness and surface redshift
of these stars are sensitive to the anisotropy param-
eter (Sharma & Maharaj 2007; Bowers & Liang 1974;

Maurya & Govender 2017; Pant et al. 2016). The impact
of electric charge in compact objects has been widely
studied within the context of stability and physical
viability. It was shown that the presence of electric
charge alters the Buchdahl limit required for stability of a
self-gravitating, bounded matter distribution (Singh et al.
2016; Andreasson et al. 2012). Departure from spherical
symmetry has also been pursued in the context of slowly
rotating stars and in the description of gravitational
waves (Herrera et al. 2005a,b). Various techniques ranging
from ad-hoc assumptions, imposition of pressure isotropy,
application of an equation of state (EoS), use of the
condition of conformal flatness and Lie symmetry analysis,
to name just a few, were relied on to solve the field
equations (Manjonjo et al. 2018; Ivanov 2018). While
these methods yield solutions, there is no guarantee that the
ensuing models are physically viable. An extensive review
of exact solutions of the Einstein field equations (EFEs)
describing static objects indicates that a very small subset
of these satisfy all the requirements for realistic stellar
models (Stephani et al. 2003).

A natural question which arises in astrophysics is what
happens when a star loses hydrostatic equilibrium and
undergoes continued gravitational collapse? Oppenheimer
and Snyder tackled this problem by considering a
spherically symmetric dust cloud undergoing gravitational
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collapse (Oppenheimer & Snyder 1939). Their model
served as a catalyst in understanding end-states of
gravitational collapse. The Cosmic Censorship Conjecture
which ruled out the formation of naked singularities
for collapsing matter configurations with reasonable
initial states was shown to be violated under various
assumptions (Guo & Joshi 2015; Ghosh & Maharaj 2015;
Sherif et al. 2019). The study of black holes has moved
into the observable realm making it a popular research
topic (Event Horizon Telescope Collaboration et al. 2019).
Black hole physics has evolved immensely from the simple
Oppenheimer-Snyder dust model to include anisotropic
pressures, electromagnetic field, cosmological constant as
well as higher dimensions.

Vaidya (1951) presented an exact solution describing
the exterior gravitational field of a radiating star. This
solution is a unique case of the EFEs describing a
spherically symmetric atmosphere composed of null
radiation. The Vaidya solution made it possible to model
dissipative collapse in which the collapsing core radiates
energy to the exterior spacetime in the form of a radial
heat flux or null radiation. There were several early
attempts at modeling a radiating star with a Vaidya
exterior. The problem was matching the interior and
exterior spacetimes across the boundary of the star. The
junction conditions required for the smooth matching of a
spherically symmetric, shear-free line element to Vaidya’s
outgoing solution were provided bySantos(1985). It
was demonstrated that for a radiating spherical body
dissipating energy in the form of a radial heat flux, the
pressure on the boundary is proportional to the magnitude
of the heat flux. This condition ensures conservation of
momentum across the boundary of the collapsing body.
Since the publication of the Santos junction conditions,
there has been an explosion of models describing
dissipative collapse starting with simple solutions and thus
rapidly developing into more sophisticated stellar models.
Herrera et al.(1989); Chan et al.(1994); Di Prisco et al.
(2007); Herrera & Martinez(1998); Di Prisco et al.(1997)
have been instrumental in investigating the nature of
collapse with dissipation within a general framework,
thus giving researchers rich insights into these problems,
especially with the inclusion of shear, inhomogeneity and
anisotropy. The thermodynamics of radiating stars was
developed by Govender and co-workers since the early
1990s. Relaxational effects due to heat dissipation and
shear viscosity predict temperature and luminosity profiles
which are significantly different from the Eckart theory of
thermodynamics (Govender et al. 2010; Govender 2013;
Govender & Govinder 2001). Recently, there has been
a resurgence in seeking exact solutions to the EFEs
describing static, compact objects by employing the

concept of embedding. The Karmarkar condition, which
needs to be satisfied if the spacetime has to be a class
I embedding, has been widely used to generate various
stellar models describing anisotropic spheres (Karmarkar
1948). These models have been confirmed to satisfy
all the stringent stability and physical tests imposed by
the behaviour of the thermodynamic and gravitational
variables (Bhar 2019; TellOrtiz et al. 2019; Maurya et al.
2019a; Jasim et al. 2020; Sing et al. 2020; Gedela et al.
2020; Ivano 2020; Sarkar et al. 2020). Many of these
solutions have been reconciled with observational data
of compact objects including strange stars, pulsars and
neutron stars (Gedela et al. 2018, 2019a,b; Upreti et al.
2020; Fuloria 2017; Pant et al. 2020). By utilising a
quadratic equation of state together with the Karmarkar
condition, a model for the strange star candidate SAX
J1808.4–3658 was obtained. It was shown that this model
agrees with observational characteristics of this star.
Furthermore, a comparison of the quadratic EoS model
with modified Bose-Einstein condensation EoS and linear
EoS was carried out (Gedela et al. 2019c). The Karmarkar
condition has also been utilised to model dissipative
collapse ensuing from an initially static configuration
losing hydrostatic equilibrium and starts to radiate energy
to the exterior spacetime. The Karmarkar condition
together with the junction condition which represents
conservation of momentum across the collapsing boundary
determines the temporal and gravitational evolution of the
model (Naidu et al. 2018). Many of these models indicate
their robustness under the scrutiny of physical viability.
To this end, we employ the Karmarkar condition to seek
a model which accurately describes two stellar compact
objects, namely, PSR J1614–2230 and SAX J1808.4–
3658.

This paper is structured as follows: In Section2,
we present the EFEs describing the interior spacetime of
the stellar model. The Karmarkar and embedding class
I conditions are introduced in Section3. By adopting
a parametric form for one of the metric potentials we
generate a stellar model in Section4. Matching of
the interior and exterior spacetimes is accomplished in
Section5. The physical features of the model are discussed
in Section6. We investigate the stability of our model
in Section7. The paper concludes with a discussion and
finding our main results in Section8.

2 THE EINSTEIN FIELD EQUATIONS

A line element within a spherically symmetric anisotropic
fluid matter distribution in Schwarzschild coordinates
(xi) = (t, r, θ, φ) is delineated in the following form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)
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Fig. 1 Variation ofe−λ(r) andeν(r) with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for
the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

Fig. 2 Variation ofρ with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the models
n = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km for the
modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

Fig. 3 Variation ofpr andpt with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

where the gravitational potentialsν(r) andλ(r) are yet
unknown. The energy-momentum tensor for anisotropic
matter takes the form

Tjk = [(pt + ρ)vjvk − ptgjk + (pr − pt)χjχk], (2)

where ρ, pr and pt are the energy density, and radial
and transverse pressures respectively andpt is in the
perpendicular direction topr. The normalised 4-velocity

vectorvj =
√

1
gtt

δjt and the unit spacelike vectorχj =
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Fig. 4 Variation ofpr/ρ andpt/ρ with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for
the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951
km for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

Fig. 5 Variation of EoS parameters withρ for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for
the modeln = 13.5; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km for the modeln = 9.56
and the valuesb = 0.0001 km−2 andc = 2.5.

Fig. 6 Variation of mass (m(r)) with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

√

− 1
grr

δjr alongr providegjkvjvk = 1 andgjkχjχk =

−1 respectively.
The line element (1) and momentum tensorTjk

(2) give rise to the following system of equations
(Maurya et al. 2019c)

8πρ =

(

1− e−λ(r)
)

r2
+

λ′(r)e−λ(r)

r
, (3)

8πpr =
ν′(r)e−λ(r)

r
−
(

1− e−λ(r)
)

r2
, (4)
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8πpt =
e−λ

4

(

2ν′′ + ν′
2 − ν′λ′ +

2ν′

r
− 2λ′

r

)

, (5)

where (′) signifies derivative with respect to the radial
coordinater.

Considering the field equations, Equations (4) and (5),
the anisotropic factor(∆) takes the form

∆ = pt − pr

= e−λ

[

ν′′

2
− λ′ν′

4
+

ν′2

4
− ν′ + λ′

2r
+

eλ − 1

r2

]

.

(6)
Here we choose the gravitational constantG and speed of
soundc to be unity.

3 THE KARMARKAR CONDITION

The Karmarkar condition required for the spacetime to be
type class I embedding is

R1414 =
R1212R3434 +R1224R1334

R2323
, (7)

subject toR2323 6= 0 (Pandey & Sharma 1981).
The non-zero Riemann tensor components for the line

element (1) are

R1414 = −eν(r)(
ν

′′

(r)

2
+

ν′
2
(r)

4
− λ′(r)ν′(r)

4
), (8)

R2323 = −e−λ(r)r2sin2θ(eλ(r) − 1), (9)

R1212 =
1

2
rλ′(r), (10)

R3434 = −1

2
r sin2 θν′(r)eν(r)−λ(r). (11)

The differential equation derived using the Karmarkar
condition (7) assumes the form

2ν
′′

ν′
+ ν′ =

λ′eλ(r)

eλ(r) − 1
. (12)

Solving Equation (12), we find the following relation
betweeneλ(r) andeν(r)

eλ(r) =
(

P +Q

∫ r

0

√

eλ(r) − 1dr
)2

, (13)

whereP andQ are integration constants.
In view of Equation (6), the anisotropy of the fluid∆

(Maurya et al. 2016) is obtained as

∆ =
ν′(r)

4eλ(r)

[2

r
− λ′(r)

eλ(r) − 1

][ν′(r)eν(r)

2rB2
− 1
]

. (14)

At this juncture, we should point out that when∆ = 0,
the only bounded solution simultaneously satisfying the
Karmarkar condition and pressure isotropy is the interior
Schwarzschild solution. This solution suffers various
shortcomings including superluminal speeds within the
interior of the fluid. To this end, we consider a solution
describing an anisotropic fluid distribution which will be
taken up in the next section.

4 A NEW PARAMETRIC CLASS OF SOLUTIONS

In this paper, we assumed the following metric potential

eλ(r) = 1 + ar2αn(r), (15)

where

αn(r) = cscn
(

br2 + c
)

,

anda, b andc are positive constants andn ≥ 0. We have
selectedeλ(r) such that at the centereλ(r) = 1, which
emphasises that at the center the tangent 3-space is flat
and the EFEs can be integrated. Substitutingeλ(r) from
Equation (15) into Equation (13), we obtain the remaining
metric potentialeν(r) as

eν(r) =

(

P − Qh1(r)h2(r)
√

aαn(r)

4b

)2

, (16)

whereP andQ are integration constants.
Relying on the metric potentials given by

Equations (15) and (16), the expressions forρ, pr, ∆

andpt can be cast as

ρ =
aαn(r)

(

r2
(

aαn(r) − 2bn cot
(

br2 + c
))

+ 3
)

(ar2αn(r) + 1) 2
,

(17)

pr =
h2(r)

√

aαn(r)

h3(r) (ar2αn(r) + 1)
, (18)

∆ =
h5(r)r

2 (2bh6(r) − h7(r))

h8(r) (1 + ar2αn(r))
2 , (19)

pt = pr +∆, (20)

where

h1(r) = 2F1

(

1

2
,
n+ 2

4
;
3

2
; cos2

(

br2 + c
)

)

,

h2(r) = sin
(

2
(

br2 + c
))

sin2
(

br2 + c
)

n−2

4 ,

h3(r) = 2Pb
√
aαn − aQh1(r)

√
αn cos

(

br2 + c
)

−4bQ,

h4(r) =
√
aQh1(r) cos

(

br2 + c
)

− 2Pb,

h5(r) = aαn(r) + bn cot
(

br2 + c
)

,

h6(r) = aPαn(r) −Q
√

aαn(r),

h7(r) = aBh4(r) cos
(

br2 + c
)

csc
n

2

(

br2 + c
)

,

h8(r) = 2Pb−
√
aQh1(r) cos

(

br2 + c
)

.

The mass functionm(r), gravitational redshiftz(r)
and compactification factoru(r) at the surface and within
the interior of the stellar system are expressed as

m(r) =
ar3αn(r)

2 (ar2αn(r) + 1)
, (21)

z(r) =
1

P − Qh1(r)h2(r)
√

aαn(r)

4b

− 1, (22)

u(r) =
m(r)

r
=

ar2αn(r)

2 (ar2αn(r) + 1)
. (23)
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5 MATCHING OF INTERIOR AND EXTERIOR
SPACETIME OVER THE BOUNDARY

To determine the constantsa, b, c, P andQ appearing
in our class of solutions, the interior metric must be
matched smoothly across the boundary with the exterior
Schwarzschild solution

ds2 =
(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2

− r2(dθ2 + sin2 θdφ2) . (24)

By comparing the interior solution (1) with exterior
solution (24) at the boundaryr = R (Darmois-Isreal
conditions), we obtain

eνb = 1− 2M

R

=

(

P +
Q
(

n
√
1− γ + 2bR2 + 2c

)√

aαn(R)

b (n2 + 4)

)2

,

(25)

e−λ(r)b = 1− 2M

R
=

1

1 + aR2αn(R)
, (26)

pr(R) = 0. (27)

With the help of the boundary conditions (25)–(27), we
obtain

a = −2M csc−n
(

bR2 + c
)

R2(2M −R)
, (28)

P =

√

1− 2M
R

(

ah1(R) cos
(

bR2 + c
)
√

αn(R) + 4b
)

4b
,

(29)

Q =
1

2

√

1− 2M

R

√

a cscn (bR2 + c), (30)

whereγ =
(

bR2 + c
)2

.
The constantsb and c are free parameters and are

selected in such a way that all the physical properties
of the assumed stars for a suitable range ofn are well-
behaved and satisfy the Darmois-Israel conditions. The
values ofP andQ are expressed in Equations (29) and
(30) respectively.

6 DISCUSSION OF PHYSICAL FEATURES FOR
WELL-BEHAVED SOLUTIONS

6.1 Geometrical Regularity

The metric potentials (geometrical parameters) for the stars
PSR J1614–2230 and SAX J1808.4–3658 for the range of
nmentioned in Table1 at the center(r = 0) give the values
eν |r=0 = positive constant ande−λ(r)|r=0 = 1. This

affirms that the metric potentials are regular and free from
geometric singularities inside the stars. Also, both metric
potentialseν(r) ande−λ(r) are monotonically increasing
and decreasing respectively, withr (Fig.1).

6.2 Viable Trends in Physical Parameters

6.2.1 Density and pressure trends

The matter densityρ, radial pressurepr and transverse
pressurept for stars PSR J1614–2230 and SAX J1808.4–
3658 are non-negative inside the stars and monotonically
decrease from the center to the surface of these stars for
the range ofn mentioned in Table1 (Figs. 2 and 3)
(Zeldovich & Novikov 1971; Ivano 2002).

6.2.2 Relation between pressure-density ratios (Equation
of state)

We plot the graphs of the EoS parameters (pr/ρ, pt/ρ) to
establish some connection between density and pressures.
Using the trend of plots, we establish a linear, quadratic
or Courant Friedrichs Lewy (CFL) EoS for our model. An
example of starting off with the metric functions and then
establishing an EoS is the classic paper byMukherjee et al.
(1997). In this work, they demonstrate that the Vaidya-
Tikekar geometry leads to a linear EoS. From the plots
of figures, we observe the decreasing trend of pressure to
density ratios withr (Fig.4) for both the stars PSR J1614–
2230 and SAX J1808.4–3658 for the range ofn mentioned
in Table1. Based on the trends in the plots, we calculate
EOS for neutron star PSR J1614–2230 as

pr = 0.861538ρ2 + 0.206369ρ− 0.00223306, (31)

pr = 69.1848ρ2 − 1.27803ρ+ 0.00560289, (32)

for n = 13.5 and n = 28.98 respectively and for the
strange star SAX J1808.4-3658 as

pr = 0.276979ρ2 + 0.155325ρ− 0.00151322, (33)

pr = 48.6746ρ2 − 0.639035ρ+ 0.00149093, (34)

for n = 9.56 andn = 20.3 respectively, following the
method of least squares (elaborated on in the Appendix).
The profiles of EoS for PSR J1614–2230 (n = 13.5)
and SAX J1808.4–3658 (n = 9.56) are exhibited in
Figure5. The trends of EOS for other values ofn in their
corresponding ranges of the stars remain the same as in
Figure5.

6.2.3 Mass-radius relation, redshift and compactification
factor

The mass functionm(r) and gravitational redshiftz(r)
function of stars PSR J1614–2230 and SAX J1808.4–3658
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Fig. 7 Variation of redshift withr for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

Fig. 8 Variation of the compactification factoru(r) with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radius
R = 9.69 km for the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and
radiusR = 7.951 km for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

Fig. 9 Variation of anistropy∆(r) with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for
the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001 km−2 andc = 2.5.

for the range ofn mentioned in Table1 are increasing
and decreasing respectively withr. The variation ofm(r)

and z(r) is plotted in Figures6 and 7. Also, values of
compactification parameteru(r) for both the stars are
increasing functions withr, displayed in Figure8 and lying
within the Buchdahl limit (Buchdahl 1959).

6.2.4 Anisotropic parameter

In Figure 9, the radial pressures (pr) coincide with
tangential pressure (pt) at the centers of stars PSR J1614–
2230 and SAX J1808.4–3658 for the range ofn mentioned
in Table1, i.e., pressure anisotropies vanish at the center,
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Fig. 10 Variation ofv2r andv2t with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

Fig. 11 Variation ofvt2 − vr
2 with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the

modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

Fig. 12 Variation ofΓ(r) with r for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km for the
modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951 km
for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

∆(0) = 0 and increase outwards (Bowers & Liang 1974;
Ivano 2002).
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Fig. 13 Variation of energy conditions withr for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km
for the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR = 7.951
km for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

Fig. 14 Variation of balancing forcesFa, Fg, Fa andFa + Fg + Fh with r for (i) PSR J1614–2230 with massM =
1.97M⊙ and radiusR = 9.69 km for the modelsn = 13.5, 18.66, 23.82 and 28.98; (ii) SAX J1808.4-3658 with
massM = 0.9M⊙ and radiusR = 7.951 km for the modelsn = 9.56, 13.14, 16.72 and 20.3, and the values
b = 0.0001 km−2 andc = 2.5.

7 PHYSICAL STABILITY ANALYSIS

7.1 Zeldovich’s Condition

The values ofpr, pt andρ at the center are given by

8πprc = 8πptc

= a cscn(c)

(

−2Pb
√

a cscn(c) + 4bQ+ β1β2Q
)

(

2Pb
√

a cscn(c)− β1β2Q
) > 0,

(35)
and

8πρc = 3a cscn(c) > 0 if a > 0 . (36)

Using Zeldovich’s condition (Zeldovich & Novikov 1971),
i.e.,prc/ρc ≤ 1, we get

−2Pb
√

a cscn(c) + 4bQ+ β1β2Q

3
(

2Pb
√

a cscn(c)− β1β2Q
) ≤ 1. (37)

In view of Equations (36) and (37), we get the following
inequality

2Ab
√

a cscn(c)

4b+ β1β2
≤ Q

P
≤ 2Ab

√

a cscn(c)

b+ β1β2
, (38)

where

β1 = 2F1

(

1

2
,
n+ 2

4
;
3

2
; cos2(c)

)

,

β2 = a cos(c) sin
n

2 (c) cscn(c).

7.1.1 Hererra cracking stability of an anisotropic fluid
sphere

The Hererra cracking method (Herrera 1992) is used
to analyse the stability of anisotropic stars under radial
perturbations. We also employ the concept of cracking due
to Abreu et al.(2007) to analyse potentially stable regions
within the stellar configuration by subjecting our model to
the condition−1 < v2t − v2r ≤ 0

dpt
dρ

=
dpr
dρ

+
d∆

dρ
=

dpr
dρ

+
d∆

dρ

dr

dρ
, (39)
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Fig. 15 Variation of mass with central densityρc for (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR =
9.69 km for the modelsn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radius
R = 7.951 km for the modelsn = 9.56, 13.14, 16.72 and20.3, and the valuesb = 0.0001km−2 andc = 2.5.

v2r − v2t = −d∆

dρ

dr

dρ
. (40)

For a physically feasible model of an anisotropic fluid
sphere, the radial and transverse velocities of sound should
be less than 1, which are referred to as causality conditions
in the literature. The profiles ofv2r and v2t of stars PSR
J1614–2230 and SAX J1808.4–3658 for the range ofn

mentioned in Table1 are given in Figure10, which shows
that0 < v2r ≤ 1 and0 < v2t ≤ 1 everywhere within the
stellar configuration. Therefore, both the speeds satisfy the
causality conditions and monotonically decreasing nature.
Here, we follow the Herrera cracking method (Herrera
1992) for analysing the stability of anisotropic stars
under radial perturbations. Using the concept of cracking,
Abreu et al.(2007) put forth the idea that the region of
an anisotropic fluid sphere where−1 < v2t − v2r ≤ 0 is
potentially stable. Figure11clearly depicts that our model
is potentially stable inside both the stars PSR J1614–2230
and SAX J1808.4–3658 for the range ofn mentioned in
Table1.

7.1.2 Bondi stability condition for adiabatic index

For a relativistic anisotropic sphere, the stability depends
on the adiabatic indexΓr and the ratio of two specific
heats, defined byHeintzmann & Hillebrandt(1975),

Γr = ρ+pr

pr

∂pr

∂ρ .

Bondi(1964) suggested that for a stable Newtonian sphere,
theΓ value should be greater than43 . For an anisotropic
relativistic sphere the stability condition is reported by
Chan et al.(1993),

Γ > 4
3 +

[ 4(pt0−pr0)

3|p
′

r0
|r

+ ρ0pr0

2|p
′

r0
|
r
]

,

wherepr0, pt0 andρ0 represent the initial radial pressure,
tangential pressure and energy density respectively in
static equilibrium. The first and last terms inside the

square brackets represent the anisotropic and relativistic
corrections respectively. Moreover, both these quantities
are positive and increase the unstable range ofΓ.

Chandrasekhar(1964a) established a condition onΓ
to study the stability of the interior of the Schwarzschild
metric and it is defined as

Γ > Γcr =
4

3
+

19

42
(2δ), (41)

where δ is compactification factor andΓcr is the
critical adiabatic index which is determined from neutral
configuration.

Moustakidis(2017) suggested that in the interior of a
fluid sphere,Γcr should linearly depend on the pressure
and density ratios at the center andΓ > Γcr. For a stable
Newtonian sphere, Bondi and Chandrasekhar suggested
thatΓ > 4

3 (Bondi 1964; Chandrasekhar 1964a,b).

The present class of models satisfies Bondi,
Chandrasekhar and Moustakidis conditions for both
compact stars PSR J1614-2230 and SAX J1808.4–3658
for the range ofn mentioned in Table1 andΓcr linearly
depends on the ratiopr(0)

ρ(0) .

7.1.3 Energy conditions

For a physically stable static model, the interior of the
star should satisfy (i) null energy conditionρ + pr ≥ 0

(NEC) (ii) weak energy conditionsρ + pr ≥ 0, ρ ≥ 0

(WECr) andρ + pt ≥ 0, ρ ≥ 0 (WECt) and (iii) strong
energy conditionρ + pr + 2pt ≥ 0 (SEC) (Maurya et al.
2019b). The profiles of energy conditions, i.e. NEC, WEC
and SEC, are displayed in Figure13and our models satisfy
all the energy conditions for both the stars PSR J1614–
2230 and SAX J1808.4–3658 for the range ofn mentioned
in Table1.
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7.2 Tolman-Oppenheimer-Volkoff Condition for
Equilibrium Under Three Forces

The Tolman-Oppenheimer-Volkoff (TOV) equation
(Ponce de Leon 1987) for an anisotropic fluid matter
distribution is expressed as

− Mg(r)(ρ + pr)

r2
e(λ(r)−ν(r))/2 − dpr

dr
+

2∆(r)

r
= 0,

(42)
where Fg, Fh and Fa are gravitational, hydrostatic
and anisotropic forces respectively andMg(r) is the
gravitational mass that can be obtained from the Tolman-
Whittaker formula

Mg(r) =
1

2
r2ν′(r)e(ν(r)−λ(r))/2. (43)

The TOV equation, Equation (42), can be expressed in
the following balanced force equation

Fg + Fh + Fa = 0. (44)

In an equilibrium state, the three forcesFg, Fh andFa

satisfy the TOV equation. The profiles of the three forces
of the stars PSR J1614–2230 and SAX J1808.4–3658 are
exhibited in Figure14 in whichFg overshadows the other
two forcesFh and Fa such that the system is in static
equilibrium.

7.3 Harrison-Zeldovich-Novikov Static Stability
Criterion

The Harrison-Zeldovich-Novikov static stability criteria
for non-rotating spherically symmetric equilibrium stellar
models assert that the mass of compact stars must be an
increasing function of its central density under small radial
pulsation, i.e.,

∂M

∂ρc
> 0 . (45)

This criterion ensures that the model is static and
stable. It was proposed byHarrison et al. (1965) and
Zeldovich & Novikov (1971) independently for stable
stellar models. With the help of Equation (36) and total
mass

M = m(R) =
aR3 cscn

(

bR2 + c
)

2 (aR2 cscn (bR2 + c) + 1)
. (46)

The expression of mass in terms of the central density is
given by

M(ρc) =
ρR3 csc−n(c) cscn

(

bR2 + c
)

2 (ρR2 csc−n(c) cscn (bR2 + c) + 3)
.

Also,

∂M

∂ρc
=

R3 csc−n(c) cscn
(

bR2 + c
)

6
(

1
3ρR

2 csc−n(c) cscn (bR2 + c) + 1
)2 > 0

satisfies (Fig.15) the static stability criterion (45).
The Harrison-Zeldovich-Novikov condition is satis-

fied for both the stars PSR J1614–2230 and SAX J1808.4–
3658 for the range ofn mentioned in Table1.

8 DISCUSSION AND CONCLUSION

Our aim in this paper is to use the Karmarkar condition
(which is purely geometric) to establish a physically
viable stellar model (albeit a toy model). Toy models
are important as they give a sense of the behaviour of
the various physical and thermodynamical properties of
the star and assist in setting up numerical codes and
simulations.

In this paper, we have explored a new parametric class
of solutions for anisotropic matter distribution to model
the compact star PSR J1614–2230 and strange star SAX
J1808.4–3658 by invoking the Karmarkar condition and
adopting a form for one of the metric potentials,eλ(r). We
find a range for one of the parameters,n for both stars such
that the solutions are well behaved for particular choices
of the free constantsb and c. We have analysed all the
geometrical and physical properties of these two stars and
verified the physical viability of the solutions for the same
range ofn.

The graphs of the two stars for different models, i.e.,
(i) n = 13.5, 18.66, 23.82 and 28.98 for PSR J1614–
2230; (ii) n = 9.56, 13.14, 16.72 and 20.3 for SAX
J1808.4–3658 for parameter values ofb = 0.0001 km−2

and c = 2.5 km−2, are plotted to find the range ofn
such that the solutions are well behaved. Furthermore, we
ascertained that the range of well behaved solutions for
PSR J1614–2230 isn = 13.5 to 28.98 and for SAX
J1808.4–3658 isn = 9.56 to 20.3, corresponding to the
same parameter valuesb andc.

For any value in the range ofn, the geometrical
parameters(e−λ(r) andeν(r)) are decreasing and increas-
ing respectively throughout the interior of the stars and
both curves meet at their boundary (Fig.1). For physical
parameters such as density, radial and tangential pressures,
pressure to density ratios and redshift, both the velocities
in that range ofn are non-negative at the center and
monotonically decrease from the center to surface of the
stars (Figs.2, 3, 4, 7 and10). Physical parameters mass,
compactification factor, anisotropy and adiabatic index are
increasing outward, which is required for a physically
viable stellar configuration (Figs.6, 8, 9 and12).

Our models satisfy all the stability conditions for the
two stars for any value ofn in that range, i.e., Herrera
cracking condition (−1 < v2t − v2r < 0, 0 < v2r , v2t <

1), Bondi condition (Γ > 4/3), Zeldovich’s condition
(0 < pr

ρ , pr

ρ < 1) and Harrison-Zeldovich-Novikov

criterion (∂M∂ρc
> 0) (Figs.11, 12, 15). For the same range
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Table 1 The variation in physical parameters, i.e., central adiabatic index, central density, central redshift, surface redshift
and compactness factor, for different models of (i) PSR J1614–2230 with massM = 1.97M⊙ and radiusR = 9.69 km
for parametersn = 13.5, 18.66, 23.82 and28.98; (ii) SAX J1808.4–3658 with massM = 0.9M⊙ and radiusR =

7.951 km for parametersn = 9.56, 13.14, 16.72 and20.3 for the values ofb = 0.0001 km−2, c = 2.5, G = 6.67 ×
10−11m3 kg−1 s−2, M⊙ = 2× 1030 kg andC = 3× 108 m s−1.

n = 13.5 n = 18.66 n = 23.82 n = 28.98 n = 9.56 n = 13.14 n = 16.72 n = 20.3

Central adiabatic index (Γc) 2.5881 3.2254 4.5 8.0523 4.2634 5.1352 6.7296 9.76

Central density (ρc g cm−3
× 1014) 4.8075 4.3597 3.9575 3.5959 3.6093 3.4397 3.2792 3.127

Central radial pressure (Prc ) (dyne cm−2
×1034) 9.008 9.5265 9.9761 10.362 2.5136 2.7694 3.0125 3.2432

Central redshift (zc) 0.5531 0.5482 0.5435 0.5389 0.22474 0.22402 0.22332 0.22262

Surface redshift (zb) 0.29815 0.29815 0.29815 0.29815 0.13694 0.13694 0.13694 0.13694

Compactness factorGM

C2R
0.30134 0.30134 0.30134 0.30134 0.16777 0.16777 0.16777 0.16777

of n for both stars, the present models hold for all the
energy conditions (ρ > 0, ρ + pr > 0, ρ + pt > 0,
ρ + pr + 2pt > 0) which are required for a physically
viable configuration (Fig.13). Furthermore, our models
represent a static anisotropic stellar fluid in equilibrium
configuration as the gravitational force, hydrostatic force
and anisotropic force are, acting in the interiors of stars
through the TOV equation, counterbalancing each other
(Fig. 14).

The physical quantities, i.e., central adiabatic index
(Γc), central density (ρc), central pressure (prc), central
redshift (zc(r)), surface redshift (zs(c)) and compactness
factor (u(r) = GM

cR2 ), are listed in Table1. From Table1 we
conclude that with larger values ofn, the central adiabatic
index and central pressure are increasing, whereas the
central density and central redshift are decreasing with
increasing value ofn. Other physical parameters, i.e.,
compactification factor and redshift at the surface, remain
constant for any value in the range ofn. This work has
provided a family of parametric solutions of the EFEs
obeying the Karmarkar condition. We show that these
solutions are sufficiently useful to model compact objects
and predict their observed stellar characteristics within
very good approximation.

APPENDIX: GENERATING FUNCTION

All the spherically symmetric solutions can be generated
from the two generating functions given byHerrera et al.
(2008). The two primitive generating functionsη(r) and
Π(r) are defined as

eν(r) = e

[ ∫
(2η(r)− 2

r
)dr
]

,

Π(r) = 8π(pr − pt). (47)

The two generating functions pertaining to the present
class of solutions are obtained as

η(r) =
√
aQh1(r) cos

(

br2 + c
)

− 2b
(√

aQr2 csc
n

2

(

br2 + c
)

+ P
)

r (
√
aQh1(r) cos (br2 + c)− 2Pb)

and

Π(r) = 8π(pr − pt) = −8π∆ .

APPENDIX: EQUATION OF STATE

The EoS is defined as the relation between radial pressure
(pr) and density (ρ) within a star. Since the transformation
of pr in terms ofρ is so cumbersome, here we exploit a
curve fitting technique to approximate the EoS. Further,

from Figure10, we observe that the plot ofvr =
√

dpr

dρ is

not a straight line (i.e.,dpr

dρ is not a constant), therefore, it is
necessary that the relation betweenpr andρ is parabolic in
nature. Consequently, in order to get the EoS, we consider
the curve fitting method for quadratic form

pr(r) = U + Tρ(r) + Sρ2(r), (48)

Σpr(r) = 11U + TΣρ(r) + SΣρ2(r), (49)

Σρ(r)pr(r) = UΣρ(r) + TΣρ2(r) + SΣρ3(r), (50)

Σρ2(r)pr(r) = UΣρ2(r) + TΣρ3(r) + SΣρ4(r), (51)

wherer varies from central to boundary of the star. To
find the curve via the least squares method, we consider
the points with differences0.969 and 0.7951 for PSR
J1614–2230 and SAX J1808.4–3658 respectively. Solving
Equations (49), (50) and (51) for S, T and U and
substituting the values in Equation (48), we arrive at the
required EoS.
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